Polyamidoamide Dendrimers and Cross-Linking Agents for Stabilized Bioenzymatic Resistant Metal-Free Bovine Collagen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cross-Linking of Collagen Powder with EDC/NHS or DMTMM in the Presence of a Dendrimer
2.2. Tanning of Bovine Hides with EDC/NHS and PAMAM Dendrimers
2.3. Enzymatic Degradation Tests
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Cross-Linking of Bovine Collagen Powder in Combination with PAMAM Dendrimers
3.2.2. Tanning of Bovine Hides in the Presence of EDC/NHS and a Dendrimer
3.2.3. Organoleptic Tests on Tanned Bovine Hides in the Presence of EDC/NHS and a Dendrimer
3.3. Enzymatic Hydrolysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Black, M.; Canova, M.; Rydin, S.; Scalet, B.M.; Roudier, S.; Sancho, D.L. Best Available Techniques (BAT) Reference Document for the Tanning of Hides and Skins. Industrial Emissions Directive 2010/75/EU; Publications Office of the European Union: Luxemburg, 2013. [Google Scholar]
- Chen, Y.; Dan, N.; Huang, Y.; Bai, Z.; Yang, C.; Dan, W.; Cong, L. Functional chemical modification of a porcine acellular dermal matrix with a modified naturally derived polysaccharide crosslinker. J. Appl. Polym. Sci 2019, 136, 47633–47644. [Google Scholar] [CrossRef]
- Tiong, W.H.C.; Damodaran, G.; Naik, H.; Kelly, J.L.; Pandit, A. Enhancing Amine Terminals in an Amine-Deprived Collagen Matrix. Langmuir 2008, 24, 11752–11761. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, H.; Jadidi, K.; Pourmotabed, S.; Sharifi, E.; Aghamollaei, H. Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int. J. Biol. Macromol. 2019, 126, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Covington, A.D. Tanning Chemistry: The Science of Leather. RSC Publishing: Cambridge, UK, 2009. [Google Scholar]
- Chan, J.C.Y.; Burugapalli, K.; Naik, H.; Kelly, J.L.; Pandit, A. Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer. Biomacromolecules 2008, 9, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Charulatha, V.; Rajaram, A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 2003, 24, 759–767. [Google Scholar] [CrossRef]
- Duan, X.; Sheardown, H. Crosslinking of collagen with dendrimers. J. Biomed. Mater. Res. 2005, 75A, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J. Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Biomaterials 2004, 24, 2997–3004. [Google Scholar] [CrossRef]
- Bacardit, A.; van der Burgh, S.; Armengol, J.; Ollé, L. Evaluation of a new environment friendly tanning process. J. Clean. Prod. 2014, 65, 568–573. [Google Scholar] [CrossRef]
- Ollé, L.; Jorba, M.; Font, J.; Shendrik, A.; Bacardit, A. Biodegradation of Wet-White Leather. J. Soc. Leather Technol. Chem. 2011, 95, 116–120. [Google Scholar]
- Madhan, B.; Sundararajan, A.; Rao, J.R.; Nair, B.U. Studies on tanning with zirconium oxychloride: Part II development of a versatile tanning system. J. Am. Leather Chem. Assoc. 2003, 98, 107–114. [Google Scholar]
- Han, B.; Jaurequi, J.; Bao Wei, T.; Nimni, M.E. Proanthocyanidin: A natural crosslinking reagent for stabilizing collagen matrices. J. Biomed. Mater. Res. 2003, 65A, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Khor, E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997, 18, 95–105. [Google Scholar] [CrossRef]
- Zengin, A.C.A.; Crudu, M.; Maier, S.S.; Deselnicu, V.; Albu, L.; Gulumser, G.; Bitlisli, B.O.; Basaran, B.; Mutlu, M.M. Eco-leather: Chromium-free Leather Production Using Titanium, Oligomeric Melamine-Formaldehyde Resin, and Resorcinol Tanning Agents and the Properties of the Resulting Leathers. Ekoloji 2012, 21, 17–25. [Google Scholar] [CrossRef]
- Marsal, A.; Cuadros, S.; Manich, A.M.; Izquierdo, F.; Font, J. Reduction of the formaldehyde content in leathers treated with formaldehyde resins by means of plant polyphenols. J. Clean. Prod. 2017, 148, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.M.S.; Rahman, M.R.; Ali, M.Y.; Uddin, M.F. Environmental Pollution due to Production of Wet-Blue Leather from Goat Skin. IOSR J. Environ. Sci. Toxicol. Food Technol. 2018, 12, 1–8. [Google Scholar]
- Qiang, T.; Gao, X.; Ren, J.; Chen, X.; Wang, X. A Chrome-Free and Chrome-Less Tanning System Based on the Hyperbranched Polymer. ACS Sustain. Chem. Eng. 2016, 4, 701–707. [Google Scholar] [CrossRef]
- Sole, R.; Taddei, L.; Franceschi, C.; Beghetto, V. Efficient Chemo-Enzymatic Transformation of Animal Biomass Waste for Eco-Friendly Leather Production. Molecules 2019, 24, 2979. [Google Scholar] [CrossRef]
- Huang, G.P.; Shanmugasundaram, S.; Masih, P.; Pandya, D.; Amara, S.; Collins, G.; Arinzeh, T.L. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. A 2015, 103A, 762–771. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Gao, C. Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater. Sci. Eng. C 2012, 32, 2361–2366. [Google Scholar] [CrossRef]
- Chen, H.; Shana, Z. Stabilization of collagen by cross-linking with oxazolidine E-resorcinol. Int. J. Biol. Macromol. 2010, 46, 535–539. [Google Scholar] [CrossRef]
- Beghetto, V.; Agostinis, L.; Gatto, V.; Samiolo, R.; Scrivanti, A. Sustainable use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as metal free tanning agent. J. Cleaner Prod. 2019, 220, 864–872. [Google Scholar] [CrossRef]
- Taylor, M.M.; Bumanlag, L.P.; Brown, E.M.; Liu, C. Reaction of Protein and Carbohydrates with EDC for Making Unique Biomaterials. J. Am. Leather Chem. Assoc. 2016, 111, 155–164. [Google Scholar]
- Princz, M.A.; Sheardown, H. Modified Dendrimer Cross-Linked Collagen-Based Matrices. J. Biomater. Sci. Polym. Ed. 2012, 23, 2207–2222. [Google Scholar] [CrossRef] [PubMed]
- Petta, D.; Eglin, D.; Grijpma, D.W.; D’Este, M. Enhancing hyaluronan pseudoplasticity via 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholiniumchloride-mediated conjugation with short alkyl moieties. Carbohydr. Polym. 2016, 151, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Pelet, J.M.; Putnam, D. An In-Depth Analysis of Polymer-Analogous Conjugation using DMTMM. Bioconjugate Chem. 2011, 22, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Jain, K.; Kumar Mehra, N.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res. 2016, 18, 146–155. [Google Scholar] [CrossRef]
- Moon, H.; Choy, S.; Park, Y.; Jung, Y.M.; Mo Koo, Y.; Hwang, D.S. Different Molecular Interaction between Collagen and α- or β-Chitin in Mechanically Improved Electrospun Composite. Mar. Drugs 2019, 17, 318. [Google Scholar] [CrossRef]
- Collier, T.A.; Nash, A.; Birch, H.L.; de Leeuw, N.H. Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking. J. Biomech. 2018, 67, 55–61. [Google Scholar] [CrossRef]
- Beghetto, V.; Agostinis, L.; Gatto, V.; Sole, R.; Zanette, D.; Conca, S. Sustainable carbododiimine and triazine reagents as collagen cross-linking agents in the presence of PAMAM dendrimers. In Smart Innovation, Systems and Technologies; Campana, G., Howlett, R.J., Setchi, R., Cimatti, B., Eds.; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2017; pp. 445–451. [Google Scholar]
- Tomalia, D.A.; Christensen, J.B.; Boas, U. Dendrimers, Dendrons, and Dendritic Polymers; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Onem, E.; Yorgancioglu, A.; Karavana, H.A.; Yilmaz, O. Comparison of different tanning agents on the stabilization of collagen via differential scanning calorimetry. J. Therm. Anal. Calorim. 2017, 129, 615–622. [Google Scholar] [CrossRef]
- Tang, H.R.; Covington, A.D.; Hancock, R.A. Use of DSC to detect the heterogeneity of hydrothermal stability in the polyphenol-treated collagen matrix. J. Agric. Food Chem. 2003, 51, 6652–6656. [Google Scholar] [CrossRef]
- Zhanga, Y.; Snowb, T.; Smithb, A.J.; Holmesa, G.; Prabakara, S. A guide to high-efficiency chromium (III)-collagen cross-linking: Synchrotron SAXS and DSC study. Int. J. Biol. Macromol. 2019, 126, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Yang, C. Enhanced physicochemical properties of collagen by using EDC/NHS-crosslinking. Bull. Mater. Sci. 2012, 35, 913–918. [Google Scholar] [CrossRef]
- Gratzer, P.F.; Lee, J.M. Control of pH Alters the Type of Cross-linking Produced by 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) Treatment of Acellular Matrix Vascular Grafts. J. Biomed. Mater. Res. 2001, 58, 172–179. [Google Scholar] [CrossRef]
- Joshi, N.; Grinstaff, M. Applications of Dendrimers in Tissue Engineering. Curr. Top. Med. Chem. 2008, 8, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Alajangi, H.K.; Natarajan, P.; Vij, M.; Ganguli, M.; Santhiya, D. Role of Unmodified Low Generation – PAMAM Dendrimers in Efficient Non-Toxic Gene Transfection. Chemistry Select. 2016, 1, 5206–5217. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Youssef, M.S.A.; Nashy, E.H.A.; Eissa, M.M. Using of Hyperbranched Poly(amidoamine) as Pretanning Agent for Leather. Int. J. Polym. Sci. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Gutterres, M.; Benvenuti, J.; Fontoura, J.T.; Ortiz-Monsalve, S. Characterization of Raw Wastewater from Tanneries. J. Soc. Leather Technol. Chem. 2015, 99, 280–287. [Google Scholar]
- Rose, J.B.; Pacelli, S.; El Haj, A.J.; Dua, H.S.; Hopkinson, A.; White, L.J.; Rose, F.R.A.J. Gelatin based materials in ocular tissue engineering. Materials 2014, 7, 3106–3135. [Google Scholar] [CrossRef]
- Zhong, S.; Yung, L.Y.L. Enhanced biological stability of collagen with incorporation of PAMAM dendrimer. J. Biomed. Mater. Res. A 2008, 91, 114–122. [Google Scholar]
- Jackson, J.K.; Zhao, J. The inhibition of collagenase induced degradation of collagen by the galloyl-containing polyphenols tannic acid, epigallocatechin gallate and epicatechin gallate. J. Mater. Sci. Mater. Med. 2010, 21, 1435–1443. [Google Scholar] [CrossRef]
- Israel-Roming, F.; Cornea, P.; Gherghina, E.; Luta, G.; Balan, D. Bacterial proteolytic enzymes tested on keratinand collagen based material. Sci. Bullet. Series F. Biotechnol. 2014, 18, 169–173. [Google Scholar]
- Tao-Tao, Q.; Xiao-Ke, C.; Xue-Chuan, W.; Yong-Qiang, R.; Guo-Xiang, Z.; Shu-Qin, Y. Biodegradation of chrome-free goat garment leathers. J. Soc. Leath. Tech. Ch. 2011, 96, 56–59. [Google Scholar]
- Bacardit, A.; Jorba, M.; Font, J.; Shendrik, A.; Ollé, L. Biodegradation of leather tanned with inorganic salts. J. Soc. Leath. Tech. Ch. 2010, 95, 63–67. [Google Scholar]
Sample Availability: Samples of the compounds 2-Triet-dendrimers are available from the authors. |
Entry | Dendrimer | Molecular Weight | PAMAM NH2 | COOHcoll/NH2 a (mol/mol) | Ts (°C) |
---|---|---|---|---|---|
1 | - | - | - | 1.2/0.8 | 80 |
2 | 2G0.0 | 516.4 | 4 | 1.2/2.0 | 85 |
3 | 3G0.0 | 586.8 | 4 | 1.2/2.0 | 85 |
4 | 4G0.0 | 672.0 | 4 | 1.2/2.0 | 87 |
5 | 2G1.0 | 1429.9 | 8 | 1.2/3.2 | 95 |
6 | 3G1.0 | 1612.2 | 8 | 1.2/3.2 | 87 |
7 | 4G1.0 | 1794.6 | 8 | 1.2/3.2 | 80 |
8 | 2-Triet-G0.0 | 673.9 | 5 | 1.2/2.3 | 90 |
9 | 2-Triet-G1.0 | 1815.3 | 10 | 1.2/3.8 | 80 |
Entry | COOHcoll/DMTMM (mol/mol) | Dendrimer | Surface NH2 a | COOHcoll/NH2 a (mol/mol) | Ts (°C) |
---|---|---|---|---|---|
1 | 1/2 | - | - | 1.2/0.8 | 82 |
2 | 1/2 | 2G0.0 | 4 | 1.2/2.0 | 80 |
3 | 1/2 | 3G0.0 | 4 | 1.2/2.0 | 65 |
4 | 1/2 | 4G0.0 | 4 | 1.2/2.0 | 65 |
5 | 1/2 | 2G1.0 | 8 | 1.2/3.2 | 69 |
6 | 1/2 | 3G1.0 | 8 | 1.2/3.2 | 68 |
7 | 1/2 | 4G1.0 | 8 | 1.2/3.2 | 72 |
8 | 1/2 | 2-Triet-G0.0 | 5 | 1.2/2.3 | 76 |
9 | 1/2 | 2-Triet-G1.0 | 10 | 1.2/3.8 | 71 |
Entry | Dendrimer | Tanning agent | Surface NH2 | COOHcoll/NH2 a (mol/mol) | Ts (°C) |
---|---|---|---|---|---|
1 | - | EDC/NHS | 0 | 1.2/0.8 | 79 |
2 | 2G1.0 | EDC/NHS a | 8 | 1.2/3.2 | 92 |
3 | 2-Triet-G0.0 | EDC/NHS a | 5 | 1.2/2.3 | 87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beghetto, V.; Gatto, V.; Conca, S.; Bardella, N.; Scrivanti, A. Polyamidoamide Dendrimers and Cross-Linking Agents for Stabilized Bioenzymatic Resistant Metal-Free Bovine Collagen. Molecules 2019, 24, 3611. https://doi.org/10.3390/molecules24193611
Beghetto V, Gatto V, Conca S, Bardella N, Scrivanti A. Polyamidoamide Dendrimers and Cross-Linking Agents for Stabilized Bioenzymatic Resistant Metal-Free Bovine Collagen. Molecules. 2019; 24(19):3611. https://doi.org/10.3390/molecules24193611
Chicago/Turabian StyleBeghetto, Valentina, Vanessa Gatto, Silvia Conca, Noemi Bardella, and Alberto Scrivanti. 2019. "Polyamidoamide Dendrimers and Cross-Linking Agents for Stabilized Bioenzymatic Resistant Metal-Free Bovine Collagen" Molecules 24, no. 19: 3611. https://doi.org/10.3390/molecules24193611