Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activity
2.3. Anticancer Activity
3. Materials and Methods
3.1. Chemicals
3.2. Analysis
3.3. Synthesis of Mono- (7a, 10a, 12a, 16a) and Di-O-alkyl Derivatives of Naringenin (8a, 11a, 13a, 17a)
3.4. Synthesis of 5,7,4′-Tri-O-propylnaringenin (9a)
3.5. Synthesis of Oximes (7b–13b, 16b–17b)
3.6. Minimal Inhibitory Concentration (MIC) Evaluation
3.7. Sulforhodamine B (SRB) Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vuorela, P.; Leinonen, M.; Saikku, P.; Tammela, P.; Rauha, J.-P.; Wennberg, T.; Vuorela, H. Natural products in the Process of Finding New Drug Candidates. Curr. Med. Chem. 2004, 11, 1375–1389. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Céliz, G.; Daz, M.; Audisio, M.C. Antibacterial activity of naringin derivatives against pathogenic strains. J. Appl. Microbiol. 2011, 111, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Leonardi, T.; Vanamala, J.; Taddeo, S.S.; Davidson, L.A.; Murphy, M.E.; Patil, B.S.; Wang, N.; Carroll, R.J.; Chapkin, R.S.; Lupton, J.R.; et al. Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp. Biol. Med. 2010, 235, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, A.; Koyuncu, I.; Dikilitas, M.; Bahadori, F.; Turkkan, B. Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell lines. Asian Pac. J. Trop. Biomed. 2016, 6, 872–880. [Google Scholar] [CrossRef]
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Khan, M.K.; Zill-E-Huma; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Zou, W.; Luo, Y.; Liu, M.; Chen, S.; Wang, S.; Nie, Y.; Cheng, G.; Su, W.; Zhang, K. Human intestinal microbial metabolism of naringin. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 363–367. [Google Scholar] [CrossRef]
- Fuhr, U.; Klittich, K.; Staib, A. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br. J. Clin. Pharmacol. 1993, 35, 431–436. [Google Scholar] [CrossRef]
- Shimizu, T.; Lin, F.; Hasegawa, M.; Okada, K.; Nojiri, H.; Yamane, H. Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in biosynthesis of flavonoid phytoalexin sakuranetin in rice. J. Biol. Chem. 2012, 287, 19315–19325. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, M.; Grkovic, T.; Trueman, S.J.; Wallace, H.M.; Katouli, M.; Quinn, R.J.; Brooks, P.R. Chemical constituents of kino extract from Corymbia torelliana. Molecules 2014, 19, 17862–17871. [Google Scholar] [CrossRef] [PubMed]
- Sakoda, C.P.P.; de Toledo, A.C.; Perini, A.; Pinheiro, N.M.; Hiyane, M.I.; dos Santos Grecco, S.; de Fátima Lopes Calvo Tibério, I.; Câmara, N.O.S.; de Arruda Martins, M.; Lago, J.H.G.; et al. Sakuranetin reverses vascular peribronchial and lung parenchyma remodeling in a murine model of chronic allergic pulmonary inflammation. Acta Histochem. 2016, 118, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.A.S.; Agra, M.D.F.; Tavares, J.F.; Da-Cunha, E.V.L.; Barbosa-Filho, J.M.; Silva, M.S. Flavanones from aerial parts of Cordia globosa (Jacq.) Kunth, Boraginaceae. Braz. J. Pharmacogn. 2010, 20, 675–681. [Google Scholar] [CrossRef]
- Copmans, D.; Orellana-Paucar, A.M.; Steurs, G.; Zhang, Y.; Ny, A.; Foubert, K.; Exarchou, V.; Siekierska, A.; Kim, Y.; De Borggraeve, W.; et al. Methylated flavonoids as anti-seizure agents: Naringenin 4′,7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem. Int. 2018, 112, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Moon, S.-H.; Lee, J.-Y.; Kim, K.-T.; Park, Y.-S.; Paik, H.-D. Antibacterial activity of a novel flavonoid, 7-O-butyl naringenin, against methicillin-resistant Staphylococcus aureus (MRSA). Food Sci. Biotechnol. 2013, 22, 1725–1728. [Google Scholar] [CrossRef]
- Moon, S.H.; Lee, J.H.; Kim, K.T.; Park, Y.S.; Nah, S.Y.; Ahn, D.U.; Paik, H.D. Antimicrobial effect of 7-O-butylnaringenin, a novel flavonoid, and various natural flavonoids against Helicobacter pylori strains. Int. J. Environ. Res. Public Health 2013, 10, 5459–5469. [Google Scholar] [CrossRef]
- Park, J.-H.; Lee, J.-W.; Paik, H.-D.; Cho, S.G.; Nah, S.-Y.; Park, Y.-S.; Han, Y.S. Cytotoxic effects of 7-O-butyl naringenin on human breast cancer MCF-7 cells. Food Sci. Biotechnol. 2010, 19, 717–724. [Google Scholar] [CrossRef]
- Kozłowska, J.; Potaniec, B.; Żarowska, B.; Anioł, M. Synthesis and biological activity of novel O-alkyl derivatives of naringenin and their oximes. Molecules 2017, 22, 1485. [Google Scholar] [CrossRef]
- Gaur, R.; Gupta, V.K.; Pal, A.; Darokar, M.P.; Bhakuni, R.S.; Kumar, B. In vitro and in vivo synergistic interaction of substituted chalcone derivatives with norfloxacin against methicillin resistant Staphylococcus aureus. RSC Adv. 2015, 5, 5830–5845. [Google Scholar] [CrossRef]
- Yenjai, C.; Wanich, S. Cytotoxicity against KB and NCI-H187 cell lines of modified flavonoids from Kaempferia parviflora. Bioorg. Med. Chem. Lett. 2010, 20, 2821–2823. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Meng, W.; Xu, Y.; Cao, J.; Qing, F. Synthesis and Anticancer Effect of Chrysin Derivatives. Bioorg. Med. Chem. Lett. 2003, 13, 881–884. [Google Scholar] [CrossRef]
- Fonseca, S.F.; Lima, D.B.; Alves, D.; Jacob, R.G.; Perin, G.; Lenardao, E.J.; Savegnago, L. Synthesis, characterization and antioxidant activity of organoselenium and organotellurium compound derivatives of chrysin. New J. Chem. 2015, 39, 3043–3050. [Google Scholar] [CrossRef]
- Fonseca, S.F.; Padilha, N.B.; Thurow, S.; Roehrs, J.A.; Savegnago, L.; De Souza, M.N.; Fronza, M.G.; Collares, T.; Buss, J. Ultrasound-promoted copper-catalyzed synthesis of bis-arylselanyl chrysin derivatives with boosted antioxidant and anticancer activities. Ultrason. Sonochem. 2017, 39, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.K.D.; Huynh, T.K.C.; Nguyen, T.D. Synthesis, characterization, anti-inflammatory and anti-proliferative activity against MCF-7 cells of O-alkyl and O-acyl flavonoid derivatives. Bioorg. Chem. 2015, 63, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, K.S.; Lee, C.; Chong, Y. Synthesis of a complete series of O-methyl analogues of naringenin and apigenin. Bull. Korean Chem. Soc. 2007, 28, 2527–2530. [Google Scholar] [CrossRef]
- Deka, N.; Mariotte, A.-M.; Boumendjel, A. Microwave mediated solvent-free acetylation of deactivated and hindered phenols. Green Chem. 2001, 3, 263–264. [Google Scholar] [CrossRef]
- Grela, E.; Dziełak, A.; Szydłowska, K.; Mucha, A.; Kafarski, P.; Grabowiecka, A.M. Whole-cell Proteus mirabilis urease inhibition by aminophosphinates for the control of struvite formation. J. Med. Microbiol. 2016, 65, 1123–1129. [Google Scholar] [CrossRef]
- Kozioł, A.; Stryjewska, A.; Librowski, T.; Sałat, K.; Gaweł, M.; Moniczewski, A.; Lochyński, S. An Overview of the Pharmacological Properties and Potential Applications of Natural Monoterpenes. Mini-Rev. Med. Chem. 2014, 14, 1156–1168. [Google Scholar]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Wayne, P. CLSI document. In Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard—9th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, ISBN 1562387839. [Google Scholar]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Curr. Med. Chem. 2014, 22, 132–149. [Google Scholar] [CrossRef]
- Yenjai, C.; Wanich, S.; Pitchuanchom, S.; Sripanidkulchai, B. Structural modification of 5,7-dimethoxyflavone from Kaempferia parviflora and biological activities. Arch. Pharm. Res. 2009, 32, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, O.M.; Kiendrebeogo, M.; Rasamiravaka, T.; Stévigny, C.; Duez, P.; Rajaonson, S.; Diallo, B.; Mol, A.; Baucher, M.; El Jaziri, M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 2011, 157, 2120–2132. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Kim, T.W.; Shin, S.Y.; Park, M.J.; Yong, Y.; Kim, D.W.; Islam, T.; Lee, Y.H.; Jung, K.Y.; Lim, Y. Design, synthesis and inhibitory activities of naringenin derivatives on human colon cancer cells. Bioorg. Med. Chem. Lett. 2013, 23, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xie, Y.; Chen, X. Type 2 diabetes diminishes the benefits of dietary antioxidants: Evidence from the different free radical scavenging potential. Food Chem. 2015, 186, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Xie, Y.; Cao, H.; Yang, H.; Chen, X.; Xiao, J. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach. Food Chem. 2017, 219, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.P.; Nguyen, K.P.P.; Kamounah, F.S.; Zhang, W.; Hansen, P.E. NMR of a series of novel hydroxyflavothiones. Magn. Reson. Chem. 2009, 47, 1043–1054. [Google Scholar] [CrossRef]
No. | R1 | R2 | R3 |
---|---|---|---|
1a, 1b | Me | H | H |
2a, 2b | Me | H | Me |
3a, 3b | Me | Me | Me |
4a, 4b | Et | H | H |
5a, 5b | Et | H | Et |
6a, 6b | Et | Et | Et |
7a★, 7b★ | n-Pr | H | H |
8a★, 8b★ | n-Pr | H | n-Pr |
9a★, 9b★ | n-Pr | n-Pr | n-Pr |
10a★, 10b★ | i-Pr | H | H |
11a★, 11b★ | i-Pr | H | i-Pr |
12a, 12b★ | Bu | H | H |
13a★, 13b★ | Bu | H | Bu |
14a, 14b | Pe | H | H |
15a, 15b | Pe | H | Pe |
16a, 16b★ | De | H | H |
17a★, 17b★ | De | H | De |
18a, 18b | Dod | H | H |
19a, 19b | Dod | H | Dod |
No. | Minimal Inhibitory Concentration (µg/mL) | No. | Minimal Inhibitory Concentration (µg/mL) | ||||
---|---|---|---|---|---|---|---|
Escherichia coli ATCC25922 | Bacillus subtilis ATCC19659 | Staphylococcus aureus ATCC11632 | Escherichia coli ATCC25922 | Bacillus subtilis ATCC19659 | Staphylococcus aureus ATCC11632 | ||
NG | >400 | 200 | 200 | NG-OX | >400 | 100 | 100 |
1a | 400 | >400 | >400 | 1b | 400 | 50 | 50 |
2a | 200 | 50 | 50 | 2b | 400 | 100 | 200 |
3a | 400 | >400 | 200 | 3b | >400 | >400 | 400 |
4a | >400 | 25 | 25 | 4b | 400 | 25 | 25 |
5a | 400 | 100 | 100 | 5b | 400 | >400 | 100 |
6a | 400 | 50 | 100 | 6b | 400 | >400 | 100 |
7a★ | 400 | 200 | 100 | 7b★ | >400 | >400 | 100 |
8a★ | 400 | >400 | >400 | 8b★ | 400 | 400 | 400 |
9a★ | >400 | >400 | >400 | 9b★ | >400 | >400 | >400 |
10a★ | >400 | 12.5 | 12.5 | 10b★ | >400 | 12.5 | 12.5 |
11a★ | 400 | >400 | >400 | 11b★ | 400 | 6.25 | 12.5 |
12a | 400 | 6.25 | 6.25 | 12b★ | 200 | 50 | 50 |
13a★ | >400 | >400 | >400 | 13b★ | 200 | 100 | >400 |
14a | 200 | 50 | 25 | 14b | 200 | 50 | 25 |
15a | 400 | >400 | 200 | 15b | 200 | >400 | >400 |
16a | >400 | 100 | 100 | 16b★ | >400 | 400 | 200 |
17a★ | >400 | >400 | >400 | 17b★ | >400 | 400 | >400 |
18a | 400 | >400 | >400 | 18b | 400 | >400 | >400 |
19a | >400 | >400 | >400 | 19b | 400 | 200 | 200 |
Gentamicin | 1.5 | 1.0 | 1.5 | ||||
Nalidixic acid | 6.25 | 25 | 50 | ||||
Novobiocin | 400 | 1.0 | 0.5 |
No. | HT-29 Cell Line IC50 (μg/mL) | No. | HT-29 Cell Line IC50 (μg/mL) |
---|---|---|---|
NG | 38.93 ± 13.51 | NG-OX | 29.44 ± 3.16 |
1a | 24.98 ± 3.95 | 1b | 13.13 ± 1.02 |
2a | >100 | 2b | 11.45 ± 0.34 |
3a | 20.84 ± 2.05 | 3b | >100 |
4a | 14.82 ± 1.25 | 4b | 13.75 ± 2.09 |
5a | >100 | 5b | 7.65 ± 1.23 |
6a | >100 | 6b | >100 |
7a★ | 11.99 ± 0.58 | 7b★ | 9.11 ± 1.34 |
8a★ | >100 | 8b★ | 4.59 ± 0.56 |
9a★ | 31.77 ± 6.00 | 9b★ | >100 |
10a★ | 10.41 ± 2.14 | 10b★ | 7.26 ± 0.31 |
11a★ | 9.81 ± 0.72 | 11b★ | 4.89 ± 0.56 |
12a | 9.71 ± 1.28 | 12b★ | 6.22 ± 0.30 |
13a★ | >100 | 13b★ | 3.32 ± 0.29 |
14a | 13.23 ± 0.61 | 14b | 7.00 ± 0.48 |
15a | >100 | 15b | 5.89 ± 1.29 |
16a | 8.35 ± 0.45 | 16b★ | 3.63 ± 0.47 |
17a★ | >100 | 17b★ | >100 |
18a | 22.16 ± 4.33 | 18b | 7.46 ± 1.21 |
19a | >100 | 19b | >100 |
Cisplatin | 16.73 ± 0.58 | ||
Doxorubicin | 0.33 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowska, J.; Grela, E.; Baczyńska, D.; Grabowiecka, A.; Anioł, M. Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity. Molecules 2019, 24, 679. https://doi.org/10.3390/molecules24040679
Kozłowska J, Grela E, Baczyńska D, Grabowiecka A, Anioł M. Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity. Molecules. 2019; 24(4):679. https://doi.org/10.3390/molecules24040679
Chicago/Turabian StyleKozłowska, Joanna, Ewa Grela, Dagmara Baczyńska, Agnieszka Grabowiecka, and Mirosław Anioł. 2019. "Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity" Molecules 24, no. 4: 679. https://doi.org/10.3390/molecules24040679
APA StyleKozłowska, J., Grela, E., Baczyńska, D., Grabowiecka, A., & Anioł, M. (2019). Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity. Molecules, 24(4), 679. https://doi.org/10.3390/molecules24040679