Monitoring of Nonadiabatic Effects in Individual Chromophores by Femtosecond Double-Pump Single-Molecule Spectroscopy: A Model Study
Abstract
1. Introduction
2. Theoretical Framework
2.1. Hamiltonian, Master Equation and the SM Signal
2.2. Computational Details
3. SM Signals
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zewail, A.H. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond. J. Phys. Chem. A 2000, 104, 5660–5694. [Google Scholar] [CrossRef]
- Brinks, D.; Hildner, R.; van Dijk, E.M.H.P.; Stefani, F.D.; Nieder, J.B.; Hernando, J.; van Hulst, N.F. Ultrafast dynamics of single molecules. Chem. Soc. Rev. 2014, 43, 2476–2491. [Google Scholar] [CrossRef] [PubMed]
- Piatkowski, L.; Accanto, N.; van Hulst, N.F. Ultrafast meets ultrasmall: controlling nanoantennas and molecules. ACS Photonics 2016, 3, 1401–1414. [Google Scholar] [CrossRef]
- Orrit, M.; Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 1990, 65, 2716. [Google Scholar] [CrossRef] [PubMed]
- Scherer, N.F.; Carlson, R.J.; Matro, A.; Du, M.; Ruggiero, A.J.; Romero-Rochin, V.; Cina, J.A.; Fleming, G.R.; Rice, S.A. Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses. J. Chem. Phys. 1991, 95, 1487–1511. [Google Scholar] [CrossRef]
- Brinks, D.; Stefani, F.D.; Kulzer, F.; Hildner, R.; Haminiau, T.H.; Avlasevich, Y.; van Hulst, N.F. Visualizing and controlling vibrational wave packets of single molecules. Nature 2010, 465, 905–906. [Google Scholar] [CrossRef] [PubMed]
- Hildner, R.; Brinks, D.; Stefani, F.D.; van Hulst, N.F. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 1888–1894. [Google Scholar] [CrossRef] [PubMed]
- Hildner, R.; Brinks, D.; van Hulst, N.F. Femtosecond coherence and quantum control of single molecules at room temperature. Nat. Phys. 2011, 7, 172–177. [Google Scholar] [CrossRef]
- Piatkowski, L.; Gellings, E.; van Hulst, N.F. Broadband single-molecule excitation spectroscopy. Nat. Commun. 2015, 7, 104111–104112. [Google Scholar] [CrossRef]
- Weigel, A.; Sebesta, A.; Kukura, P. Shaped and Feedback-Controlled Excitation of Single Molecules in the Weak-Field Limit. J. Phys. Chem. Lett. 2015, 6, 4032–4037. [Google Scholar] [CrossRef]
- Palacino-González, E.; Gelin, M.F.; Domcke, W. Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime. Phys. Chem. Chem. Phys. 2017, 19, 32296–32306. [Google Scholar] [CrossRef]
- Palacino-González, E.; Gelin, M.F.; Domcke, W. Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. II. Strong-field regime. Phys. Chem. Chem. Phys. 2017, 19, 32307–32319. [Google Scholar] [CrossRef] [PubMed]
- Coccia, E.; Troiani, F.; Corni, S. Probing quantum coherence in ultrafast molecular processes: An ab initio approach to open quantum systems. J. Chem. Phys. 2018, 148, 204112. [Google Scholar] [CrossRef] [PubMed]
- Hildner, R.; Brinks, D.; Nieder, J.B.; Cogdell, R.J.; van Hulst, N.F. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 2013, 340, 1448–1451. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gelin, M.F.; Domcke, W.; Zhao, Y. Theory of femtosecond coherent double-pump single-molecule spectroscopy: Application to light harvesting complexes. J. Chem. Phys. 2015, 142, 164106. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gelin, M.F.; Domcke, W.; Zhao, Y. Simulation of Femtosecond Phase-Locked Double-Pump Signals of Individual Light-Harvesting Complexes LH2. J. Phys. Chem. Lett. 2018, 9, 4488–4494. [Google Scholar] [CrossRef] [PubMed]
- Caycedo-Soler, F.; Lim, J.; Oviedo-Casado, S.; van Hulst, N.F.; Huelga, S.F.; Plenio, M.B. Theory of Excitonic Delocalization for Robust Vibronic Dynamics in LH2. J. Phys. Chem. Lett. 2018, 9, 3446–3453. [Google Scholar] [CrossRef] [PubMed]
- Bixon, M.; Jortner, J. Vibrational coherence in nonadiabatic dynamics. J. Chem. Phys. 1997, 107, 1470–1482. [Google Scholar] [CrossRef]
- Kovalenko, S.A.; Dobryakov, A.L.; Farztdinov, V. Detecting Electronic Coherence in Excited-State Electron Transfer in Fluorinated Benzenes. Phys. Rev. Lett. 2006, 96, 068301. [Google Scholar] [CrossRef]
- Hüter, O.; Sala, M.; Neumann, H.; Zhang, S.; Studzinski, H.; Egorova, D.; Temps, F. Long-lived coherence in pentafluorobenzene as a probe of ππ*–πσ* vibronic coupling. J. Chem. Phys. 2016, 145, 014302. [Google Scholar] [CrossRef]
- Rubtsov, I.V.; Yoshihara, K. Vibrational Coherence in Electron Donor–Acceptor Complexes: Assignment of the Oscillatory Mode. In Femtochemistry, 1st ed.; De Schryver, F.C., De Feyter, S., Gerd Schweitzer, G., Eds.; Wiley-VCH: Weinheim, Germany, 2001; pp. 367–380. [Google Scholar]
- Domcke, W.; Stock, G. Theory of Ultrafast Nonadiabatic Excited-State Processes and their Spectroscopic Detection in Real Time. Adv. Chem. Phys. 1997, 100, 1–169. [Google Scholar]
- May, V.; Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems; Wiley-VCH: Berlin, Germany, 2004. [Google Scholar]
- Di Maiolo, F.; Painelli, A. Intermolecular Energy Transfer in Real Time. J. Chem. Theory Comput. 2018, 14, 5339–5349. [Google Scholar] [CrossRef] [PubMed]
- Redfield, A.G. The Theory of Relaxation Processes. Adv. Magn. Reson. 1965, 1, 1–32. [Google Scholar]
- Egorova, D.; Thoss, M.; Domcke, W.; Wang, H. Modeling of ultrafast electron-transfer processes: Validity of multilevel Redfield theory. J. Chem. Phys. 2003, 119, 2761–2773. [Google Scholar] [CrossRef]
- Gelin, M.F.; Tanimura, Y.; Domcke, W. Simulation of femtosecond “double-slit” experiments for a chromophore in a dissipative environment. J. Chem. Phys. 2013, 139, 214302. [Google Scholar] [CrossRef] [PubMed]
- Yampolsky, S.; Fishman, D.A.; Dey, S.; Hulkko, E.; Banik, M.; Potma, E.O.; Apkarian, V.A. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photonics 2014, 8, 650–656. [Google Scholar] [CrossRef]
- Gelin, M.F.; Egorova, D.; Domcke, W. Time-resolved spontaneous emission beyond the doorway-window approximation. Chem. Phys. 2004, 301, 129–139. [Google Scholar] [CrossRef]
- Li, X.; Gurzadyan, G.G.; Gelin, M.F.; Domcke, W.; Gong, C.; Liu, J.; Sun, L. Enhanced S2 Fluorescence from a Free-Base Tetraphenylporphyrin Surface-Mounted Metal Organic Framework. J. Phys. Chem. C 2018, 122, 23321–23328. [Google Scholar] [CrossRef]
- Egorova, D.; Gelin, M.F.; Thoss, M.; Domcke, W.; Wang, H. Effects of intense femtosecond pumping on ultrafast electronic-vibrational dynamics in molecular systems with relaxation. J. Chem. Phys. 2008, 129, 214303. [Google Scholar] [CrossRef]
- Haase, M.; Hübner, C.G.; Nolde, F.; Müllen, K.; Basché, T. Photoblinking and photobleaching of rylene diimide dyes. Phys. Chem. Chem. Phys. 2011, 13, 1776–1785. [Google Scholar] [CrossRef]
- Mitsui, M.; Fukui, H.; Takahashi, R.; Takakura, Y.; Mizukami, T. Single-Molecule Fluorescence Spectroscopy of Perylene Diimide Dyes in a γ-Cyclodextrin Film: Manifestation of Photoinduced H-Atom Transfer via Higher Triplet (n,n*) Excited States. J. Phys. Chem. A 2017, 121, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Gelin, M.F.; Rao, B.J.; Nest, M.; Domcke, W. Domain of validity of the perturbative approach to femtosecond optical spectroscopy. J. Chem. Phys. 2013, 139, 224107. [Google Scholar] [CrossRef] [PubMed]
- Pisliakov, A.V.; Gelin, M.F.; Domcke, W. Detection of Electronic and Vibrational Coherence Effects in Electron-Transfer Systems by Femtosecond Time-Resolved Fluorescence Spectroscopy: Theoretical Aspects. J. Phys. Chem. A 2003, 107, 2657–2666. [Google Scholar] [CrossRef]
- Egorova, D.; Gelin, M.F.; Domcke, W. Time- and frequency-resolved fluorescence spectra of nonadiabatic dissipative systems: What photons can tell us. J. Chem. Phys. 2005, 122, 134504. [Google Scholar] [CrossRef] [PubMed]
- Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Leibel, M.; Toninelli, C.; van Hulst, N.F. Room-temperature ultrafast nonlinear spectroscopy of a single molecule. Nat. Photonics 2018, 12, 45–49. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelin, M.F.; Palacino-González, E.; Chen, L.; Domcke, W. Monitoring of Nonadiabatic Effects in Individual Chromophores by Femtosecond Double-Pump Single-Molecule Spectroscopy: A Model Study. Molecules 2019, 24, 231. https://doi.org/10.3390/molecules24020231
Gelin MF, Palacino-González E, Chen L, Domcke W. Monitoring of Nonadiabatic Effects in Individual Chromophores by Femtosecond Double-Pump Single-Molecule Spectroscopy: A Model Study. Molecules. 2019; 24(2):231. https://doi.org/10.3390/molecules24020231
Chicago/Turabian StyleGelin, Maxim F., Elisa Palacino-González, Lipeng Chen, and Wolfgang Domcke. 2019. "Monitoring of Nonadiabatic Effects in Individual Chromophores by Femtosecond Double-Pump Single-Molecule Spectroscopy: A Model Study" Molecules 24, no. 2: 231. https://doi.org/10.3390/molecules24020231
APA StyleGelin, M. F., Palacino-González, E., Chen, L., & Domcke, W. (2019). Monitoring of Nonadiabatic Effects in Individual Chromophores by Femtosecond Double-Pump Single-Molecule Spectroscopy: A Model Study. Molecules, 24(2), 231. https://doi.org/10.3390/molecules24020231