Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Preparation of Large Area Graphene Oxide
2.3. Preparation of Small Area Graphene Oxide
2.4. Preparation of Iron Oxide Based Microparticles
2.5. Preparation of Large Area Graphene Oxide Modified by Iron Oxide Based Microparticles
2.6. Preparation of Small Area Graphene Oxide Particles (More Exfoliated) Modified by Iron Oxide Based Microparticles
2.7. Adsorption Experiments
2.8. Electrochemical Determination of Se(IV) Using Differential Pulse Cathodic Stripping Voltammetry
2.9. Characterterization of Size and Zeta Potential of the Adsorption Material Subsection
2.10. Scanning Electron Microscopy
3. Results and Discussion
3.1. Electrochemical Determination of Se(IV) Using Differential Pulse Cathodic Stripping Voltammetry
3.2. Characterization of Graphene Oxide Based Materials and Microparticles
3.3. Interaction of Graphene Oxide Based Materials and Microparticles with Se(IV)
3.4. Adsorption Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jamil, M.; Zia, M.S.; Qasim, M. Contamination of Agro-Ecosystem and Human Health Hazards from Wastewater used for Irrigation. J. Chem. Soc. Pak. 2010, 32, 370–378. [Google Scholar]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef]
- Schomburg, L.; Schweizer, U.; Kohrle, J. Selenium and selenoproteins in mammals: Extraordinary, essential, enigmatic. Cell. Mol. Life Sci. 2004, 61, 1988–1995. [Google Scholar] [CrossRef]
- Underwood, E.J.; Suttle, N.F. The Mineral Nutrition of Livestock; CABI Publishing: Wallingford, UK; New York, NY, USA, 1999. [Google Scholar]
- Mehdi, Y.; Hornick, J.L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Dennert, G.; Crespi, C.M.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.A.; Horneber, M.; D’Amico, R.; Del Giovane, C. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2014, 3, CD005195. [Google Scholar] [CrossRef]
- Brown, K.M.; Arthur, J. Selenium, selenoproteins and human health: A review. Public Health Nutr. 2001, 4, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Gromadzinska, J.; Reszka, E.; Bruzelius, K.; Wasowicz, W.; Akesson, B. Selenium and cancer: Biomarkers of selenium status and molecular action of selenium supplements. Eur. J. Nutr. 2008, 47, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Méplan, C. Selenium and chronic diseases: A nutritional genomics perspective. Nutrients 2015, 7, 3621–3651. [Google Scholar] [CrossRef]
- Papp, L.V.; Holmgren, A.; Khanna, K.K. Selenium and selenoproteins in health and disease. Antioxid. Redox Signal. 2010, 12, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.C.; Nancharaiah, Y.V.; van Hullebusch, E.D.; Lens, P.N. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 2016, 34, 886–907. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Lemly, A.D. Selenium impacts on fish: An insidious time bomb. Hum. Ecol. Risk Assess. Int. J. 1999, 5, 1139–1151. [Google Scholar] [CrossRef]
- Lemly, A.D. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 2004, 59, 44–56. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, J.Y.; Liu, Q.X.; Zeng, H.B. Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal. Carbon 2014, 77, 710–721. [Google Scholar] [CrossRef]
- Reid, M.E.; Stratton, M.S.; Lillico, A.J.; Fakih, M.; Natarajan, R.; Clark, L.C. A report of high-dose selenium supplementation: Response and toxicities. J. Trace Elem. Med. Biol. 2004, 18, 69–74. [Google Scholar] [CrossRef]
- Zwolak, I.; Zaporowska, H. Selenium interactions and toxicity: A review Selenium interactions and toxicity. Cell Biol. Toxicol. 2012, 28, 31–46. [Google Scholar] [CrossRef]
- Klayman, D.L. Organic Selenium Compounds: Their Chemistry and Biology; Klayman, D.L., Gunther, W.H.H., Eds.; Wiley-Interscience: New York, NY, USA, 1973. [Google Scholar]
- Barceloux, D.G.; Barceloux, D. Selenium. J. Toxicol. Clin. Toxicol. 1999, 37, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Zhang, M.; Chi, Q. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosens. Bioelectron. 2017, 87, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, X.B. Adsorption of graphene for the removal of inorganic pollutants in water purification: A review. Adsorpt. J. Int. Adsorpt. Soc. 2014, 20, 713–727. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, F.; He, S.F.; Huang, F.; Peng, Z.Y. Adsorption Behaviour of Reduced Graphene Oxide for Removal of Heavy Metal Ions. Asian J. Chem. 2014, 26, 4901–4906. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.Z.; Wu, Y.; Huang, H.J.; Zeng, G.M.; Liu, Y.; Wang, X.L.; Lin, N.B.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 2013, 279, 432–440. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Gan, L.H.; Liu, M.X.; Rao, N.N. Mesoporous Carbon Nanomaterials as Environmental Adsorbents. J. Nanosci. Nanotechnol. 2014, 14, 1823–1837. [Google Scholar] [CrossRef] [PubMed]
- Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials 2017, 7, 243. [Google Scholar] [CrossRef]
- Petala, E.; Georgiou, Y.; Kostas, V.; Dimos, K.; Karakassides, M.A.; Deligiannakis, Y.; Aparicio, C.; Tuček, J.í.; Zbořil, R. Magnetic carbon nanocages: An advanced architecture with surface-and morphology-enhanced removal capacity for arsenites. ACS Sustain. Chem. Eng. 2017, 5, 5782–5792. [Google Scholar] [CrossRef]
- Katz, E.; Willner, I.; Wang, J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2004, 16, 19–44. [Google Scholar] [CrossRef]
- Wondracek, M.H.P.; Jorgetto, A.O.; Silva, A.C.P.; do Rocio Ivassechen, J.; Schneider, J.F.; Saeki, M.J.; Pedrosa, V.A.; Yoshito, W.K.; Colauto, F.; Ortiz, W.A. Synthesis of mesoporous silica-coated magnetic nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole and its application as Cu (II) adsorbent from aqueous samples. Appl. Surf. Sci. 2016, 367, 533–541. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Chen, C.; Zhao, G.; Yang, X.; Li, J.; Wang, X. Removal of Cu (II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. Acs Appl. Mater. Interfaces 2012, 4, 4991–5000. [Google Scholar] [CrossRef]
- Yang, X.; Chen, C.; Li, J.; Zhao, G.; Ren, X.; Wang, X. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2012, 2, 8821–8826. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Richtera, L.; Chudobova, D.; Cihalova, K.; Kremplova, M.; Milosavljevic, V.; Kopel, P.; Blazkova, I.; Hynek, D.; Adam, V.; Kizek, R. The composites of graphene oxide with metal or semimetal nanoparticles and their effect on pathogenic microorganisms. Materials 2015, 8, 2994–3011. [Google Scholar] [CrossRef]
- Bakather, O.Y.; Kayvani Fard, A.; Khraisheh, M.; Nasser, M.S.; Atieh, M.A. Enhanced adsorption of selenium ions from aqueous solution using iron oxide impregnated carbon nanotubes. Bioinorg. Chem. Appl. 2017, 2017, 4323619. [Google Scholar] [CrossRef] [PubMed]
- Dennis, B.; Moyers, J.; Wilson, G. Determination of selenium as selenide by differential pulse cathodic stripping voltammetry. Anal. Chem. 1976, 48, 1611–1616. [Google Scholar] [CrossRef]
- Locatelli, C.; Torsi, G. Voltammetric trace metal determinations by cathodic and anodic stripping voltammetry in environmental matrices in the presence of mutual interference. J. Electroanal. Chem. 2001, 509, 80–89. [Google Scholar] [CrossRef]
- Kudr, J.; Richtera, L.; Nejdl, L.; Xhaxhiu, K.; Vitek, P.; Rutkay-Nedecky, B.; Hynek, D.; Kopel, P.; Adam, V.; Kizek, R. Improved electrochemical detection of zinc ions using electrode modified with electrochemically reduced graphene oxide. Materials 2016, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.-J.; Lin, S.; Sharma, R.; Strano, M.S.; Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: A comparative experimental and molecular dynamics simulation study. Langmuir 2011, 28, 235–241. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Wang, Y.; Xu, M.; Wang, B. A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu (II) from aqueous solutions. Appl. Surf. Sci. 2016, 367, 327–334. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Luo, Z.; Huo, M.; Wu, J.; Huo, H.; Yang, W. Removing of disinfection by-product precursors from surface water by using magnetic graphene oxide. PLoS ONE 2015, 10, e0143819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shao, Y.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene–polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing ClO4− from wastewater. ACS Appl. Mater. Interfaces 2011, 3, 3633–3637. [Google Scholar] [CrossRef]
- Ngomsik, A.-F.; Bee, A.; Draye, M.; Cote, G.; Cabuil, V. Magnetic nano-and microparticles for metal removal and environmental applications: A review. C. R. Chim. 2005, 8, 963–970. [Google Scholar] [CrossRef]
- Bleiman, N.; Mishael, Y.G. Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: Batch and columns tests. J. Hazard. Mater. 2010, 183, 590–595. [Google Scholar] [CrossRef] [PubMed]
- El-Shafey, E. Sorption of Cd (II) and Se (IV) from aqueous solution using modified rice husk. J. Hazard. Mater. 2007, 147, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Zelmanov, G.; Semiat, R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 2013, 103, 167–172. [Google Scholar] [CrossRef]
Material | Natural pH |
---|---|
MPs | 7.1 |
GOH | 3.5 |
GOJ | 3.8 |
MGOH | 5.6 |
MGOJ | 5.8 |
Material | Relative Adsorption Efficiency (%) |
---|---|
MPs | 66.20 |
GOH | 4.85 |
GOJ | 7.18 |
MGOH | 80.14 |
MGOJ | 81.79 |
MGOH-2pH | 91.05 |
MGOJ-2pH | 90.23 |
Material | b | qmax (mg/g) |
---|---|---|
MPs | 0.82 | 9.35 |
MGOH | 0.78 | 10.17 |
MGOJ | 0.98 | 10.18 |
MGOH-2pH | 0.47 | 18.69 |
MGOJ-2pH | 0.66 | 15.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koudelkova, Z.; Bytesnikova, Z.; Xhaxhiu, K.; Kremplova, M.; Hynek, D.; Adam, V.; Richtera, L. Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide. Molecules 2019, 24, 1063. https://doi.org/10.3390/molecules24061063
Koudelkova Z, Bytesnikova Z, Xhaxhiu K, Kremplova M, Hynek D, Adam V, Richtera L. Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide. Molecules. 2019; 24(6):1063. https://doi.org/10.3390/molecules24061063
Chicago/Turabian StyleKoudelkova, Zuzana, Zuzana Bytesnikova, Kledi Xhaxhiu, Monika Kremplova, David Hynek, Vojtech Adam, and Lukas Richtera. 2019. "Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide" Molecules 24, no. 6: 1063. https://doi.org/10.3390/molecules24061063