Next Article in Journal
Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Essential Oils from AgNPs and AuNPs Elicited Lavandula angustifolia In Vitro Cultures
Next Article in Special Issue
3′-O-β-d-glucopyranosyl-α,4,2′,4′,6′-pentahydroxy-dihydrochalcone, from Bark of Eysenhardtia polystachya Prevents Diabetic Nephropathy via Inhibiting Protein Glycation in STZ-Nicotinamide Induced Diabetic Mice
Previous Article in Journal
Evaluation of MMP Inhibitors Isolated from Ligustrum japonicum Fructus
Previous Article in Special Issue
Metabolomics Profiling Reveals Rehmanniae Radix Preparata Extract Protects against Glucocorticoid-Induced Osteoporosis Mainly via Intervening Steroid Hormone Biosynthesis
Open AccessArticle

Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium tramdenum Bark

1
Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan
2
Department of Biotechnology, NTT Institute of Hi-Technology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh 72820, Vietnam
3
Faculty of Forest Resources and Environmental Management, Vietnam National University of Forestry, Xuan Mai, Hanoi 156200 Vietnam
*
Authors to whom correspondence should be addressed.
Academic Editors: Raffaele Capasso and Lorenzo Di Cesare Mannelli
Molecules 2019, 24(3), 605; https://doi.org/10.3390/molecules24030605
Received: 13 January 2019 / Revised: 6 February 2019 / Accepted: 7 February 2019 / Published: 9 February 2019
(This article belongs to the Special Issue Plant Extracts: Biological and Pharmacological Activity)
The fruits of Canarium tramdenum are commonly used as foods and cooking ingredients in Vietnam, Laos, and the southeast region of China, whilst the leaves are traditionally used for treating diarrhea and rheumatism. This study was conducted to investigate the potential use of this plant bark as antioxidants, and α-amylase and α-glucosidase inhibitors. Five different extracts of C. tramdenum bark (TDB) consisting of the extract (TDBS) and factional extracts hexane (TDBH), ethyl acetate (TDBE), butanol (TDBB), and water (TDBW) were evaluated. The TDBS extract contained the highest amount of total phenolic (112.14 mg gallic acid equivalent per g dry weight), while the TDBB extract had the most effective antioxidant capacity compared to other extracts. Its IC50 values were 12.33, 47.87, 33.25, and 103.74 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (ABTS), reducing power (RP), and nitric oxide (NO) assays, respectively. Meanwhile, the lipid peroxidation inhibition of the four above extracts was proximate to that of butylated hydroxytoluene (BHT) as a standard antioxidant. The result of porcine pancreatic α-amylase inhibition showed that TDB extracts have promising effects which are in line with the commercial diabetic inhibitor acarbose. Interestingly, the inhibitory ability on α-glucosidase of all the extracts was higher than that of acarbose. Among the extracts, the TDBB extract expressed the strongest activity on the enzymatic reaction (IC50 = 18.93 µg/mL) followed by the TDBW extract (IC50 = 25.27 µg/mL), TDBS (IC50 = 28.17 µg/mL), and TDBE extract (IC50 = 141.37 µg/mL). The phytochemical constituents of the TDB extract were identified by gas chromatography–mass spectrometry (GC-MS). The principal constituents included nine phenolics, eight terpenoids, two steroids, and five compounds belonging to other chemical classes, which were the first reported in this plant. Among them, the presence of α- and β-amyrins were identified by GC-MS and appeared as the most dominant constituents in TDB extracts (1.52 mg/g). The results of this study revealed that C. tramdenum bark possessed rich phenolics and terpenoids, which might confer on reducing risks from diabetes. A high quantity of α- and β-amyrins highlighted the potentials of anti-inflammatory, anti-ulcer, anti-hyperlipidemic, anti-tumor, and hepatoprotective properties of C. tramdenum bark. View Full-Text
Keywords: Canarium tramdenum; bark; antioxidants; α-glucosidase inhibitors; diabetes; phenolics; terpenoids; biological activity Canarium tramdenum; bark; antioxidants; α-glucosidase inhibitors; diabetes; phenolics; terpenoids; biological activity
Show Figures

Figure 1

MDPI and ACS Style

Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium tramdenum Bark. Molecules 2019, 24, 605.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop