Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Lichen Collection
3.2. Chlorophyll Fluorescence
3.3. Confocal Microscopy
3.4. Fluorescence and Absorbance Spectra
3.5. UV-B and Blue Light Experiments
3.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lawrey, J.D. Biological role of lichen substances. Bryologist 1986, 89, 111–122. [Google Scholar] [CrossRef]
- Solhaug, K.A.; Gauslaa, Y. Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 1996, 108, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Gauslaa, Y. Lichen palatability depends on investments in herbivore defence. Oecologia 2005, 143, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Basile, A.; Rigano, D.; Loppi, S.; Di Santi, A.; Nebbioso, A.; Sorbo, S.; Conte, B.; Paoli, L.; De Ruberto, F.; Molinari, A.M.; et al. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int. J. Mol. Sci. 2015, 16, 7861–7875. [Google Scholar] [CrossRef] [PubMed]
- Gauslaa, Y.; McEvoy, M. Seasonal changes in solar radiation drive acclimation to the sun-screening compound parietin in the lichen Xanthoria parietina. Basic Appl. Ecol. 2005, 6, 75–82. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Ustvedt, E.M. Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochem. Photobiol. 2003, 2, 424–432. [Google Scholar] [CrossRef]
- Larsson, P.; Vecerová, K.; Cempírkova, H.; Solhaug, K.A.; Gauslaa, Y. Does UV-B influence biomass growth in lichens deficient in sun-screening pigments? Environ. Exp. Bot. 2009, 67, 215–221. [Google Scholar] [CrossRef]
- Hakala-Yatkin, M.; Mäntysaari, M.; Mattila, H.; Tyystjärvi, E. Contributions of visible and ultraviolet parts of sunlight to photoinhibition. Plant Cell Physiol. 2010, 51, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Solhaug, K.A.; Gauslaa, Y.; Nybakker, L.; Bilger, W. UV-induction of sun-screening pigments in lichens. New Phytol. 2003, 158, 91–100. [Google Scholar] [CrossRef]
- Vráblíková, H.; McEvoy, M.; Solhaug, K.A.; Barták, M.; Gauslaa, Y. Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. J. Photochem. Photobiol. 2006, 83, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Solhaug, K.A.; Gauslaa, Y. Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant Cell Environ. 2004, 27, 157–176. [Google Scholar] [CrossRef]
- Sancho, L.G.; de la Torre, R.; Horneck, G.; Acaso, C.; de los Ríos, A.; Pintado, A.; Wierzschos, J.; Schuster, M. Lichen survive in space: Results from the 2005 lichens experiment. Astrobiology 2007, 7, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Gaya, E.; Fernández-Brime, S.; Vargas, R.; Lachlan, R.F.; Gueidan, C.; Ramírez-Mejía, M.; Lutzoni, F. The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate shift. Proc. Natl. Acad. Sci. USA 2018, 112, 11600–11605. [Google Scholar] [CrossRef] [PubMed]
- Hale, M.E., Jr. Fluorescence of lichen depsides and depsidones as a taxonomic criterion. Castanea 1956, 21, 30–32. [Google Scholar]
- Rao, D.N.; LeBlanc, B.F. A possible role of atranorin in the lichen thallus. Bryologist 1965, 68, 284–289. [Google Scholar] [CrossRef]
- García-Plazaola, J.I.; Fernández-Marín, B.; Duke, S.O.; Hernández, A.; López-Arbeloa, F.; Becerril, J.M. Autofluorescence: Biological functions and technical applications. Plant Sci. 2015, 236, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Hoque, E.; Remus, G. Natural UV-screening mechanisms of Norway spruce (Picea abies (L.) Karst.) needles. Photochem. Photobiol. 1999, 69, 177–192. [Google Scholar] [PubMed]
- Hura, T.; Grzesiak, S.; Hura, K.; Thiemt, E.; Tokarz, K.; Wedzony, M. Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: Accumulation of ferulic acid correlates with drought tolerance. Ann. Bot. 2007, 100, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Schweiger, J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 1998, 152, 272–282. [Google Scholar] [CrossRef]
- Morales, F.; Cerovic, Z.G.; Moya, I. Time-resolved blue-green fluorescence of sugar beet (Beta vulgaris L.) leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis. Biochim. Biophys. Acta 1996, 1273, 251–262. [Google Scholar] [CrossRef]
- Piattelli, M.; Giudici de Nicola, M. Anthraquinone pigments from Xanthoria parietina. Phytochemistry 1968, 7, 1183–1187. [Google Scholar] [CrossRef]
- Alboresi, A.; Gerotto, C.; Cazzaniga, S.; Bassi, R.; Morosinotto, T. A Red-shifted antenna protein associated with photosystem II in Physcomitrella patens. J. Biol. Chem. 2011, 289, 28978–28987. [Google Scholar] [CrossRef] [PubMed]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meterol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Hidalgo, M.E.; Fernández, E.; Ponce, M.; Rubio, C.; Quilhot, W. Photophysical, photochemical, and thermodynamic properties of shikimic acid derivatives: Calycin and rhizocarpic acid (lichens). J. Photochem. Photobiol. 2002, 66, 213–217. [Google Scholar] [CrossRef]
- Kauppi, K.; Verseghy-Patay, K. Determination of the distribution of lichen substances in the thallus by fluorescence microscopy. Ann. Bot. Fenn. 1990, 27, 189–202. [Google Scholar]
- Solhaug, K.A.; Larsson, P. Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments. Planta 2010, 231, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Candotto Carniel, F.; Pellegrini, E.; Bove, F.; Grosera, M.; Adami, G.; Nali, C.; Lorenzini, G.; Tretiach, M. Acetone washing for the removal of lichen substances affects membrane permeability. Lichenologist 2017, 49, 387–395. [Google Scholar] [CrossRef]
- Mathey, A.; Lukins, P.B. Spatial distribution of perylenquinones in lichens and extended quinines in quincyte using confocal fluorescence microscopy. Micron 2001, 32, 107–113. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lozano, J.A.; Utrillas, M.P.; Núnez, J.A.; Esteve, A.R.; Gómez-Amo, J.L.; Estellés, V.; Pedrós, R. Measurement and Analysis of Broadband UVB Solar Radiation in Spain. Photochem. Photobiol. 2012, 88, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Marín, B.; Artetxe, U.; Becerril, J.M.; Martínez-Abaigar, J.; Núñez-Olivera, E.; García-Plazaola, J.I. Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments? Molecules 2018, 23, 1741. https://doi.org/10.3390/molecules23071741
Fernández-Marín B, Artetxe U, Becerril JM, Martínez-Abaigar J, Núñez-Olivera E, García-Plazaola JI. Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments? Molecules. 2018; 23(7):1741. https://doi.org/10.3390/molecules23071741
Chicago/Turabian StyleFernández-Marín, Beatriz, Unai Artetxe, José María Becerril, Javier Martínez-Abaigar, Encarnación Núñez-Olivera, and José Ignacio García-Plazaola. 2018. "Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?" Molecules 23, no. 7: 1741. https://doi.org/10.3390/molecules23071741
APA StyleFernández-Marín, B., Artetxe, U., Becerril, J. M., Martínez-Abaigar, J., Núñez-Olivera, E., & García-Plazaola, J. I. (2018). Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments? Molecules, 23(7), 1741. https://doi.org/10.3390/molecules23071741