Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections
Abstract
:1. Introduction
2. Results
2.1. Essential oils Analysis
2.2. Antibacterial Activity
Agar Disc Diffusion Method
2.3. Antimycotic Activity
3. Discussion
4. Material and Methods
4.1. Essential Oils
4.2. Gas Chromatography—Mass Spectrometry Analysis
4.3. Antibacterial Activity
4.3.1. Bacterial Strains
4.3.2. Agar Disk Diffusion Method
4.3.3. Minimum Inhibitory Concentration
4.4. Antimycotic Activity
4.4.1. Fungal Strains
4.4.2. Minimal Inhibitory Concentration
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barsanti, J.A. Genitourinary infections. In Infectious Diseases of Dog and Cat, 3rd ed.; Greene, C.E., Ed.; Saunders Elsevier: St. Louis, MO, USA, 2006; pp. 935–961, ISBN-13: 978-1-4160-3600-5. [Google Scholar]
- Hall, J.L.; Holmes, M.A.; Baines, S.J. Prevalence and antimicrobial resistance of canine urinary tract pathogens. Vet. Rec. 2013, 173, 549. [Google Scholar] [CrossRef] [PubMed]
- Dorsch, R.; von Vopelius-Feldt, C.; Wolf, G.; Straubinger, R.K.; Hartmann, K. Feline urinary tract pathogens: Prevalence of bacterial species and antimicrobial resistance over a 10-year period. Vet. Rec. 2015, 176, 201. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Gama, L.T.; Belas, A.; Bergström, K.; Beurlet, S.; Briend-Marchal, A.; Broens, E.M.; Costa, M.; Criel, D.; Damborg, P.; et al. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections. BMC Vet. Res. 2016, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Pressler, B.M.; Vaden, S.L.; Lane, I.F.; Cowgill, L.D.; Dye, J.A. Candida spp. urinary tract infections in 13 dogs and seven cats: Predisposing factors, treatment, and outcome. J. Am. Anim. Hosp. Assoc. 2003, 39, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Lin, D. Fungal urinary tract infections in the dog and cat: A retrospective study (2001–2004). J. Am. Anim. Hosp. Assoc. 2005, 41, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Radlinsky, M.G.; Mason, D.E. Diseases of the external ear canal: Otitis externa. In Textbook of Veterinary Internal Medicine; Ettinger, S.J., Feldman, E.C., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2005; pp. 1171–1178. [Google Scholar]
- Willems, N.; Houwers, D.J.; Schlotter, Y.M.; Theelen, B.; Boekhout, T. Disseminated Candidiasis in a young, previously healthy, dog and review of literature. Mycopathologia 2017, 182, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Tendolkar, P.M.; Baghdayan, A.S.; Shankar, N. Pathogenic enterococci: New developments in the 21st century. Cell. Mol. Life Sci. 2003, 60, 2622–2636. [Google Scholar] [PubMed]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial Drug Resistance in Escherichia coli from Humans and Food Animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Hegstad, K.; Mikalsen, T.; Coque, T.M.; Werner, G.; Sundsfjord, A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010, 16, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58 (Suppl. 2), 2–13. [Google Scholar] [CrossRef] [PubMed]
- Papon, N.; Courdavault, V.; Clastre, M.; Bennett, R.J. Emerging and emerged pathogenic Candida species: Beyond the Candida albicans paradigm. PLoS Pathog. 2013, 9, e1003550. [Google Scholar] [CrossRef] [PubMed]
- Vanden Bossche, H.; Marichal, P.; Gorrens, J.; Bellens, D.; Moereels, H.; Janssen, P.A.J. Mutation in cytochrome P450-dependent 14a-demethylase results in decreased affinity for azole antifungals. Biochem. Soc. Trans. 1990, 18, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Rex, J.H.; Rinaldi, M.G.; Pfaller, M.A. Resistance of Candida species to fluconazole. Antimicrob. Agents Chemother. 1995, 39, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.S.; Sumita, T.C.; Furlan, M.R.; Jeorge, A.O.; Ueno, M. Antibacterial activity of essential oils on microorganisms isolated from urinary tract infection. Rev. Saude Publica 2004, 38, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 23289. [Google Scholar] [CrossRef] [PubMed]
- Benmalek, Y.; Yahia, O.A.; Belkebir, A.; Fardeau, M.L. Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp. monogyna and Allium cepa red and white varieties. Bioengineered 2014, 4, 244–248. [Google Scholar]
- Hawrelak, J.A.; Cattley, T.; Myers, S.P. Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. Altern. Med. Rev. 2009, 14, 380–384. [Google Scholar] [PubMed]
- Frydrysiak, E.; Śmigielski, K.; Zabielska, J.; Kunicka-Styczyńska, A.; Frydrysiak, M. Antibacterial activity of essential oils potentially used for natural fiber pantiliner textronic system development. Procedia Eng. 2017, 200, 416–421. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, M.; Łysakowska, M.; Pastuszka, M.; Bienias, W.; Kowalczyk, E. The Potential of Use Basil and Rosemary Essential Oils as Effective Antibacterial Agents. Molecules 2013, 18, 9334–9351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basil—An essential oil from Ocimum basilicum L. against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods 2003, 54, 105–110. [Google Scholar] [CrossRef]
- Ozhak-Baysan, B.; Ogunc, D.; Colak, D.; Ongut, G.; Donmez, L.; Vural, T.; Gunseren, F. Distribution and antifungal susceptibility of Candida species causing nosocomial candiduria. Med. Mycol. 2012, 50, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.F.; Sobel, J.D.; Kauffman, C.A.; Newman, C.A. Candida urinary tract infections-treatment. Clin. Infect. Dis. 2011, 52, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Khan, A.; Manzoor, N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharm. Sci. 2013, 48, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.C.; Sasso, M.D.; Culici, M.; Alfieri, M. Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia 2007, 78, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Fujita, K.; Nihei, K. Antimicrobial activity of anethole and related compounds from aniseed. J. Sci. Food Agric. 2008, 88, 242–247. [Google Scholar] [CrossRef]
- Hitokoto, H.; Morozumi, S.; Wauke, T.; Sakai, S.; Kurata, H. Inhibitory effects of spices on growth and toxin production of toxigenic fungi. Appl. Environ. Microbiol. 1980, 39, 818–822. [Google Scholar] [PubMed]
- Dzamic, A.; Sokovic, M.; Ristic, M.S.; Grijic-Jovanovic, S.; Vukojevic, J.; Marin, P.D. Chemical composition and antifungal activity of Illicium verum and Eugenia caryophyllata essential oils. Chem. Nat. Compd. 2009, 45, 259–261. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, J.; Zhou, L.; Wang, J.; Gong, Y.; Chen, X.; Guo, Z.; Wang, Q.; Jiang, W. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 2010, 15, 7558–7569. [Google Scholar] [CrossRef] [PubMed]
- De, M.; De, A.K.; Sen, P.; Banerjee, A.B. Antimicrobial properties of star anise (Illicium verum Hook f). Phytother. Res. 2002, 16, 94–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.W.; Hu, W.T.; Huang, B.K.; Qin, L.P. Illicium verum: A review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol. 2011, 136, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat. Prod. Commun. 2015, 10, 1473–1478. [Google Scholar] [PubMed]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Najar, B.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against pathogens responsible for otitis externa in dogs and cats. Medicines 2017, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, N.; Takizawa, T.; Ishibashi, H.; Hisajima, T.; Inouye, S.; Yamaguchi, H.; Abe, S. Protective activity of geranium oil and its component, geraniol, in a combination with vaginal washing against vaginal candidiasis in mice. Biol. Pharm. Bull. 2008, 31, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Pietrella, D.; Angiolella, L.; Vavala, E.; Rachini, A.; Mondello, F.; Ragno, R.; Bistoni, F.; Vecchiarelli, A. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement. Altern. Med. 2011, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Gibbs, D.L.; Newell, V.A.; Ellis, D.; Tullio, V.; Rodloff, A.; Fu, W.; Ling, T.A.; Global Antifungal Surveillance Group. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: A 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J. Clin. Microbiol. 2010, 48, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Kuzma, L.; Kalemba, D.; Rozalski, M.; Rozalska, B.; Wieckowska-Szakiel, M.; Krajewska, U.; Wysokinska, H. Chemical composition and biological activities of essential oil from Salvia sclarea plants regenerated in vitro. Molecules 2009, 14, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour Fragr. J. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Bandeira Reidel, R.V.; Melai, B.; Cioni, P.L.; Flamini, G.; Pistelli, L. Aroma profile of Rubus ulmifolius flowers and fruits during different ontogenetic phases. Chem. Biodiv. 2016, 13, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; Twelfth International Supplement M100-M112; NCCLS: Wayne, PA, USA, 2002. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, 11th ed.; CLSI Document M02-A11; Clinical and Laboratory Standards Institute: Wayne, PA, PA, USA, 2012. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- CLSI. Performance Standards for Antifungal Susceptibility Testing of Yeasts, 1st ed.; M60; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2017. [Google Scholar]
Sample Availability: Samples of the essential oils of Illicium verum, Ocimum basilicum, Origanum vulgare, Salvia sclarea and Thymus vulgaris are available from the authors. |
Class | Component | RI | O.v | O.b | S.s | T.v | I.v | |
---|---|---|---|---|---|---|---|---|
2 | mh | tricyclene | 926 | 1.4 | ||||
9 | mh | myrcene | 991 | 2.2 | ||||
13 | mh | α-terpinene | 1018 | 2.1 | ||||
15 | mh | p-cymene | 1026 | 9.3 | 15.3 | |||
16 | mh | limonene | 1031 | 3.9 | ||||
18 | om | 1,8-cineole | 1033 | 5.9 | ||||
22 | mh | γ-terpinene | 1062 | 5.3 | 2.9 | |||
25 | om | cis-linalool oxide (furanoid) | 1074 | 2.2 | ||||
28 | om | trans-linalool oxide (furanoid) | 1088 | 1.8 | ||||
30 | om | trans-sabinene idrato | 1097 | 1.8 | 3.8 | |||
31 | om | linalool | 1098 | 46 | 8.1 | |||
39 | om | borneol | 1165 | 1.6 | ||||
41 | om | 4-terpineol | 1177 | 2.4 | ||||
43 | unknown | 1.7 | ||||||
44 | pp | menthyl chavicol(=estragole) | 1195 | 1.1 | ||||
46 | om | thymol methyl ether | 1232 | 1.7 | ||||
49 | om | linalyl acetate | 1257 | 54.7 | ||||
53 | pp | (E) anethol | 1283 | 89.8 | ||||
54 | om | isobornyl acetate | 1285 | 1.6 | ||||
56 | om | thymol | 1290 | 52.6 | ||||
58 | om | carvacrol | 1298 | 65.9 | ||||
59 | unknown | 5.6 | ||||||
60 | unknown | 7.2 | ||||||
61 | om | α-limonene diepoxide | 1347 | 8.6 | ||||
62 | pp | eugenol | 1356 | 11.5 | ||||
65 | sh | β-elemene | 1392 | 2.2 | ||||
66 | sh | β-caryophyllene | 1418 | 3.7 | 6.8 | |||
67 | sh | trans-α-bergamotene | 1437 | 3.6 | ||||
69 | sh | α-guaiene | 1440 | 1.1 | ||||
72 | sh | germacrene D | 1481 | 3.5 | ||||
74 | sh | α-bulnesene | 1505 | 2 | ||||
75 | sh | trans-γ-cadinene | 1513 | 2.8 | ||||
77 | sh | δ-cadinene | 1524 | 1 | ||||
80 | os | caryophyllene oxide | 1581 | 4.8 | ||||
82 | os | 1,10-di-epi-cubenol | 1614 | 1 | ||||
83 | os | T-cadinol | 1640 | 5.8 | ||||
87 | od | scareol | 2223 | 1.3 |
Antibiotic | Escherichia coli Strain n° | Enterococcus spp. Strain n° * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1069 | 1002 | 994 | 986 | 977 | 876 | 835 | 1091 | 1079 | 1034 | 835 | 793 | 654 | 618 | 568 | |
ATM | R | R | R | I | R | R | S | R | R | R | R | R | R | R | R |
AK | S | I | S | R | S | R | S | R | R | R | R | R | I | S | R |
AMC | R | I | R | I | I | R | R | S | S | S | S | S | S | S | S |
AMP | R | R | R | R | R | R | R | R | R | R | I | R | I | I | I |
KF | R | R | R | R | R | R | R | R | R | R | R | I | I | S | S |
CTX | I | R | R | S | R | I | S | R | R | R | I | R | R | R | I |
CAZ | R | R | R | R | R | R | S | R | R | R | R | R | R | R | R |
CL | R | R | R | R | R | I | R | R | R | R | R | R | R | I | R |
CIP | R | I | R | R | R | R | R | R | R | R | R | R | S | R | R |
CT | R | S | S | R | S | R | S | R | R | R | R | R | R | R | R |
DO | R | S | S | R | R | R | R | R | S | I | R | R | S | S | R |
E | R | R | R | R | R | R | R | I | I | R | R | R | I | S | R |
ENR | R | S | R | R | R | R | R | R | R | R | R | R | I | R | R |
CN | R | S | S | S | S | R | R | R | R | I | R | I | S | S | R |
N | R | I | I | R | R | R | I | R | R | R | R | R | I | I | R |
PPL | R | R | R | R | R | R | R | I | I | R | I | R | I | R | I |
RD | I | R | R | I | I | R | I | R | R | I | S | R | S | I | S |
S | R | I | I | I | I | R | R | R | R | R | R | R | R | I | R |
STX | R | S | S | R | R | R | R | S | R | S | S | S | S | S | R |
TE | R | S | S | R | R | R | R | R | S | R | R | R | R | R | R |
TOB | R | I | S | R | R | R | R | R | R | R | R | R | S | S | R |
Antibiotic | Escherichia coli | Enterococcus spp. | ||||
---|---|---|---|---|---|---|
S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | |
ATM | 1 (14.3) | 1 (14.3) | 5 (71.4) | 0 | 0 | 8 (100) |
AK | 4 (57.1) | 1 (14.3) | 2 (28.6) | 1 (12.5) | 1 (12.5) | 6 (75) |
AMC | 0 | 3 (42.9) | 4 (57.1) | 8 (100) | 0 | 0 |
AMP | 0 | 0 | 7 (100) | 0 | 4 (50) | 4 (50) |
KF | 0 | 0 | 7 (100) | 2 (25) | 2 (25) | 4 (50) |
CTX | 2 (28.6) | 2 (28.6) | 3 (42.8) | 0 | 2 (25) | 6 (75) |
CAZ | 1 (14.3) | 0 | 6 (85.7) | 0 | 0 | 8 (100) |
CL | 0 | 1 (14.3) | 6 (85.7) | 0 | 1 (12.5) | 7 (87.5) |
CIP | 0 | 1 (14.3) | 6 (85.7) | 1 (12.5) | 0 | 7 (87.5) |
CT | 4 (57.1) | 0 | 3 (42.9) | 0 | 0 | 8 (100) |
DO | 2 (28.6) | 0 | 5 (71.4) | 3 (37.5) | 1 (12.5) | 4 (50) |
E | 0 | 0 | 7 (100) | 1 (12.5) | 3 (37.5) | 4 (50) |
ENR | 1 (14.3) | 0 | 6 (85.7) | 0 | 1 (12.5) | 7 (87.5) |
CN | 4 (57.1) | 0 | 3 (42.9) | 2 (25) | 2 (25) | 4 (50) |
N | 0 | 4 (57.1) | 3 (42.9) | 0 | 2 (25) | 6 (75) |
PPL | 0 | 0 | 7 (100) | 0 | 5 (62.5) | 3 (37.5) |
RD | 0 | 3 (42.9) | 4 (57.1) | 3 (37.5) | 2 (25) | 3 (37.5) |
S | 0 | 4 (57.1) | 3 (42.9) | 0 | 1 (12.5) | 7 (87.5) |
STX | 2 (28.6) | 0 | 5 (71.4) | 6 (75) | 0 | 2 (25) |
TE | 2 (28.6) | 0 | 5 (71.4) | 1 (12.5) | 0 | 7 (87.5) |
TOB | 0 | 2 (28.6) | 5 (71.4) | 2 (25) | 0 | 6 (75) |
Bacterial Strain | Illicium verum | Ocimum basilicum | Origanum vulgare | Salvia sclarea | Thymus vulgaris | |||||
---|---|---|---|---|---|---|---|---|---|---|
% | mg/mL | % | mg/mL | % | mg/mL | % | mg/mL | % | mg/mL | |
E. coli 1069 | 0.3 | 0.611 | 0.3 | 0.571 | 0.15 | 0.293 | 0.15 | 0.279 | 0.3 | 0.585 |
E. coli 1002 | 0.3 0.611 | 1.25 | 2.287 | 0.6 | 1.183 | 1.25 | 2.232 | 0.3 | 0.585 | |
E. coli 994 | 0.07 | 0.152 | 0.15 | 0.285 | 0.15 | 0.293 | 0.15 | 0.279 | 0.07 | 0.146 |
E. coli 986 | 1.25 | 2.445 | NE | 0.3 | 0.587 | 1.25 | 2.232 | 0.3 | 0.585 | |
E. coli 977 | 1.25 | 2.445 | 1.25 | 2.287 | 0.3 | 0.587 | 1.25 | 2.232 | 0.15 | 0.292 |
E. coli 876 | 0.07 | 0.152 | 0.6 | 1.143 | 0.15 | 0.293 | 0.07 | 0.139 | 0.07 | 0.146 |
E. coli 835 | 0.3 | 0.611 | 0.6 | 1.143 | 0.3 | 0.587 | 0.3 | 0.558 | 0.07 | 0.146 |
Enterococcus 1091 | NE | 10 | 18.3 | 0.6 | 1.183 | NE | 1.25 | 2.342 | ||
Enterococcus 1079 | NE | 2.5 | 4.575 | 0.6 | 1.183 | NE | 1.25 | 2.342 | ||
Enterococcus 1034 | NE | 5 | 9.15 | 0.6 | 1.183 | NE | 0.6 | 1.171 | ||
Enterococcus 835 | NE | 5 | 9.15 | 0.6 | 1.183 | NE | 1.25 | 2.342 | ||
Enterococcus 793 | NE | 1.25 | 2.287 | 0.6 | 1.183 | NE | 1.25 | 2.342 | ||
Enterococcus 654 | NE | 1.25 | 2.287 | 0.6 | 1.183 | NE | 1.25 | 2.342 | ||
Enterococcus 618 | NE | 2.5 | 4.575 | 0.6 | 1.183 | NE | 1.25 | 2.342 | ||
Enterococcus 568 | NE | 5 | 9.15 | 0.6 | 1.183 | NE | 0.6 | 1.171 |
Yeast Strain | Ocimum basilicum %mg/mL | Origanum vulgare %mg/mL | Salvia sclarea %mg/mL | Thymus vulgaris %mg/mL | Illicium verum %mg/mL | Caspofungin * mg/L | Voriconazole ° mg/L | Itraconazole mg/L | Fluconazole § mg/L | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C famata1 | 0.1 | 0.18 | 0.1 | 0.18 | >10 | >17.86 | 0.075 | 0.14 | 0.1 | 0.19 | 0.125 | 0.25 | 0.25 | 2 |
C famata2 | 2.5 | 4.58 | 1.25 | 2.25 | >10 | >17.86 | 0.075 | 0.14 | 1.5 | 2.93 | 0.047 | 0.25 | 1 | 16 |
C famata3 | 1.5 | 2.7 | 1.25 | 2.25 | >10 | >17.86 | 0.075 | 0.14 | 1 | 1.95 | 0.047 | 1 | 1 | 32 |
C famata4 | 0.075 | 0.13 | 0.075 | 0.135 | >10 | >17.86 | 0.075 | 0.14 | 0.1 | 0.19 | 0.125 | 0.125 | 1 | 8 |
C.albicans1 | 0.075 | 0.13 | 0.075 | 0.135 | >10 | >17.86 | 0.05 | 0.09 | 1 | 1.95 | 0.125 | >32 | >32 | >256 |
C.albicans2 | 0.5 | 0.9 | 2 | 3.6 | >10 | >17.86 | 0.5 | 0.93 | >10 | >19.56 | 0.125 | >32 | >32 | >256 |
C.albicans3 | 0.075 | 0.13 | 0.075 | 0.135 | >10 | >17.86 | 0.075 | 0.14 | 0.1 | 0.19 | 0.125 | >32 | >32 | >256 |
C.albicans4 | 1 | 1.8 | 1 | 1.8 | >10 | >17.86 | 0.1 | 0.19 | 1.25 | 2.44 | 0.125 | >32 | >32 | 2 |
C.albicans5 | 0.5 | 0.9 | 0.1 | 0.18 | >10 | >17.86 | 0.1 | 0.19 | >10 | >19.56 | 0.125 | >32 | >32 | >256 |
C.albicans6 | 2.5 | 4.58 | 1 | 1.8 | >10 | >17.86 | 0.1 | 0.19 | 2 | 3.9 | 0.125 | >32 | >32 | >256 |
C.albicans7 | 1 | 1.8 | 0.075 | 0.135 | >10 | >17.86 | 1 | 1.87 | 2 | 3.9 | 0.125 | >32 | >32 | 0.75 |
C.albicans8 | 0.75 | 1.3 | 0.1 | 0.18 | >10 | >17.86 | 0.075 | 0.14 | 2 | 3.9 | 0.094 | >32 | >32 | >256 |
C.albicans9 | 0.05 | 0.09 | 0.01 | 0.018 | >10 | >17.86 | 0.05 | 0.09 | 1 | 1.95 | 0.19 | >32 | >32 | >256 |
C.albicans10 | 1 | 1.8 | 0.75 | 1.35 | >10 | >17.86 | 0.5 | 0.93 | 0.5 | 0.97 | 0.125 | >32 | >32 | 2 |
C.albicans11 | 2.5 | 4.58 | 0.05 | 0.09 | >10 | >17.86 | 0.05 | 0.09 | >10 | >19.56 | 0.19 | >32 | >32 | >256 |
C.albicans12 | 1 | 1.8 | 0.1 | 0.18 | >10 | >17.86 | 0.1 | 0.19 | >10 | >19.56 | 0.125 | 1 | >32 | >256 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Pistelli, L.; Mancianti, F. Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections. Molecules 2018, 23, 1668. https://doi.org/10.3390/molecules23071668
Ebani VV, Nardoni S, Bertelloni F, Pistelli L, Mancianti F. Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections. Molecules. 2018; 23(7):1668. https://doi.org/10.3390/molecules23071668
Chicago/Turabian StyleEbani, Valentina Virginia, Simona Nardoni, Fabrizio Bertelloni, Luisa Pistelli, and Francesca Mancianti. 2018. "Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections" Molecules 23, no. 7: 1668. https://doi.org/10.3390/molecules23071668