Facile Synthesis of Novel Prussian Blue–Lipid Nanocomplexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of PB Nanoparticles
2.2. Characteristics of OA–PB Nanoparticles
2.3. Characteristics of PB-Containing Lipid Nanocomplex (L–OA–PB)
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Prussian Blue Nanoparticles
3.3. Synthesis of Hydrophobic Prussian Blue Nanoparticles
3.4. Formulation of Lipid Complex with Hydrophobic Prussian Blue Nanoparticles (L–OA–PB)
3.5. Characterization of PB, OA–PB, and L–OA–PB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hansen, L.; Litchman, W.; Daub, G. Turnbull’s blue and Prussian blue: KFe(III)[Fe(II)(CN)6]. J. Chem. Educ. 2000, 46, 46. [Google Scholar] [CrossRef]
- Ware, M. Prussian Blue: Artist’s pigment and chemists’ sponge. J. Chem. Educ. 2008, 85, 612–620. [Google Scholar] [CrossRef]
- Qian, J.; Xu, J.; Kuang, L.; Hua, D. Cesium removal from human blood by poly(ethylene glycol)-decorated Prussian Blue magnetic nanoparticles. ChemPlusChem 2017, 82, 888–895. [Google Scholar] [CrossRef]
- World Health Organization. WHO Model List of Essential Medicines; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Vázquez-González, M.; Torrente-Rodríguez, R.M.; Kozell, A.; Liao, W.-C.; Cecconello, A.; Campuzano, S.; Pingarrón, J.M.; Willner, I. Mimicking peroxidase activities with Prussian Blue nanoparticles and their cyanometalate structural analogues. Nano Lett. 2017, 17, 4958–4963. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, X.; Zheng, J. Facile synthesis of prussian blue/hollow polypyrrole nanocomposites for enhanced hydrogen peroxide sensing. Ind. Eng. Chem. Res. 2016, 55, 12161–12166. [Google Scholar] [CrossRef]
- Dumont, M.F.; Hoffman, H.A.; Yoon, P.R.; Conklin, L.S.; Saha, S.R.; Paglione, J.; Sze, R.W.; Fernandes, R. Biofunctionalized gadolinium-containing prussian blue nanoparticles as multimodal molecular imaging agents. Bioconjug. Chem. 2014, 25, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules 2018, 23, 1414. [Google Scholar] [CrossRef] [PubMed]
- Pallavicini, P.; Dacarro, G.; Taglietti, A. A self-assembled monolayers of silver nanoparticles: From intrinsec to switchable inorganic antibacterial surfaces. Eur. J. Inorg. Chem. 2018, 45, 4846–4855. [Google Scholar] [CrossRef]
- Stauffer, P.R.; Goldberg, S.N. Introduction: Thermal ablation therapy. Int. J. Hyperth. 2004, 20, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Yuan, Y.; Xu, K.; Luo, Q. Biocompatible PEGylated Fe3O4 nanoparticles as photothermal agents for near-infrared light modulated cancer therapy. Int. J. Mol. Sci. 2014, 15, 18776–18788. [Google Scholar] [CrossRef]
- Johnson, R.J.G.; Schultz, J.D.; Lear, B.J. Photothermal effectiveness of magnetite nanoparticles: Dependende upon particle size probed by experiment and simulation. Molecules 2018, 23, 1234. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, S.; Ren, F.; Chen, L.; Zeng, J.; Zhu, M.; Cheng, Z.; Gao, M.; Li, Z. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano 2017, 11, 5633–5645. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Fales, A.M.; Vo-Dinh, T. TAT peptide functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134, 11358–11361. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. [Google Scholar] [CrossRef]
- Fu, G.; Liu, W.; Feng, S.; Yue, X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48, 11567–11569. [Google Scholar] [CrossRef]
- Cheng, L.; Gong, H.; Zhu, W.; Liu, J.; Wang, X.; Liu, G.; Liu, Z. PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 2015, 35, 9844–9852. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, K.; Sun, X.; Wang, X.; Li, Y.; Cheng, L.; Liu, Z. Mn2+-doped Prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance. ACS Appl. Mater. Interfaces 2015, 7, 11575–11582. [Google Scholar] [CrossRef]
- Shokouhimehr, M.; Soehnlen, E.S.; Hao, J.; Griswold, M.; Flask, C.; Fan, X.; Basilion, J.P.; Basu, S.; Huang, S.D. Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T-1-weighted MRI contrast and small molecule delivery agents. J. Mater. Chem. 2010, 20, 5251–5259. [Google Scholar] [CrossRef]
- Kong, G.; Braun, R.D.; Dewhirst, M.W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res. 2000, 60, 4440–4445. [Google Scholar]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Felice, B.; Prabhakaran, M.P.; Rodriguez, A.P.; Ramakrishna, S. Drug delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Duan, W.; Li, Y.; Wu, H.; Zhou, Y.; Pan, M.; Liu, H.; Liu, X.; Zheng, H. NIR-laser-controlled drug release from DOX/IR-780-loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy. Theranostics 2016, 6, 2337–2351. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Li, N.; Carter, K.A.; Lin, C.; Geng, J.; Shao, S.; Huang, W.-C.; Qin, Y.; Atilla-Gokcumen, G.E.; Lovell, J.F. Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids. Small 2016, 12, 3039–3047. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.M.; Liu, Y.Y.; Su, G.H.; Song, F.F.; Liu, Y.; Zhang, Q.Q. NIR responsive liposomal system for rapid release of drugs in cancer therapy. Int. J. Nanomed. 2017, 12, 4225–4239. [Google Scholar] [CrossRef]
- Chen, H.; Ma, Y.; Wang, Y.; Wu, X.; Zha, Z. Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined photothermal-chemo treatment of cancer. RSC Adv. 2017, 7, 248–255. [Google Scholar] [CrossRef]
- Xue, P.; Sun, L.; Li, Q.; Zhang, L.; Xu, Z.; Li, C.M.; Kang, Y. PEGylated magnetic Prussian blue nanoparticles asa multifunctional therapeutic agent for combined targeted photothermal ablation and pH-triggered chemotherapy of tumour cells. J. Colloid Interface Sci. 2018, 509, 384–394. [Google Scholar] [CrossRef]
- Mashaghi, S.; Jadidi, T.; Koenderink, G.; Mashaghi, A. Lipid nanotechnology. Int. J. Mol. Sci. 2013, 14, 4242–4282. [Google Scholar] [CrossRef]
- Koshiyama, T.; Tanaka, M.; Honjo, M.; Fukunaga, Y.; Okamura, T.; Ohba, M. Direct synthesis of Prussian blue nanoparticles in liposomes incorporating natural ion channels for Cs+ adsorption and particle size control. Langmuir 2018, 34, 1666–1672. [Google Scholar] [CrossRef]
- Gotoh, A.; Uchida, H.; Ishizaki, M.; Satoh, T.; Kaga, S.; Okamoto, S.; Sakamoto, M.; Kawamoto, T.; Tanaka, H.; Tokumoto, M. Simple synthesis of the three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology 2007, 18, 345609. [Google Scholar] [CrossRef]
- Robin, M.B. The color and electronic configurations of Prussian blue. Inorg. Chem. 1962, 1, 337–342. [Google Scholar] [CrossRef]
- Buser, H.J.; Schwarzenbach, D.; Petter, W.; Ludi, A. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3·xH20. Inorg. Chem. 1977, 16, 2704–2710. [Google Scholar] [CrossRef]
- Aparicio, C.; Machala, L.; Marusak, Z. Thermal decomposition of Prussian blue under inert atmosphere. J. Therm. Anal. Calorim. 2012, 110, 661–669. [Google Scholar] [CrossRef]
- Roy, M.T.; Gallardo, M.; Estelrich, J. Bilayer distribution of phosphatidylserine and phosphatidyl ethanolamine in lipid vesicles. Bioconjug. Chem. 1997, 8, 941–945. [Google Scholar] [CrossRef]
- Bass, G.E.; Powers, L.J.; Dillingham, E.O. Inhibition of Streptococcus faecalis by long chain aliphatic monoamines: Quantitative structure-activity studies. J. Pharm. Sci. 1976, 65, 1525–1527. [Google Scholar] [CrossRef] [PubMed]
- Mourdikoudis, S.; Liz-Marzán, L. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Udenfriend, S.; Stein, S.; Bohlen, P.; Dairman, W.; Leimgruber, W.; Weigele, M. Fluorescamine: A reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 1972, 178, 871–872. [Google Scholar] [CrossRef]
- Ishizaki, M.; Kanaizuka, K.; Abe, M.; Hoshi, Y.; Sakamoto, M.; Kawamoto, T.; Tanaka, H.; Kurihara, M. Preperation of electrochromic Prussian blue nanoparticles dispersible into various solvents for realisation of printed electronics. Green Chem. 2012, 14, 1537–1544. [Google Scholar] [CrossRef]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252. [Google Scholar] [CrossRef]
- Steward-Marshall, J.C. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 1980, 104, 10–14. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Time/h | Size/nm | Polydispersity Index |
---|---|---|
1 | 200 ± 8.19 | >1 |
2 | 210 ± 6.11 | 0.889 ± 0.015 |
12 | 160 ± 4.18 | 0.750 ± 0.028 |
24 | 105 ± 5.20 | 0.700 ± 0.009 |
48 | 93.8 ± 1.40 | 0.238 ± 0.009 |
60 | 94.0 ± 1.25 | 0.225 ± 0.010 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busquets, M.A.; Novella-Xicoy, A.; Guzmán, V.; Estelrich, J. Facile Synthesis of Novel Prussian Blue–Lipid Nanocomplexes. Molecules 2019, 24, 4137. https://doi.org/10.3390/molecules24224137
Busquets MA, Novella-Xicoy A, Guzmán V, Estelrich J. Facile Synthesis of Novel Prussian Blue–Lipid Nanocomplexes. Molecules. 2019; 24(22):4137. https://doi.org/10.3390/molecules24224137
Chicago/Turabian StyleBusquets, Maria Antònia, Ariadna Novella-Xicoy, Valeria Guzmán, and Joan Estelrich. 2019. "Facile Synthesis of Novel Prussian Blue–Lipid Nanocomplexes" Molecules 24, no. 22: 4137. https://doi.org/10.3390/molecules24224137
APA StyleBusquets, M. A., Novella-Xicoy, A., Guzmán, V., & Estelrich, J. (2019). Facile Synthesis of Novel Prussian Blue–Lipid Nanocomplexes. Molecules, 24(22), 4137. https://doi.org/10.3390/molecules24224137