Geographic Differences in Element Accumulation in Needles of Aleppo Pines (Pinus halepensis Mill.) Grown in Mediterranean Region
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Metal Needle Contents for Pinus halepensis
3.2. Geographical Differences
3.3. Pinus halepensis as Medicinal Plant
4. Materials and Methods
4.1. Samples
4.2. Chemicals and Glass/Plastic-ware
4.3. Sample Preparation
4.4. Measurements
4.5. Optimisation and Characterisation of the Analytical Method
4.6. Calculations and Statistics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, P. The Gardeners Dictionary; John and Francis Rivington: London, UK, 1768; pp. 886–108673. [Google Scholar]
- Vidaković, M. Conifers: Morphology and Variation; Grafički Zavod Hrvatske: Zagreb, Croatia, 1991. [Google Scholar]
- Postu, P.A.; Sadiki, F.Z.; El Idrissi, M.; Cioanca, O.; Trifan, A.; Hancianu, M.; Hritcu, L. Pinus halepensis essential oil attenuates the toxic Alzheimer’s amyloid beta (1-42)-induced memory impairment and oxidative stress in the rat hippocampus. Biomed. Pharm. 2019, 112, 108673. [Google Scholar] [CrossRef] [PubMed]
- Salhi, N.; Bouyahya, A.; Fettach, S.; Zellou, A.; Cherrah, Y. Ethnopharmacological study of medicinal plants used in the treatment of skin burns in occidental Morocco (area of Rabat). S. Afr. J. Bot. 2019, 121, 128–142. [Google Scholar] [CrossRef]
- Salim, H.; Rimawi, WH.; Shaheen, S.; Mjahed, A. Phytochemical analysis and antibacterial activity of extracts from Palestinian Aleppo pine seeds, bark and cones. Asian. J. Chem. 2019, 31, 143–147. [Google Scholar] [CrossRef]
- Tekić, I.; Fuerst-Bjeliš, B.; Durbešić, A. Rasprostranjenost alepskig bora (Pinus halepensis Mill.) in njegov utjecaj na vegetaciju i strukturu pejzaža šireg Šibenskog područja. Distribution of Aleppo pine (Pinus halepensis Mill.) and its effects on vegetation and landscape structure of wider area of Šibenik. Šumar. List 2014, 11–12, 593–600. [Google Scholar]
- Maestre, F.T.; Cortina, J. Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? Ecol. Manag. 2004, 198, 303–317. [Google Scholar] [CrossRef]
- Zethof, J.H.T.; Cammeraat, E.L.H.; Nadal-Romero, E. The enhancing effect of afforestation over secondary succession on soil quality under semiarid climate conditions. Sci. Total Environ. 2019, 652, 1090–1101. [Google Scholar] [CrossRef]
- Al-Alawi, M.M.; Mandiwana, K.L. The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. J. Hazard. Mater. 2007, 148, 43–46. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia. Chemosphere 2005, 60, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
- Austruy, A.; Yung, L.; Ambrosi, J.P.; Girardclos, O.; Keller, C.; Angeletti, B.; Dron, J.; Chamaret, P.; Chalot, M. Evaluation of historical atmospheric pollution in an industrial area by dendrochemical approaches. Chemosphere 2019, 220, 116–126. [Google Scholar] [CrossRef]
- Rodríguez Martin, J.A.; Gutiérrez, C.; Torrijos, M.; Nanos, N. Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region. Environ. Pollut. 2018, 239, 438–447. [Google Scholar] [CrossRef]
- Al-Alawi, M.M.; Batarseh, M.I.; Carreras, H.; Alawi, M.; Jiries, A.; Charlesworth, S.M. Aleppo pine bark as a biomonitor of atmospheric pollution in the arid environment of Jordan. Clean Soil Air Water 2007, 35, 438–443. [Google Scholar] [CrossRef]
- Čeburnis, D.; Steinnes, E. Conifer needles as biomonitors of atmospheric heavy metal deposition: Comparison with mosses and precipitation, role of the canopy. Atmos. Environ. 2000, 34, 4265–4271. [Google Scholar] [CrossRef]
- Herceg Romanić, S.; Krauthacker, B. Are pine needles bioindicators of air pollution? Comparison of organochlorine compound levels in pine needles and ambient air. Arh. Hig. Rada. Toksikol. 2007, 58, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Bertolotti, G.; Gialanella, S. Review: Use of conifer needles as passive samplers of inorganic pollutants in air quality monitoring. Anal. Methods 2014, 6, 6208–6222. [Google Scholar] [CrossRef]
- Lehndorff, E.; Schwark, L. Accumulation histories of major and trace elements on pine needles in the cologne conurbation as function of air quality. Atmos. Environ. 2010, 44, 2822–2829. [Google Scholar] [CrossRef]
- Serbula, S.M.; Kalinovic, T.S.; Ilic, A.A.; Kalinovic, J.V.; Steharnik, M.M. Assessment of Airborne Heavy Metal Pollution Using Pinus spp. and Tilia spp. Aerosol Air Qual. Res. 2013, 13, 563–573. [Google Scholar] [CrossRef]
- Varnagiryte-Kabasinskiene, I.; Armolaitis, K.; Stupak, I.; Kukkola, M.; Wójcik, J.; Mikšys, V. Some metals in aboveground biomass of Scots pine in Lithuania. Biomass Bioenergy 2014, 66, 434–441. [Google Scholar] [CrossRef]
- Juranović-Cindrić, I.; Zeiner, M.; Starčević, A.; Liber, Z.; Rusak, G.; Idžojtić, M.; Stingeder, G. Influence of F1 hybridization on the metal uptake behaviour of pine trees (Pinus nigra x Pinus thunbergiana; Pinus thunbergiana x Pinus nigra). J. Trace. Elem. Med. Biol. 2018, 48, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Parzych, A.; Mochnacký, S.; Sobisz, Z.; Kurhaluk, N.; Polláková, N. Accumulation of heavy metals in needles and bark of Pinus species. Folia. Pol. Ser. A 2017, 59, 34–44. [Google Scholar] [CrossRef]
- Plank, C.O.; Kissel, D.E. Plant Analysis Handbook for Georgia. Available online: http://aesl.ces.uga.edu/publications/plant (accessed on 04 March 2019).
- Wittig, R. General aspects of biomonitoring heavy metals by plants. In Plants as Biomonitors/Indicator for Heavy Metals in The Terrestrial Environment; Markert, B., Ed.; VCH Publisher: Weinheim, Germany, 1993; pp. 3–28. [Google Scholar]
- Juranović Cindrić, I.; Zeiner, M.; Starčević, A.; Stingeder, G. Metals in pine needles: Characterisation of bio-indicators depending on species. Int. J. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Zeiner, M.; Juranović Cindrić, I.; Konanov-Mihajlov, D.; Stingeder, G. Differences in bioaccumulation of essential and toxic elements by white and red hawthorn. Curr. Anal. Chem. 2017, 13, 299–304. [Google Scholar] [CrossRef]
- Tarvainen, T.; Albanese, S.; Birke, M.; Poňavič, M.; Reimann, C. Arsenic in agricultural and grazing land soils of Europe. Appl. Geochem. 2013, 28, 2–10. [Google Scholar] [CrossRef]
- Salminen, R. (chief editor). Geochemical Atlas of Europe. Part 1—Background Information, Methodology, and Maps; Geological Survey of Finland: Espoo, Finland, 2005; ISBN 951-690-913-2. Available online: http://weppi.gtk.fi/publ/foregsatlas/ (accessed on 25 March 2019).
- Halamić, J.; Peh, Z.; Miko, S.; Galović, L.; Šorša, A. Tehnologije zbrinjavanja otpada i zaštite tla. In Geokemijski Atlas Republike Hrvatske (Geochemical Atlas of the Republic of Croatia); Vasić-Rački, Đ., Ed.; Akademija tehničkih znanosti Hrvatske: Zadar, Croatia, 2009; pp. 161–170. ISBN 978-953-7076-18-4. [Google Scholar]
- Birke, M.; Reimann, C.; Rauch, U.; Ladenberger, A.; Demetriades, A.; Jähne-Klingberg, F.; Oorts, K.; Gosar, M.; Dinelli, E.; Halamić, J. GEMAS: Cadmium distribution and its sources in agricultural and grazing land soil of Europe—Original data versus clr-transformed data. J. Geochem. Explor. 2017, 173, 13–30. [Google Scholar] [CrossRef]
- Tausz, M.; Trummer, W.; Gössler, W.; Wonisch, A.; Grill, D.; Naumann, S.; Jiménex, M.S.; Morales, D. Accumulating pollutants in conifer needles on an Atlantic island e A case study with Pinus canariensis on Tenerife, Canary Islands. Environ. Pollut. 2005, 136, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.H.; Yalamanchali, R.; Reiser, R.; Dickinson, N.M. Lithium as an emerging environmental contaminant: Mobility in the soil-plant system. Chemosphere 2018, 197, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Power, P.P.; Woods, W.O. The chemistry of boron and its speciation in plants. Plant Soil 1997, 193, 1–13. [Google Scholar] [CrossRef]
- Antunović, Z.; Steiner, Zd.; Vegara, M.; Šperanda, M.; Steiner, Z.; Novoselec, J. Concentration of selenium in soil, pasture, blood and wool of sheep. Acta Vet. 2010, 60, 263–271. [Google Scholar] [CrossRef]
- Cicchella, D.; Zuzolo, D.; Demetriades, A.; De Vivo, B.; Eklund, M.; Ladenberger, A.; Negrel, P.; O’Connor, P. GEMAS: Molybdenum Spatial Distribution Patterns in European Soil. Geophys. Resear. Abs. 2017, 19, 2017–9179. [Google Scholar]
- WHO. WHO: Geneva Switzerland; 1998. Quality Control Methods for Medicinal Plant Materials. Available online: http://whqlibdoc.who.int/publications/1998/9241545100.pdf (accessed on 26 March 2019).
Sample Availability: Dried needle samples of different trees are available from the authors. |
Parameter | ICP-AES 1 | ICP-SFMS 2 |
---|---|---|
Instrument | Prodigy High Dispersive ICP-AES (Teledyne Leeman, Hudson, NH, USA) | Element 2 ICP-SFMS (Thermo Fisher; Bremen, Germany) |
Output power | 1100 W | 1300 W |
Argon flows | Coolant:18 L min−1 | Coolant: 16 L min−1 |
Auxiliary: 0.8 L min−1 | Auxiliary: 0.86 L min−1 | |
Nebuliser: 1 L min−1 | Nebuliser: 1.06 L min−1 | |
Sample flow | 1.0 mL min−1 | 100 μL min−1 |
Nebuliser | Pneumatic (glass concentric) | PFA microflow |
Spray chamber | Glass cyclonic | PC3 cyclonic quartz chamber |
Plasma viewing | Axial | ------- |
Analytes | Al at 396.152 nm 3 | 75As+ (HR) 4 98Mo+ (MR) 7Li+ (LR) 82Se+ (LR) 111Cd+ (LR) 208Pb+ (LR) 115In+ (internal standard at 1.1 µg/L for all resolution levels) |
B at 208.956 nm | ||
Ba at 455.403 nm | ||
Ca at 396.847 nm | ||
Cd at 214.441 nm | ||
Co at 228.615 nm | ||
Cr at 267.716 nm | ||
Cu at 224.700 nm | ||
Fe at 238.204 nm | ||
K at 766.491 nm | ||
Mg at 280.271 nm | ||
Mn at 257.610 nm | ||
Mo at 202.030 nm | ||
Na at 589.592 nm | ||
Ni at 231.604 nm | ||
Pb at 220.353 nm | ||
Sr at 407.771 nm | ||
Zn at 213.856 nm | ||
Recovery | 92%–115% | 90%–111% |
Precision (RSD) | 0.07%–2.3% | 0.1%–2.1% |
Day-to-day repeatability | <2.9% | <2.7% |
Element | Method | LOQ | Mean | Min | Max | SD | RSD in % | Amman City Jordan [9] | Catalonia (Spain) [10] |
---|---|---|---|---|---|---|---|---|---|
Aluminium | AES | 2.9 | 249 | 32.7 | 1,000 | 184 | 135 | 376–1150 | |
Arsenic | MS | 0.058 | 0.244 | <LOD | 2.06 | 0.411 | 59 | 0.0229–0.180 | |
Boron | AES | 1.0 | 35.4 | LOD < x < LOQ | 99.2 | 23.5 | 150 | ||
Barium | AES | 1.1 | 6.28 | <LOD | 33.0 | 6.11 | 103 | ||
Calcium | AES | 0.42 | 4975 | 1231 | 16147 | 3449 | 144 | ||
Cadmium | MS | 0.0017 | 0.419 | 0.020 | 6.16 | 1.28 | 33 | 0.12–1.50 | 0.0152–0.186 |
Cobalt | MS | 0.011 | 1.44 | 0.018 | 10.0 | 3.25 | 44 | ||
Chromium | MS | 0.023 | 1.26 | 0.063 | 10.8 | 2.21 | 57 | 0.113–0.756 | |
Copper | MS | 0.022 | 5.27 | 1.01 | 52.7 | 6.81 | 77 | 5.32–16.0 | 3.363–14.463 |
Iron | AES | 0.19 | 146 | 32.9 | 461 | 118 | 124 | ||
Potassium | AES | 0.84 | 3123 | 548 | 6052 | 1663 | 188 | ||
Lithium | MS | 0.027 | 2.00 | 0.128 | 20.7 | 4.53 | 44 | ||
Magnesium | AES | 0.61 | 2081 | 640 | 3310 | 690 | 302 | ||
Manganese | AES | 0.87 | 21.2 | 6.18 | 39.5 | 8.97 | 236 | ||
Molybdenum | AES | 0.13 | 5.74 | 0.414 | 48.8 | 6.43 | 89 | ||
Sodium | AES | 0.20 | 1431 | 187 | 6291 | 1622 | 88 | ||
Nickel | MS | 0.019 | 0.994 | 0.0574 | 8.01 | 1.83 | 54 | 0.260–2.588 | |
Lead | MS | 0.043 | 3.03 | 0.0567 | 25.0 | 5.79 | 52 | 11.0–75.5 | 0.469–3.179 |
Selenium | MS | 0.016 | 0.653 | 0.0634 | 1.72 | 0.404 | 161 | ||
Strontium | AES | 0.17 | 6.86 | 1.63 | 15.5 | 3.88 | 177 | ||
Zinc | AES | 1.1 | 27.0 | 2.23 | 543 | 67.8 | 40 | 10.0–118 | 20.204–29.162 |
Element | Bol na Braču | Dugi Otok | Mareda-Istra | Marjana | Pakoštane | Petrčane | Pirovac | Poreč | Starigrad | Vis | Vodice | Zaton | p-value 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aluminium | 156–264 | 32.7–1000 | 193–314 | 50.4–106 | 84.4–343 | 174–705 | 80.9–82.2 | 142–240 | 347–528 | 112–652 | 112–156 | 108–517 | 1.3 × 10−16 |
Arsenic | 0.0528–0.0665 | <LOD–0.481 | 0.0521–0.0638 | 0.0736–0.0778 | 0.0480–0.300 | 0.104–0.204 | 0.0136–0.0703 | 0.954–2.06 | 0.0809–0.301 | 0.218–0.235 | 0.0394–1.28 | 0.0167–0.804 | 0.00059 |
Boron | 13.0–14.7 | 15.7–99.2 | <LOD | <LOD | 24.5–38.2 | 35.9–55.1 | 17.3–21.8 | 24.9–33.8 | 0.967–46.7 | 14.0–39.3 | 16.6–17.2 | 13.7–67.3 | 0.015 |
Barium | 5.30–7.40 | 0.0985–14.4 | 10.7–13.3 | 3.00–4.55 | 1.35–6.48 | 4.14–7.92 | 1.34–1.74 | 5.13–7.20 | 7.34–33.0 | 3.16–5.69 | 4.70–9.68 | 1.69–6.21 | 1.9 × 10−6 |
Calcium | 7824–8528 | 1980–6612 | 15733–16147 | 7477–8127 | 2915–3710 | 1231–6264 | 2710–3154 | 2263–8013 | 1858–3238 | 5011–60122 | 8560–10567 | 4980–7656 | 1.3 × 10−16 |
Cadmium | 0.115–0.141 | 0.0207–0.264 | 0.131–0.140 | 0.0197–0.0635 | 0.0605–0.145 | 0.134–0.225 | 0.117–0.165 | 0.112–0.134 | 0.162–6.16 | 0.0383–0.0918 | 0.0376–0.0992 | 0.0616–0.854 | 0.055 |
Cobalt | <LOD–0.0191 | 0.0198–5.86 | <LOD | <LOD | 0.0402–0.159 | 0.0671–0.134 | 0.0183–0.0969 | <LOD | 0.0572–10.0 | <LOD | <LOD–0.0395 | 0.150–0.631 | 0.46 |
Chromium | 0.555–1.29 | 0.219–0.807 | 0.553–0.620 | 0.0635–0.690 | 0.418–1.43 | 0.582–1.42 | 0.532–0.914 | 0.438–0.935 | 0.910–10.8 | 0.174–0.498 | 0.357–0.615 | 0.554–2.47 | 0.015 |
Copper | 2.24–4.29 | 1.69–7.14 | 1.68–4.03 | 3.73–5.56 | 2.58–6.49 | 2.62–4.06 | 3.10–4.29 | 2.84–4.58 | 1.94–13.7 | 1.49–8.11 | 1.01–2.63 | 1.50–10.3 | 0.44 |
Iron | 68.4–91.0 | 32.9–86.7 | 134–143 | 45.5–48.8 | 62.5–169 | 151–170 | 74.7–96.8 | 99.0–172 | 263–417 | 65.3–72.1 | 62.8–92.8 | 105–461 | 7.0 × 10−10 |
Potassium | 2826–2953 | 647–4457 | 690–1450 | 3723–3929 | 3627–4437 | 548–4396 | 4844–5080 | 783–4785 | 611–4202 | 1956–2021 | 3340–6830 | 2590–6052 | 0.00089 |
Lithium | 0.543–0.602 | 0.128–0.638 | 0.334–0.564 | 0.182–0.313 | 0.241–2.65 | 1.39–2.50 | 0.190–0.976 | 4.20–4.88 | 0.557–1.02 | 1.16–1.50 | 0.125 –0.251 | 0.159–2.67 | 0.63 |
Magnesium | 2756–2866 | 1623–3310 | 1683–2770 | 2817–3047 | 1940–2936 | 1566–1902 | 1313–1331 | 1285–1913 | 1444–1638 | 2534–3095 | 3288–4158 | 640–2756 | 5.1 × 10−5 |
Manganese | 31.7–39.5 | 26.3–36.7 | 17.7–22.7 | 6.18–6.33 | 14.7–19.2 | 15.6–20.9 | 10.6–13.8 | 15.0–15.3 | 11.2–30.3 | 12.1–12.8 | 21.7–23.9 | 7.93–34.2 | 3.1 × 10−8 |
Molybdenum | 3.68–5.09 | 0.414–7.35 | 2.58–4.20 | 3.80–4.89 | 3.57–7.36 | 1.09–4.80 | 2.66–48.8 | 4.51–7.58 | 2.37–16.2 | 1.87–7.49 | 2.02–5.42 | 3.43–10.8 | 0.093 |
Sodium | 924–971 | 404–1380 | 1374–1565 | 187–236 | 352–1093 | 4826–5731 | 711–777 | 472–870 | 585–2143 | 444–598 | 708–866 | 1732–6291 | 1.1 × 10−11 |
Nickel | 0.0765–0.301 | 0.259–2.81 | 0.363–0.700 | 0.212–0.987 | 0.198–0.842 | 0.113–0.241 | 0.0778–1.16 | 0.358–0.411 | 0.303–8.01 | 0.0574–0.496 | 0.113–0.415 | 0.408–1.35 | 0.22 |
Lead | <LOD | 0.0969–7.25 | <LOD | 0.212–25.0 | <LOD | 0.246–0.443 | 0.116–13.5 | <LOD–0.0954 | 0.184–11.5 | <LOD –0.0574 | <LOD | 0.0567–1.03 | 0.65 |
Selenium | 0.539–0.682 | 0.152–0.565 | 0.317–0.369 | 1.23–1.24 | 0.355–1.46 | 0.649–1.52 | 0.272–0.878 | 0.448–0.657 | 0.503–0.689 | 0.776–0.955 | <LOD–0.0634 | 0.0800–1.72 | 0.035 |
Strontium | 7.01–7.64 | 1.63–8.04 | 9.70–10.2 | 5.25–5.42 | 3.71–5.78 | 10.2–15.5 | 2.44–2.90 | 10.3–11.9 | 10.8–11.5 | 5.34–6.41 | 5.53–7.95 | 3.53–15.2 | 1.1 × 10−8 |
Zinc | 15.2–18.2 | 2.23–32.6 | 16.3–18.2 | 10.9–17.3 | 16.5–30.4 | 12.2–60.5 | 17.3–41.7 | 11.8–13.4 | 10.6–29.4 | 30.3–37.6 | 11.4–13.5 | 11.3–18.9 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeiner, M.; Kuhar, A.; Juranović Cindrić, I. Geographic Differences in Element Accumulation in Needles of Aleppo Pines (Pinus halepensis Mill.) Grown in Mediterranean Region. Molecules 2019, 24, 1877. https://doi.org/10.3390/molecules24101877
Zeiner M, Kuhar A, Juranović Cindrić I. Geographic Differences in Element Accumulation in Needles of Aleppo Pines (Pinus halepensis Mill.) Grown in Mediterranean Region. Molecules. 2019; 24(10):1877. https://doi.org/10.3390/molecules24101877
Chicago/Turabian StyleZeiner, Michaela, Ana Kuhar, and Iva Juranović Cindrić. 2019. "Geographic Differences in Element Accumulation in Needles of Aleppo Pines (Pinus halepensis Mill.) Grown in Mediterranean Region" Molecules 24, no. 10: 1877. https://doi.org/10.3390/molecules24101877
APA StyleZeiner, M., Kuhar, A., & Juranović Cindrić, I. (2019). Geographic Differences in Element Accumulation in Needles of Aleppo Pines (Pinus halepensis Mill.) Grown in Mediterranean Region. Molecules, 24(10), 1877. https://doi.org/10.3390/molecules24101877