Evaluation of Microbial Transformation of 10-deoxoartemisinin by UPLC-ESI-Q-TOF-MSE
Abstract
:1. Introduction
2. Results
2.1. Identification of 10-deoxoartemisinin
2.2. Identification of Microbial Transformation Products
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Culture and Biotransformation Procedure
4.3. LC–MSE Conditions and Data Processing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Collaboration Research Group for Qinghaosu. A new sesquiterpene lactone—qinghaosu. KexueTongbao 1977, 3, 142. (In Chinese) [Google Scholar]
- Jung, M.; Li, X.; Bustos, D.A.; ElSohly, H.N.; McChesney, J.D.; Milhous, W.K. Synthesis and Antimalarial Activity of (+)-Deoxoartemisinin. J. Med. Chem. 1990, 33, 1516–1518. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Li, X.; Bustos, D.A.; ElSohly, H.N.; McChesney, J.D. A short and stereospecific synthesis of (+)-deoxoartemisinin and (−)-deoxodesoxyartemisinin. Tetrahedron Lett. 1989, 30, 5973–5976. [Google Scholar] [CrossRef]
- Lee, C.H.; Hong, H.; Shin, J.; Jung, M.; Shin, I.; Yoon, J.; Lee, W. NMR Studies on Novel Antitumor Drug Candidates Deoxoartemisinin and Carboxypropyldeoxoartemisinin. Biochem. Biophys. Res. Commun. 2000, 274, 359–369. [Google Scholar] [CrossRef]
- Jung, M.; Tak, J.; Chuang, W.Y.; Park, K.-K. Antiangiogenic activity of deoxoartemisinin derivatives on chorioallantoic membrane. Bioorg. Med. Chem. Lett. 2006, 16, 1227–1230. [Google Scholar] [CrossRef]
- Jung, M.; Lee, S.; Ham, J.; Lee, K.; Kim, H.; Kim, S.K. Antitumor Activity of Novel Deoxoartemisinin Monomers, Dimers, and Trimer. J. Med. Chem. 2003, 46, 987–994. [Google Scholar] [CrossRef]
- Tu, Y.Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 2011, 17, 1217–1220. [Google Scholar] [CrossRef]
- Tu, Y.Y. Artemisinin and Artemisinin Drugs; Chemical Industry Press: Beijing, China, 2009; pp. 34–56. [Google Scholar]
- Wang, J.; Xu, C.; Liao, F.L.; Jiang, T.; Krishna, S.; Tu, Y. A Temporizing Solution to “Artemisinin Resistance”. N. Engl. J. Med. 2019, 380, 2087–2089. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, Y.P.; Zhang, D.; Meng, Y.; Tang, T.; Wang, K.; Ma, J.; Wang, J.; Sun, P. Eco-friendly decarboxylative cyclization in water: practical access to the anti-malarial 4-quinolones. Green Chem. 2019, 21, 478–482. [Google Scholar] [CrossRef]
- Guan, S.-L.; Wu, Y.-X.; Sun, H.; Zhang, Y.C.; Zhao, R.Q.; Wang, H.; Sun, L.J.; Su, L. Application of microbial transformation technology in the development of Chinese medicine. Microbiol. China. 2018, 45, 900–906. [Google Scholar]
- Chen, D.-J.; Zhu, B.-Q. Application of microbial transformation in modern pharmaceutical industry. Chin. J. Antibiot. 2012, 31, 112–118. [Google Scholar]
- Niu, H.-J.; Wang, P.; Yang, G.-E. Application of Microbial Transformation in Research of Chinese Medicine. Chin. J. Exp. Trad. Med. Formulae. 2013, 19, 346–349. [Google Scholar]
- Zhan, J.X.; Guo, H.Z.; Dai, J.G.; Zhang, Y.; Guo, D. Microbial transformations of artemisinin by Cunninghamella echinulata and Aspergillus niger. Tetrahedron Lett. 2002, 43, 4519–4521. [Google Scholar] [CrossRef]
- Zhan, Y.L.; Liu, H.; Wu, Y.S.; Wei, P.; Chen, Z.; Williamson, J.S. Biotransformation of artemisinin by Aspergillus niger. Appl. Microbiol. Biotechnol. 2015, 99, 3443–3446. [Google Scholar] [CrossRef]
- Parshikov, I.A.; Miriyala, B.; Muraleedharan, K.M.; Illendula, A.; Avery, M.A.; Williamson, J.S. Biocatalysis of the Antimalarial Artemisinin by Mucor ramannianus Strains. Pharm. Biol. 2005, 43, 579–582. [Google Scholar] [CrossRef]
- Parshikov, I.A.; Muraleedharan, K.M.; Miriyala, B.; Avery, M.A.; Williamson, J.S. Hydroxylation of 10-Deoxoartemisinin by Cunninghamella elegans. Nat. Prod. 2004, 67, 1595–1597. [Google Scholar] [CrossRef]
- De Medeiros, S.F.; Avery, M.A.; Avery, B.; Leite, S.G.; Freitas, A.C.C.; Williamson, J.S. Biotransformation of 10-deoxoartemisinin to its 7β-hydroxy derivative by Mucor ramannianus. Biotechnol. Lett. 2002, 24, 937–941. [Google Scholar] [CrossRef]
- Parshikov, I.A.; Miriyala, B.; Avery, M.A.; Williamson, J.S. Hydroxylation of 10-deoxoartemisinin to 15-hydroxy-10-deoxoartemisinin by Aspergillus niger. Biotechnol. Lett. 2004, 26, 607–610. [Google Scholar] [CrossRef]
- Khalifa, S.I.; Baker, J.K.; Jung, M.; McChesney, J.D.; Hufford, C.D. Microbial and Mammalian Metabolism Studies on the Semisynthetic Antimalarial, Deoxoartemisinin. Pharm. Res. 1995, 12, 1493–1498. [Google Scholar] [CrossRef]
- Adachi, T.; Saito, M.; Sasaki, J.; Karasawa, Y.; Araki, H.; Hanada, K.; Omura, S. Microbial Hydroxylation of (-)-Eburnamonine by Mucor circinelloides and Streptomyces violens. Chem. Pharm. Bull. 1993, 41, 611–613. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, D.; Wang, Z.H.; Dai, J.-G.; An, X.-Q.; Gu, Z.-Y. Microbial transformation of glycyrrhetinic acid by Cunninghamella blakesleeana. Chin. J. Trad. Chin. Med. 2015, 40, 4212–4217. [Google Scholar]
- Dong, T.; Wu, G.W.; Wang, X.N.; Gao, J.-M.; Chen, J.-G.; Lee, S.-S. Microbiological transformation of diosgenin by resting cells of filamentous fungus, Cunninghamella echinulata CGMCC 3.2716. J. Mol. Catal. B Enzym. 2010, 67, 251–256. [Google Scholar] [CrossRef]
- Qin, S.; Zhou, C.-L. Application of Microbial Transformationin Medicine Metabolization Model in vitro by Cunninghammella Matruchot. Strait Pharm. 2004, 1, 4–8. [Google Scholar]
- Weidner, S.; Goeke, K.; Trinks, U.; Traxler, P.; Ucci-Stoll, K.; Ghisalba, O. Preparation of 4-(4′-Hydroxyanilino)-5-anilinophthalimide and 4, 5-Bis-(4′-hydroxyanilino)-phthalimide by Microbial Hydroxylation. Biosci. Biotechnol. Biochem. 1999, 63, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.; ElSohly, H.N.; Croom, E.M.; Hufford, C.D. Microbial metabolism studies of the antimalarial sesquiterpene artemisinin. J. Nat. Prod. 1989, 52, 337–341. [Google Scholar] [CrossRef]
- Ye, M.; Han, J.; Tu, G.; An, D.; Guo, D. Microbial hydroxylation of bufalin by Cunninghamella blakesleana and Mucor spinosus. J. Nat. Prod. 2005, 68, 626–628. [Google Scholar] [CrossRef]
- Parshikov, I.A.; Muraleedharan, K.M.; Avery, M.A.; Williamson, J.S. Transformation of artemisinin by Cunninghamella elegans. Appl. Microbiol. Biotechnol. 2004, 64, 782–786. [Google Scholar] [CrossRef]
- Baydoun, E.; Ahmad, M.S.; Mehmood, H.; Ahmad, M.S.; Malik, R.; Smith, C.; Choudhary, M.I. Microbial transformation of danazol with Cunninghamella blakesleeana and anti-cancer activity of danazol and its transformed products. Steroids 2016, 105, 121–127. [Google Scholar] [CrossRef]
- Sasaki, J.; Mizoue, K.; Morimoto, S.; Adachi, T.; Omura, S. Microbial transformation of 6-O-methylerythromycin derivatives. J. Antibiot. Tokyo. 1988, 41, 908–915. [Google Scholar] [CrossRef]
- Zhan, Y.L.; Wu, Y.S.; Xu, F.F.; Bai, Y.; Guan, Y.; Williamson, J.S.; Liu, B. A novel dihydroxylated derivative of artemisinin from microbial transformation. Fitoterapia 2017, 120, 93–97. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, P.; Zhao, Y.F.; Wang, K.; Chang, X.; Bai, Y.; Zhang, D.; Yang, L. A Microbial Transformation Model for Simulating Mammal Metabolism of Artemisinin. Molecules 2019, 24, 315. [Google Scholar] [CrossRef] [PubMed]
- Betts, R.E.; Walters, D.E.; Rosazza, J.P. Microbial Transformations of Antitumor Compounds. 1. Conversion of Acronycine to 9-Hydroxyacronycine by Cunninghamella echinulata. J. Med. Chem. 1974, 17, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Elmarakby, S.A.; Clark, A.M.; Baker, J.K.; Hufford, C.D. Microbial Metabolism of Bornaprine, 3-(Diethylamino)propyl 2-Phenylbicyclo [2.2.1] heptane-2-carboxylate. Pharm. Sci. 1986, 75, 614–618. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
NO. | Component Name | Formula | RT (min) | Major Fragments | MT1 | MT2 | MT3 | MT4 | MT5 | MT6 | MT7 | MT8 | MT9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | P+2O | C15H24O6 + Na+ | 3.18 | 323, 283, 265, 247, 237, 219 | + | + | + | ||||||
2 | P+2O | C15H24O6 + Na+ | 3.62 | 323, 283, 265, 237, 221, 203 | + | + | |||||||
3 | P+2O | C15H24O6 + Na+ | 3.72 | 323, 283, 265, 247, 237, 219, 201 | + | ||||||||
4 | P+2O | C15H24O6 + Na+ | 2.83 | 323, 300, 283, 265, 247, 237, 219 | + | + | + | ||||||
5 | P+2O | C15H24O6 + Na+ | 2.94 | 323, 283, 265, 249, 247, 237, 219 | + | ||||||||
6 | P+2O | C15H24O6 + Na+ | 4.04 | 323, 283, 265, 249, 231, 221, 219 | + | ||||||||
7 | P+2O | C15H24O6 + Na+ | 4.15 | 323, 283, 265, 247, 237, 219 | + | + | + | ||||||
8 | P+2O | C15H24O6 + Na+ | 4.41 | 339, 301, 283, 265, 247, 237, 219 | + | ||||||||
9 | P+O | C15H24O5 + Na+ | 3.97 | 323, 307, 267, 249, 231, 221, 203 | + | + | + | ||||||
10 | P+O | C15H24O5 + Na+ | 4.02 | 307, 283, 265, 249, 221, 303 | + | + | + | ||||||
11 | P+O | C15H24O5 + Na+ | 3.14 | 307, 285, 267, 249, 231, 221, 203 | + | + | + | ||||||
12 | P+O | C15H24O5 + Na+ | 4.97 | 307, 283, 267, 249, 239, 221, 203 | + | + | |||||||
13 | P+O | C15H24O5 + Na+ | 4.50 | 307, 285, 267, 249, 239, 221, 203 | + | + | + | + | + | ||||
14 | P+O | C15H24O5 + Na+ | 4.51 | 307, 267, 249, 239, 221, 203 | + | + | + | ||||||
15 | P+O | C15H24O5 + Na+ | 4.26 | 307, 267, 249, 239, 221, 203 | + | + | + | + | |||||
16 | P+O | C15H24O5 + Na+ | 4.36 | 285, 267, 249, 239, 221, 203 | + | + | |||||||
17 | P+O | C15H24O5 + Na+ | 4.69 | 307, 283, 265, 249, 231, 221, 203 | + | ||||||||
18 | P+O | C15H24O5 + Na+ | 5.40 | 307, 283, 267, 249, 221, 203 | + | + | + | + | + | + | + | + | |
19 | P+O | C15H24O5 + Na+ | 6.91 | 323, 307, 267, 249, 231, 221, 203 | + | ||||||||
20 | P+O-2H | C15H22O5 + H+ | 3.17 | 283, 265, 247, 237, 221, 219 | + | + | + | + | |||||
21 | P+O-2H | C15H22O5 + H+ | 5.57 | 305, 283, 265, 237, 221, 219 | + | + | |||||||
22 | P+O-2H | C15H22O5 + H+ | 3.61 | 283, 265, 237, 221, 203 | + | ||||||||
23 | P+O-2H | C15H22O5 + H+ | 3.67 | 305, 283, 265, 247, 237, 219 | + | ||||||||
24 | P+O-2H | C15H22O5 + H+ | 2.83 | 283, 265, 247, 237, 219 | + | + | |||||||
25 | P+O-2H | C15H22O5 + H+ | 2.93 | 283, 265, 247, 237, 219 | + | + | |||||||
26 | P+O-2H | C15H22O5 + H+ | 3.07 | 305, 265, 247, 237, 219 | |||||||||
27 | P+O-2H | C15H22O5 + H+ | 3.72 | 283, 265, 247, 237, 219, 201 | + | ||||||||
28 | P+O-2H | C15H22O5 + H+ | 4.17 | 305, 283, 265, 247, 237 | + | ||||||||
29 | P+O-2H | C15H22O5 + H+ | 4.16 | 283, 265, 247, 237, 219, 201 | + | ||||||||
30 | P+O-2H | C15H22O5 + H+ | 3.37 | 283, 265, 247, 237, 219 | + | ||||||||
31 | P+O-2H | C15H22O5 + H+ | 4.97 | 305, 283, 265, 247, 237, 219 | + | ||||||||
32 | P+O-2H | C15H22O5 + H+ | 4.50 | 305, 285, 267, 249, 231, 221, 203 | + | ||||||||
33 | P+O-2H | C15H22O5 + H+ | 4.41 | 283, 265, 247, 237, 219 | + | ||||||||
34 | P+O-2H | C15H22O5 + H+ | 4.65 | 305, 283, 265, 249, 237, 231, 219 | + | ||||||||
35 | P+O+2H | C15H26O5 + Na+ | 4.50 | 309, 285, 267, 249, 231, 221, 203 | + | + | |||||||
Total hydroxylation products | 18 | 1 | 4 | 15 | 1 | 9 | 14 | 7 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Zhang, D.; Sun, P.; Zhao, Y.; Chang, X.; Ma, Y.; Yang, L. Evaluation of Microbial Transformation of 10-deoxoartemisinin by UPLC-ESI-Q-TOF-MSE. Molecules 2019, 24, 3874. https://doi.org/10.3390/molecules24213874
Bai Y, Zhang D, Sun P, Zhao Y, Chang X, Ma Y, Yang L. Evaluation of Microbial Transformation of 10-deoxoartemisinin by UPLC-ESI-Q-TOF-MSE. Molecules. 2019; 24(21):3874. https://doi.org/10.3390/molecules24213874
Chicago/Turabian StyleBai, Yue, Dong Zhang, Peng Sun, Yifan Zhao, Xiaoqiang Chang, Yue Ma, and Lan Yang. 2019. "Evaluation of Microbial Transformation of 10-deoxoartemisinin by UPLC-ESI-Q-TOF-MSE" Molecules 24, no. 21: 3874. https://doi.org/10.3390/molecules24213874
APA StyleBai, Y., Zhang, D., Sun, P., Zhao, Y., Chang, X., Ma, Y., & Yang, L. (2019). Evaluation of Microbial Transformation of 10-deoxoartemisinin by UPLC-ESI-Q-TOF-MSE. Molecules, 24(21), 3874. https://doi.org/10.3390/molecules24213874