Urtica spp.: Ordinary Plants with Extraordinary Properties
Abstract
:1. Habitats of Urtica spp. Plants
2. Phytochemical Composition of Urtica spp.
3. Antimicrobial Activities of Urtica spp.
4. Urtica spp. in Traditional and Modern Medicine
5. Food and Feed Applications
6. Conclusions
Funding
Conflicts of Interest
References
- The Plant List. A Working List of All Plant Species. Available online: http://www.theplantlist.org/tpl1.1/search?q=Urtica+ (accessed on 5 April 2018).
- Jiarui, C.; Qi, L.; Friis, I.; Wilmot-Dear, C.M.; Monro, A.K. Urticaceae. In Flora of China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2003; pp. 76–189. [Google Scholar]
- Geltman, D.V. Urtica galeopsifolia Wierzb. ex Opiz (Urticaceae) in Wicken Fen (E. England). Watsonia 1992, 19, 127–129. [Google Scholar]
- Mishra, A.; Kharel, G.P. Preservation and Quality Evaluation of Sisnu (Urtica plaviflora) by making Gundruk like fermented product. J. Food Sci. Technol. Nepal. 2010, 6, 114–117. [Google Scholar] [CrossRef]
- Upton, R. Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. J. Herb. Med. 2013, 3, 9–38. [Google Scholar]
- Dreyer, J.; Müssig, J. New Horizons in Natural Fibre Production: Separation of Hemp and Nettle with Enzymes. Presented at the 3th International Symposium Biorohstoff Hanf & Andere Faserpflanzen, Wolfsburg, Germany, 13–16 September 2000. [Google Scholar]
- Di Virgilio, N.; Papazoglou, E.G.; Jankauskiene, Z.; Di Lonardo, S.; Pralczyk, M.; Wilegusz, K. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crops Prod. 2015, 68, 42–49. [Google Scholar] [CrossRef]
- Lang, A.; Otto, M. Feeding behaviour on host plants may influence potential exposure to Bt maize pollen of aglais Urticae larvae (Lepidoptera, Nymphalidae). Insects 2015, 6, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Viktorova, J.; Jandova, Z.; Madlenakova, M.; Prouzova, P.; Bartunek, V.; Vrchotova, B.; Lovecka, P.; Musilova, L.; Macek, T. Native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter. PLoS ONE 2016, 11, e0167927. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.M.; Bajracharya, A.; Shrestha, A.K. Comparison of nutritional properties of stinging nettle (Urtica dioica) flour with wheat and barley flours. Food Sci. Nutr. 2016, 4, 119–124. [Google Scholar] [CrossRef] [PubMed]
- eFloras.org. Available online: http://www.efloras.org/browse.aspx?flora_id=0&name_str= urtica&btnSearch=Search (accessed on 5 April 2018).
- Plants for a Future. Earth. Plants. People. Available online: https://www.pfaf.org/user/ DatabaseSearhResult.aspx (accessed on 5 April 2018).
- Augspole, I.; Duma, M.; Ozola, B.; Cinkmanis, I. Phenolic Profile of Fresh and Frozen Nettle, Goutweed, Dandelion and Chickweed Leaves. In Proceedings of the 11th Baltic Conference on Food Science and Technology “Food Science and Technology in a Changing World”, Jelgava, Latvia, 27–28 April 2017. [Google Scholar]
- Rafajlovska, V.; Kavrakovski, Z.; Simonovska, J.; Srbinoska, M. Determination of protein and mineral contents in stinging nettle. Qual. Life 2013, 4, 26–30. [Google Scholar] [CrossRef]
- Gül, S.; Demirci, B.; Başer, K.H.C.; Akpulat, H.A.; Aksu, P. Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L. Bull. Environ. Contam. Toxicol. 2012, 88, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Kukrić, Z.Z.; Topalić-Trivunović, L.N.; Kukavica, B.M.; Matoš, S.B.; Pavičić, S.S.; Boroja, M.M.; Savić, A.V. Characterization of antioxidant and antimicrobial activities of nettle leaves (Urtica dioica L.). APPTEF 2012, 43, 1–342. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M.; Isasa, M.E.T. Fatty acids and carotenoids from stinging nettle (Urtica dioica L.). J. Food. Compos. Anal. 2003, 16, 111–119. [Google Scholar] [CrossRef]
- Kudritsata, S.E.; Filman, G.M.; Zagorodskaya, L.M.; Chikovanii, D.M. Carotenoids of Urtica dioica. Chem. Nat. Compd. 1986, 22, 604–605. [Google Scholar] [CrossRef]
- Bağci, E. Fatty Acid Composition of the Aerial Parts of Urtica Dioica (Stinging Nettle) L. (Urticaceae). In Biodiversity; Şener, B., Ed.; Springer: Boston, MA, USA, 2002; pp. 323–327. [Google Scholar]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Otles, S.; Yalcin, B. Phenolic compounds analysis of root, stalk, and leaves of nettle. Sci. World J. 2012, 564367. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, P.; Ieri, F.; Vignolini, P.; Bacci, L.; Baroni, S.; Romani, A. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J Agric. Food Chem. 2008, 56, 9127–9132. [Google Scholar] [CrossRef] [PubMed]
- Rutto, L.K.; Xu, Y.; Ramirez, E.; Brandt, M. Mineral properties and dietary value of raw and processed stinging nettle (Urtica dioica L.). Int. J. Food Sci. 2013, 857120. [Google Scholar] [CrossRef]
- Sajfrtová, M.; Sovová, H.; Opletal, L.; Bártlová, M. Near-critical extraction of β-sitosterol and scopoletin from stinging nettle roots. J. Supercrit. Fluid 2005, 35, 111–118. [Google Scholar] [CrossRef]
- Kara, D. Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chem. 2009, 114, 347–354. [Google Scholar] [CrossRef]
- Tack, F.M.; Verloo, M.G. Metal contents in stinging nettle (Urtica dioica L.) as affected by soil characteristics. Sci. Total Environ. 1996, 192, 31–39. [Google Scholar] [CrossRef]
- Keskin-Šašić, I.; Tahirović, A.; Topčagić, A.; Klepo, L.; Salihović, M.; Ibragić, S.; Toromanović, J.; Ajanović, A.; Velispahić, E. Total phenolic content and antioxidant capacity of fruit juices. Bull. Chem. Technol. Bosnia Herzeg. 2012, 39, 25–28. [Google Scholar]
- Ghaima, K.K.; Hashim, N.M.; Ali, S.A. Antibacterial and antioxidant activities of ethyl acetate extract of nettle (Urtica dioica) and dandelion (Taraxacum officinale). J. Pharm. Sci. 2013, 3, 96–99. [Google Scholar]
- Vajić, U.J.; Grujić-Milanović, J.; Živković, J.; Šavikin, K.; Gođevac, D.; Miloradović, Z.; Bugarski, B.; Mihailović-Stanojević, N. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crop. Prod. 2015, 74, 912–917. [Google Scholar] [CrossRef]
- Ðurović, S.; Pavlić, B.; Šorgić, S.; Popov, S.; Savić, S.; Pertonijević, M.; Radojković, M.; Cvetanović, A.; Zeković, Z. Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Food. 2017, 32, 18–26. [Google Scholar] [CrossRef]
- Van Damme, E.J.M.; Peumans, W.J. Isolectin composition of individual clones of Urtica dioica: Evidence for phenotypic differences. Physiol. Plant. 1987, 71, 328–334. [Google Scholar] [CrossRef]
- Krauss, R.; Spitteler, G. Phenolic compounds from roots of Urtica dioica. Phytochemistry 1990, 29, 1653–1659. [Google Scholar] [CrossRef]
- De la Torre, R.; Corella, D.; Castañer, O.; Martínez-González, M.A.; Salas-Salvador, J.; Vila, J.; Estruch, R.; Sorli, J.V.; Arós, F.; Fiol, M.; et al. Protective effect of homovanillyl alcohol on cardiovascular disease and total mortality: Virgin olive oil, wine, and catechol-methylathion. Am. J. Clin. Nutr. 2017, 105, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Blandina, P.; Efoudebe, M.; Cenni, G.; Mannaioni, P.; Passani, M.B. Acetylcholine, histamine, and cognition: Two sides of the same coin. Learn. Mem. 2004, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Aquino, G.; Arias-Montano, J.-A. Neuromodulation and histamine: Regulation of neurotransmitter release by H 3 receptors. Salud Ment. 2012, 35, 345–352. [Google Scholar]
- Salo, P.; Hopia, A.; Ekblom, J.; Lahtinen, R.; Laakso, P. Plant Stanol Ester as a Cholesterol Lowering Ingredient of Benecol® Foods. In Healthful Lipids; Akoh, C., Lai, O.-M., Eds.; AOCS Press: Urbana, IL, USA, 2005; pp. 335–360. [Google Scholar]
- Yang, J.-Y.; Koo, J.-H.; Yoon, H.-Y.; Lee, J.-H.; Park, B.-H.; Kim, J.-S.; Chi, M.S.; Park, J.-W. Effect of scopoletin on lipoprotein lipase activity in 3T3-L1 adipocytes. Int. J. Mol. Med. 2007, 20, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Francišković, M.; Gonzalez-Pérez, R.; Orčić, D.; Sánchez de Medina, F.; Martínez-Augustin, O.; Svirčev, E.; Simin, N.; Mimica-Dukić, N. Chemical composition and immuno-modulatory effects of Urtica dioica L. (stinging nettle) extracts. Phytother. Res. 2017, 31, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Kavalali, G.M. Urtica: The Genus Urtica; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Rosłon, W.; Węglarz, Z. Polyphenolic acids of female and male forms of Urtica dioica. Presented at the International Conference on Medicinal and Aromatic Plants (Part II), Budapest, Hungary, 8 July 2001; pp. 101–104. [Google Scholar]
- Węglarz, Z.; Rosłon, W. Developmental and chemical variation in aboveground organs in the male and female forms of common nettle (Urtica dioica L.). Herb. Polonica 2000, 46, 324–331. [Google Scholar]
- Nasiri, S.; Nobakht, A.; Safamehr, A. The effect of different levels of nettle Urtica dioica L. (Urticaceae) medical plant in starter and grower feeds on performance, carcass traits, blood biochemical and immunity parameters of broilers. Iran. J. Appl. Anim. Sci. 2011, 1, 177–181. [Google Scholar]
- Carvalho, A.R.; Costab, G.; Figueirinha, A.; Liberal, J.; Prior, J.A.V.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Urtica spp.: Phenolic composition, safety, antioxidant and anti-inflammatory activities. Food Res. Int. 2017, 99, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Oliver, F.; Amon, E.U.; Breathnach, A.; Francis, D.M.; Sarathchandra, P.; Black, A.K.; Greaves, M.W. Contact urticaria due to the common stinging nettle (Urtica dioica)-histological, ultrastructural and pharmacological studies. Clin. Exp. Dermatol. 1991, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Emmelin, N.; Feldberg, W. Systemic effect of adenosine triphosphate. Br. J. Pharmacol. 1948, 3, 273–284. [Google Scholar] [CrossRef]
- Angela, M.; Meireles, A. Extracting Bioactive Compounds for Food Products: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Marrelli, M.; Menichini, F.; Statti, G.A.; Bonesi, M.; Duez, P.; Menichini, F.; Conforti, F. Changes in the phenolic and lipophilic composition, in the enzyme inhibition and antiproliferative activity of Ficus carica L. cultivar Dottato fruits during maturation. Food Chem. Toxicol. 2012, 50, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, I.; Küfrevioglu, O.I.; Oktay, M.; Büyükokuroglu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Rafajlovska, V.; Djarmati, Z.; Najdenova, V.; Cvetkov, L. Extraction of stinging nettle (Urtica dioica L.) with supercritical carbon dioxide. Presented at the 1st Black Sea Basin Conference on Analytical Chemistry, Odessa, Ukraine, 11–15 September 2001. [Google Scholar]
- Salih, N.A.; Arif Edh, D.J. Antibacterial effect of nettle (Urtica dioica). AL-Qadisiyah J. Vet. Med. Sci. 2014, 13, 1–6. [Google Scholar]
- Körpe, D.A.; Işeri, O.D.; Sahin, F.I.; Cabi, E.; Haberal, M. High-antibacterial activity of Urtica spp. seed extracts on food and plant pathogenic bacteria. Int. J. Food Sci. Nutr. 2013, 64, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, M.; Naghiha, R.; Jannesar, R.; Dehghanian, N.; Mirtamizdoust, B.; Pezeshkpour, V. Antimicrobial and antifungal activity of flower extract of Urtica dioica, Chamaemelum nobile and Salvia officinalis: Effect of Zn[OH]2 nanoparticles and Hp-2-minh on their property. J. Ind. Eng. Chem. 2015, 32, 353–359. [Google Scholar] [CrossRef]
- Mzid, M.; Khedir, S.B.; Salem, M.B.; Regaieg, W.; Rebai, T. Antioxidant and antimicrobial activities of ethanol and aqueous extracts from Urtica urens. Pharm. Biol. 2017, 55, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Salehzadeh, A.; Asadpour, L.; Naeemi, A.S.; Houshmand, E. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, R.; Shamami, K.S. Evaluation of antimicrobial activity of Eucalyptus essential oil and Urtica alcoholic extract on Salmonella enteritidis and Shigella dysenteriae in vitro conditions. Bull. Environ. Pharmacol. Life Sci. 2015, 4, 56–59. [Google Scholar]
- Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. [Google Scholar] [CrossRef]
- Modarresi-Chahardehi, A.; Ibrahim, D.; Sulaiman, S.F.; Mousavi, L. Screening antimicrobial activity of various extracts of Urtica dioica. Rev. Biol. Trop. 2012, 60, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Dar, S.A.; Ganai, F.A.; Yousuf, A.R.; Balkhi, M.U.; Bhat, T.M.; Sharma, P. Pharmacological and toxicological evaluation of Urtica dioica. Pharm. Biol. 2013, 51, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Dar, S.A.; Sharma, P. Antibacterial activity and toxicological evolution of semi purified hexane extract of Urtica dioica leaves. Res. J. Med. Plant. 2012, 6, 123–135. [Google Scholar]
- Ramtin, M.; Massiha, A.; Khoshkholgh-Pahlaviani, M.R.M.; Issazadeh, K.; Assmar, M.; Zarrabi, S. In vitro antimicrobial activity of Iris pseudacorus and Urtica dioica. Zahedan J. Res. Med. Sci. 2013, 16, 35–39. [Google Scholar]
- Zenão, S.; Aires, A.; Dias, C.; Saavedra, M.J.; Fernandes, C. Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers. J. Herb. Med. 2017, 10, 53–58. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Amini, K.; Fakhri, O.; Alem, M. Aroma profile and antimicrobial properties of alcoholic and aqueous extracts from root, leaf and stalk of nettle (Urtica dioica L.). J. Microbiol. Biotechnol. Food Sci. 2014, 4, 220–224. [Google Scholar] [CrossRef]
- Antolak, H.; Czyżowska, A.; Kręgiel, D. Antibacterial and antiadhesive activities of extracts from edible plants against soft drink spoilage by Asaia spp. J. Food Protect. 2017, 80, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Shale, T.; Stirk, W.; Van Standen, J. Screening of medicinal plants used in Lesotho for anti-bacterial and anti-inflammatory activity. J. Ethnopharmacol. 1999, 67, 347–354. [Google Scholar] [CrossRef]
- Özkan, A.; Yumrutaş, Ö.; Saygideğer, S.D.; Kulak, M. Evaluation of antioxidant activities and phenolic contents of some edible and medicinal plants from Turkey’s flora. Adv. Environ. Biol. 2011, 5, 231–236. [Google Scholar]
- Pourmorad, F.; Hosseinimehr, S.J.; Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 2006, 5, 1142–1145. [Google Scholar]
- Viegi, L.; Pieroni, A.; Guarrera, P.M.; Vangelisti, R. A review of plants used in folk veterinary medicine in Italy as basis for a databank. J. Ethnopharmacol. 2003, 89, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Safamehr, A.; Mirahmadi, M.; Nobakht, A. Effect of nettle (Urtica dioica) medicinal plant on growth performance, immune responses, and serum biochemical parameters of broiler chickens. Int. Res. J. Appl. Basic Sci. 2012, 3, 721–728. [Google Scholar]
- Sökeland, J. Combined sabal and Urtica extract compared with finasteride in men with benign prostatic hyperplasia: Analysis of prostate volume and therapeutic outcome. BJU Int. 2000, 86, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Koch, E. Extracts from fruits of saw palmetto (Sabal serrulata) and roots of stinging nettle (Urtica dioica): Viable alternatives in the medical treatment of benign prostatic hyperplasia and associated lower urinary tracts symptoms. Plant Med. 2001, 67, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Randall, C.; Randall, H.; Dobbs, F.; Hutton, C.; Sanders, H. Randomized controlled trial of nettle sting for treatment of base-of-thumb pain. J. R. Soc. Med. 2000, 93, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.; Bliddal, H. Is Phytalgic® a goldmine for osteoarthritis patients or is there something fishy about this nutraceutical? A summary of findings and risk-of-bias assessment. Arthritis Res. Ther. 2010, 12, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingelhoefer, S.; Obertreis, B.; Quast, S.; Behnke, B. Antirheumatic effect of IDS 23, a stinging nettle leaf extract, on in vitro expression of T helper cytokines. J. Rheumatol. 1999, 26, 2517–2522. [Google Scholar] [PubMed]
- Roschek, B., Jr.; Fink, R.C.; McMichael, M.; Alberte, R.S. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phytother. Res. 2009, 23, 920–926. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G. Pollen Allergy in Europe. The UCB Institute of Allergy. Available online: https://www.ucb.com/_up/tuioa_com/images/PollenAllergy-DAmato-simplified-V2-070910_PP.pdf (accessed on 5 April 2018).
- Khare, V.; Kushwaha, P.; Verma, S.; Gupta, A.; Srivastava, S.; Rawat, A.K.S. Pharmacognostic evaluation and antioxidant activity of Urtica dioica L. Chin. Med. UK 2012, 3, 128–135. [Google Scholar] [CrossRef]
- Lalitharani, S.; Mohan, V.R.; Regini, G.S. GC-MS analysis of ethanolic extract of Zanthoxylum rhetsa (roxb.) dc spines. J. Herb. Med. Toxicol. 2010, 4, 191–192. [Google Scholar]
- Taylor, R.S.; Edel, F.; Manandhar, N.P.; Towers, G.H. Antimicrobial activities of southern Nepalese medicinal plants. J. Ethnopharmacol. 1996, 50, 97–102. [Google Scholar] [CrossRef]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Fisgin, N.S.; Cayci, Y.T.; Coban, A.Y.; Ozatli, D.; Tanyel, E.; Durupinar, B.; Tulek, N. Antimicrobial activity of plant extract Ankaferd Blood Stopper®. Fiterapia 2009, 80, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, C.; Leclerc, É.A.; Corbin, C.; Doussot, J.; Serrano, V.; Vanier, J.R.; Seigneuret, J.-M.; Auguina, D.; Pichon, C.; Lainé, É.; Hano, C. Nettle (Urtica dioica L.) as a source of antioxidant and anti-aging phytochemicals for cosmetic applications. C. R. Chim. 2016, 16, 1090–1100. [Google Scholar] [CrossRef]
- Matsingou, T.C.; Kapsokefalou, M.; Salifoglou, A. Aqueous infusions of Mediterranean herbs exhibit antioxidant activity towards iron promoted oxidation of phospholipids, linoleic acid, and deoxyribose. Free Radic. Res. 2001, 35, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Sharafetdinov, Kh.Kh; Kiseleva, T.L; Kochetkova, A.A.; Mazo, V.K. Promising plant sources of anti-diabetic micronutrients. J. Diabetes Metab. 2017, 8, 778. [Google Scholar]
- Wahba, H.E.; Motawe, H.M.; Ibrahim, A.Y. Growth and chemical composition of Urtica pilulifera L. plant as influenced by foliar application of some amino acids. J. Mater. Environ. Sci. 2015, 6, 499–506. [Google Scholar]
- Mukundi, M.J.; Mwaniki, N.E.N.; Piero, N.M.; Murugi, N.J.; Kelvin, J.K.; Yusuf, A.A.; Mwonjoria, K.J.; Ngetich, K.A.; Agyirifo, S.D.; Gathumbi, K.P.; et al. Potential anti-diabetic effects and safety of aqueous extracts of Urtica dioica collected from Narok County, Kenya. Pharm. Anal. Acta 2017, 7, 548. [Google Scholar] [CrossRef]
- Uprety, Y.; Poudel, R.C.; Shrestha, K.K.; Rajbhandary, S.; Tiwari, N.N.; Shrestha, U.B.; Asselin, H. Diversity of use and local knowledge of wild edible plant resources in Nepal. J. Ethnobiol. Ethnomed. 2012, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekele, B.; Melesse, A.; Beyan, M.; Berihun, K. The effect of feeding stinging nettle (Urtica simensis S.) leaf meal on feed intake, growth performance and carcass characteristics of hubbard broiler chickens. Glob. J. Sci. Front. Res. 2015, 15. Available online: https://globaljournals.org/GJSFR_Volume15/1-The-Effect-of-Feeding.pdf (accessed on 15 June 2018).
- Costa, H.S.; Albuquerque, T.G.; Sanches-Silva, A.; Vasilopoulou, E.; Trichopoulou, A.; D’Antuono, L.F.; Alexieva, I.; Boyko, N.; Costea, C.; Fedosova, K.; et al. New nutritional composition data on selected traditional foods consumed in Black Sea Area countries. J. Sci. Food Agric. 2013, 93, 3524–3534. [Google Scholar] [CrossRef] [PubMed]
- Fiola, C.; Prado, D.; Mora, M.; Alava, J.I. Nettle cheese: Using nettle leaves (Urtica dioica) to coagulate milk in the fresh cheese making process. Int. J. Gastronomy Food Sci. 2016, 4, 19–24. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.; Tardio, J. Mediterranean Wild Edible Plants; Springer: New York, NY, USA, 2016. [Google Scholar]
- Kovacs, J. Compositions of Oats and Nettle Extracts to be Used as a Food Additive or Pharmaceutical Preparation in Human Health Care. U.S. Patent 4886665, 12 December 1989. [Google Scholar]
- Antolak, H.; Kręgiel, D. Food preservatives from plants. In Food Additives; Karunaratne, D.N., Pamunuwa, G., Eds.; InTech: Berlin, Germany, 2017; pp. 45–85. [Google Scholar]
- Johnson, A.; Johnson, S. Garden plants poisonous to people. Primefact 2006, 359. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0008/112796/garden-plants-poisonous-to-people.pdf (accessed on 25 June 2018).
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 96–123. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Inai, M.; Miura, Y.; Honda, S.; Masuda, A.; Masuda, T. Metmyoglobin reduction by polyphenols and mechanism of the conversion of metmyoglobin to oxymyoglobin by quercetin. J. Agric. Food Chem. 2014, 62, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Aksu, M.I.; Kaya, M. Effect of usage Urtica dioica L. on microbiological properties of sucuk, a Turkish dry-fermented sausage. Food Control 2004, 8, 591–595. [Google Scholar] [CrossRef]
- Kaban, G.; Aksu, M.İ.; Kaya, M. Behaviour of Staphylococcus aureus in sucuk with nettle (Urtica dioica L.). J. Food Saf. 2007, 27, 400–410. [Google Scholar] [CrossRef]
- Karabacak, S.; Bozkurt, H. Effects of Urtica dioica and Hibiscus sabdariffa on the quality and safety of sucuk (Turkish dry-fermented sausage). Meat Sci. 2007, 78, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Alp-Erbay, E.; Aksu, M.I. Effects of water extract of Urtica dioica L. and modified atmosphere packaging on the shelf life of ground beef. Meat Sci. 2010, 86, 468–473. [Google Scholar]
- Oz, F. Effects of water extract of Urtica dioica L. on the quality of meatballs. J. Food Process. Pres. 2014, 38, 1356–1363. [Google Scholar] [CrossRef]
- Ahmadi, M.; Razavilar, V.; Motallebi, A.A.; Esmailzadeh Kenari, R.; Khanipour, A.A. Effects of hydroalcoholic and water extracts of nettle leaf (Urtica dioica L.) on chemical properties of superchilled minced meat of common Kilka (Clupeonella cultriventris caspia). J. Food Qual. Hazards Control 2014, 1, 85–88. [Google Scholar]
- Aksu, M.I.; Alinezhad, H.; Erdemir, E. Effect of lyophilized water extract of Urtica dioica L. on the shelf life of vacuum-packaged beef steaks. J. Food Process Pres. 2015, 39, 3059–3066. [Google Scholar] [CrossRef]
- Latoch, A.; Stasiak, D.M. Effect of water extract of Urtica dioica L. on lipid oxidation and color of cooked pork sausage. J. Food Process Pres. 2017, 41, e12818. [Google Scholar] [CrossRef]
- Gill, C. Herbs and plant extracts as growth enhancers. Feed Int. 1999, 20, 20–23. [Google Scholar]
- Langhout, P. New additives for broiler chickens. J. World’s Poult. Sci. J. 2000, 16, 22–27. [Google Scholar]
- Madrid, J.; Hernández, F.; García, V.; Orengo, J.; Megías, M.D.; Sevilla, V. Effect of plant extracts on ileal apparent digestibility and carcass yield in broilers at level of farm. Presented at the 14th European Symp on Poultry Nutrition, Lillehammer, Norway, 10–14 August 2003; p. 187. [Google Scholar]
- Alçiçek, A.; Bozkurt, M.; Çabuk, M. The effects of an essential oil combination derived from selected herbs growing wild in Turkey on broiler performance. S. Afr. J. Anim. Sci. 2004, 33, 89–94. [Google Scholar]
- Zhang, K.Y.; Yan, F.; Keen, C.A.; Waldroup, P.W. Evaluation of microencapsulated essential oils and organic acids in diets for broiler chickens. Int. J. Poult. Sci. 2005, 4, 612–619. [Google Scholar]
- Wenk, C. Why all the discussion about herbs? In Feed Industry, Proceedings of the Alltech’s 16th Anniversary Symposium Biotechnology; Lyons, T.P., Ed.; Alltech Tech.: Nottingham, UK; University Press: Nicholasvile, KY, USA, 2000; pp. 79–96. [Google Scholar]
- Szewczyk, A.; Hanczakowska, E.; Świątkiewicz, M. The effect of nettle (Urtica dioica) extract on fattening performance and fatty acid profile in the meat and serum lipids of pigs. J. Anim. Feed Sci. 2006, 15, 81–84. [Google Scholar] [CrossRef]
- Nobakht, A. Effects of different levels of chicory (Cichorium intybus L.), zizaphora (Zizaphora tenuior L.), nettle (Urtica dioica L.) and savoury (Satureja hortensis L.) medicinal plants on carcass characteristics of male broilers. J. Med. Plants Res. 2011, 5, 4354–4359. [Google Scholar]
- Toldy, A.; Stadler, K.; Sasvari, M.; Jakus, J.; Jung, K.J.; Chung, H.Y.; Berkes, I.; Nyakas, C.; Radák, Z. The effect of exercise and nettle supplementation on oxidative stress markers in the rat brain. Brain Res. Bull. 2005, 65, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Humphries, D.J.; Reynolds, C.K. The effect of adding stinging nettle (Urtica dioica) haylage to a total mixed ration on performance and rumen function of lactating dairy cows. Anim. Feed Sci. Technol. 2014, 189, 72–81. [Google Scholar] [CrossRef]
- Williams, P.; Losa, R. The use of essential oils and their compounds in poultry nutrition. J. World’s Poult. Sci. J. 2001, 17, 14–15. [Google Scholar]
- McCartney, E. The natural empire strikes back. Poult. Int. 2002, 41, 36–42. [Google Scholar]
- Şandru, C.D.; Niculae, M.; Popescu, S.; Paştiu, A.I.; Páll, E.; Spînu, M. Urtica dioica alcoholic extract increases the cell-mediated innate. Ind. Crop Prod. 2016, 88, 48–50. [Google Scholar] [CrossRef]
- Avci, G.; Kupeli, E.; Eryavuz, A.; Yesilada, E.; Kucukkurt, I. Antihypercholesterolaemic and antioxidant activity assess ment of some plants used as remedy in Turkish folk medicine. J. Ethnopharmacol. 2006, 107, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Mavi, A.; Terzi, Z.; Ozgen, U.; Yildirin, A.; Coskun, M. Antioxidant properties of some medicinal plants: Prangos ferulacea (Apiaceae), Sedum (Crassulaceae), Malva neglecta (Malvaceae), Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp. verum (Rubiaceae), Urtica dioica (Urticaceae). Biol. Pharm. Bull. 2004, 27, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Fermont, L.; Gozzelino, M.T.; Linard, A. Response of plasma lipids to dietary cholesterol and wine polyphenols in rats fed polyunsaturated fat diets. Lipids 2000, 35, 991–999. [Google Scholar] [CrossRef]
- Visioli, F.; Galli, C.; Galli, G.; Caruso, D. Biological activities and metabolic fate of olive oil phenols. J. Lipid Sci. Technol. 2002, 104, 677–684. [Google Scholar] [CrossRef]
- Khosravi, A.; Boldaji, F.; Dastar, B.; Hasani, S. The use of some feed additives as growth promoter in broilers nutrition. Int. J. Poult. Sci. 2008, 7, 1095–1099. [Google Scholar] [CrossRef]
- Wang, R.J.; Li, D.F.; Bourne, S.; Wang, R.J.; Li, D.F. Can 2000 years of herbal medicine history help us solve problems in the year 2000? Presented at the Alltech’s 14th Annual Symposium on Biotechnology in the Feed Industry, Nicholasville, KY, USA, 1998; pp. 273–292. [Google Scholar]
- World Health Organization. WHO Monographs on Selected Medicinal Plants; WHO: Geneva, Switzerland, 2004; Volume 2, pp. 1–358. [Google Scholar]
- European Commission. Directorate—General for Health and Food Safety; Final Review Report for the Basic Substance Urtica spp.; European Commission: Brussels, Belgium, 2017. [Google Scholar]
No. | Name | Synonyms | Habitats |
---|---|---|---|
1 | U. angustifolia Fisch. ex Hornem. | U. dioica var. angustifolia (Fisch. ex Hornem.) Ledeb. U. foliosa Blume | China, Japan, Korea |
2 | U. ardens Link | U. himalayensis Kunth & Bouché U. mairei var. oblongifolia C.J. Chen U. zayuensis C.J. Chen | Bhutan, India, Nepal, Sikkim |
3 | U. atrichocaulis (Hand.-Mazz.) C.J. Chen | U. dioica var. atrichocaulis Hand.-Mazz. | China -Guizhou, Sichuan, Yunnan |
4 | U. atrovirens Req. ex Loisel. | - | France, Italy, Spain |
5 | U. ballotifolia Wedd. | - | Colombia, Ecuador |
6 | U. berteroana Phil. | - | Chile, Bolivia, Argentina, Colombia |
7 | U. buchtienii Ross | - | Chile, Argentina |
8 | U. cannabina L. | U. cannabina f. angustiloba Chu | Russia, Sweden, Netherlands, China |
9 | U. chamaedryoides Pursh | U. chamaedryoides var. runyonii Correll | United States, Mexico |
10 | U. circularis Sorarú | U. chamaedryoides var. circularis Hauman U. spathulata var. circularis Hicken | Brazil, Argentina, Paraguay, Uruguay |
11 | U. dioica L. | U. galeopsifolia Wierzb. ex Opiz | United States, New Zealand, Turkey, Europe |
12 | U. echinata Benth. | U. andicola Wedd. | Bolivia, Peru, Argentina, Ecuador |
13 | U. fissa E. Pritz. | U. pinfaensis H. Lév. & Blin in H. Lév. | China, Taiwan, Egypt, Vietnam |
14 | U. flabellata Kunth | - | Bolivia, Peru, Ecuador, Chile, Colombia |
15 | U. galeopsifolia J. Jacq. ex Blume | - | Russia, Ukraine, Belarus |
16 | U. glomeruliflora Steud. | U. fernandeziana Ross ex Skottsb. | Chile |
17 | U. haussknechtii Boiss. | - | Turkey |
18 | U. hyperborea Jacq. ex Wedd. | U. kunlunshanica Chang Y. Yang | Nepal, India, China |
19 | U. kioviensis Rogow. | U. dioica var. kioviensis (Rogow.) Wedd. U. dioica subsp. koviensis Buia | Europe, Israel, Russia |
20 | U. laetevirens Maxim. | - | China, Japan, Korea |
21 | U. leptophylla Kunth | U. copeyana Killip U. nicaraguensis Liebm. | Costa Rica, Colombia, Peru, Bolivia, Ecuador |
22 | U. lilloi (Hauman) Geltman | U. magellanica var. lilloi Hauman | Argentina |
23 | U. longispica Killip | - | Ecuador, Peru, Colombia |
24 | U. macbridei Killip | - | Ecuador, Peru |
25 | U. magellanica Juss. ex Poir. | U. bracteata Steud. U. darwinii Hook. U. dioica var. pycnantha Wedd. & DC. U. dioica var. steudelii Wedd. U. magellanica subsp. bracteata (Steud.) Geltman U. magellanica var. bracteata (Steud.) Wedd. U. pseudodioica Steud. | Chile, Peru, Bolivia, Argentina, Ecuador |
26 | U. mairei H. Lév. | - | China, India, Bhutan |
27 | U. masafuerae Phil. | - | Chile |
28 | U. membranacea Poir. ex Savigny | Dubrueilia membranacea Gaudich. U. caudata Vahl U. dubia Forssk. | Europe, Algeria |
29 | U. mexicana Liebm. | - | Mexico, Guatemala |
30 | U. mollis Steud. | U. dioica var. mollis (Steud.) Wedd. U. diplotricha Phil. | Peru, Chile, Argentina |
31 | U. morifolia Poir. | - | Europe |
32 | U. orizabae Liebm. | - | Mexico, United States, Cuba |
33 | U. parviflora Roxb. | - | Nepal, India, United States, China, Bhutan |
34 | U. pilulifera L. | U. dodartii L. | Tunisia, Israel, Cyprus, Costa Rica, Turkey |
35 | U. platyphylla Wedd. | U. dioica subsp. platyphylla P. Medvedev U. takedana Ohwi | Japan, Russia |
36 | U. praetermissa V.W. Steinm. | - | Mexico |
37 | U. pubescens Ledeb. | - | Mexico |
38 | U. rupestris Guss. | - | Italy |
39 | U. sondenii (Simmons) Avrorin ex Geltman | U. dioica subsp. sondenii (Simmons) Hyl. U. dioica var. sondenii Simmons | Canada |
40 | U. spiralis Blume | - | Mexico |
41 | U. stachyoides Webb & Benth. | - | Spain, Mexico |
42 | U. taiwaniana S.S. Ying | - | Taiwan |
43 | U. thunbergiana Siebold & Zucc. | U. macrorrhiza Hand.-Mazz. | Japan, Korea, China |
44 | U. triangularis Hand.-Mazz. | - | China |
45 | U. trichantha (Wedd.) Acevedo & NAVAS | U. echinata var. trichantha Wedd. | Chile, Bolivia, Peru |
46 | U. urens L. | U. trianae Rusby | Unite States, Mexico, Europe, Israel, New Zealand |
Parameter | Content |
---|---|
Moisture (%) | 7.04 ± 0.77 |
Crude protein (%) | 33.77 ± 0.35 |
Crude fiber (%) | 9.08 ± 0.14 |
Crude fat (%) | 3.55 ± 0.06 |
Total ash (%) | 16.21 ± 0.54 |
Carbohydrate (%) | 37.39 ± 0.72 |
Calcium (mg/100 g) | 168.77 ± 1.47 |
Iron (mg/100 g) | 227.89 ± 0.21 |
Tannins (%) | 0.93 ± 0.01 |
Polyphenols (mg GAE/g) | 128.75 ± 0.21 |
Carotenoids (μg/g, db) | 3496.67 ± 0.56 |
Caloric value (kcal/100 g) | 307.24 ± 0.13 |
Group of Compounds | Compound | Origin | |||||||
---|---|---|---|---|---|---|---|---|---|
Fruska Gora I/II | Stara Planina | ||||||||
Flowers | Leaves | Steams | Roots | Flowers | Leaves | Steams | Roots | ||
Phenolic acids | p-Hydroxybenzoic acid | 0.064/0.017 | 0.037/0.021 | 0.021/0.023 | 0.032/0.029 | 0.036 | 0.051 | 0.014 | 0.048 |
Gentisic acid | 0.0096/0.0044 | 0.0034/0.0082 | not det/det | not det/0.036 | not det | det | not det | not det | |
Protocatechuic acid | 0.070/0.032 | 0.48/0.16 | not det/0.014 | not det/0.015 | 0.022 | 0.072 | 0.0069 | 0.0106 | |
Vanillic acid | det */not det ** | not det/det | not det/not det | not det/det | not det | not det | not det | 0.09 | |
Quinic acid | 1.6/0.27 | 0.3/0.36 | 0.047/0.039 | 0.1/0.31 | 0.86 | 0.66 | 0.088 | 0.36 | |
Ferulic acid | 0.071/0.09 | 0.009/0.013 | 0.031/0.061 | 0.011/0.028 | 0.05 | 0.052 | 0.024 | 0.024 | |
p-Coumaric acid | not det/0.0105 | not det/not det | 0.24/0.38 | 0.12/02 | 0.022 | 0.026 | 0.18 | 0.23 | |
Caffeic acid | 0.48/0.41 | 0.21/0.29 | 0.0053/0.033 | det/0.0118 | 0.64 | 0.93 | 0.031 | 0.0039 | |
5-O-Caffeolylquinic acid | 36/15.8 | 1.23/2.7 | 0.29/1.87 | 0.056/0.029 | 35 | 28 | 2.3 | 0.025 | |
Coumarins | Esculetin | 0.041/0.0078 | 0.0120/0.0125 | 0.015/0.019 | det/0.0047 | 0.0095 | 0.0074 | det | det |
Scopoletin | 0.103/0.018 | 0.12/0.21 | 0.026/0.054 | 0.076/0.11 | 0.04 | 0.073 | 0.048 | 0.18 | |
Lignans | Secoisolariciresinol | not det/not det | not det/not det | not det/not det | det/0.2 | not det | not det | not det | 0.009 |
Flavones | Chrysoeriol | det/det | det/det | det/det | det/det | 0.0027 | det | det | det |
Flavonols | Kaempferol | det/0.007 | not det/not det | not det/det | not det/not det | 0.019 | not det | not det | not det |
Kaempferol 3-O-glucoside | 0.074/0.7 | not det/not det | not det/0.0068 | not det/not det | 0.6 | 0.07 | 0.017 | not det | |
Quercitrin | 0.0124/not det | not det/not det | not det/not det | not det/not det | not det | not det | not det | not det | |
Quercetin 3-O-glucoside | 0.63/3.64 | not det/0.0024 | 0.0316/0.38 | not det/0.0054 | 2.82 | 1.08 | 0.48 | not det | |
Quercetin 3-O-rutinoside | 6.1/4.6 | 0.0018/0.0206 | 0.40/1.35 | 0.0023/0.0186 | 9.5 | 4.6 | 2.25 | 0.0054 | |
Isorhamnetin | det/0.036 | not det/not det | not det/det | not det/not det | 0.047 | not det | not det | not det | |
Biflavonoids | Amentoflavone | det/det | det/det | det/det | det/det | det | det | det | det |
Flavan-3-ols | Catechin | not det/0.076 | not det/not det | not det/not det | not det/not det | 1.0 | not det | not det | not det |
Urtica spp. Extract | Microorganisms | Location | Reference |
---|---|---|---|
U. dioica L. water extract | Escherichia coli Proteus mirabilis Citrobacter koseri Staphylococcus aureus Streptococcus pneumoniae Enterobacter aerogenes Micrococcus luteus Staphylococcus epidermidis Candida albicans | Turkey | [48] |
U. dioica L. ethyl acetate extract | Aeromonas hydrophila Salmonella typhi Staphylococcus aureus Bacillus cereus Escherichia coli | Iraq | [28] |
U. dioica L. water extract | Salmonella spp. Proteus spp. Bacillus subtilis Staphylococcus aureus Pseudomonas aeruginosa Escherichia coli | Iraq | [50] |
U. dioica L. leaves aqueous extract | Escherichia coli Enterococcus gallinarum Enterococcus faecalis Streptococcus pyogenes Clavibacter michiganensis Pseudomonas tomato Xanthomonas vesicatoria | Turkey | [51] |
U. dioica L. root aqueous extract | Enterococcus faecalis Streptococcus pyogenes Klebsiella pneumoniae | ||
U. dioica L. seeds aqueous extract | Enterococcus faecalis | ||
U. dioica L. aqueous extract 0.45 mg/100 mL | Staphylococcus epidermidis 3615 Staphylococcus aureus 740 Escherichia coli 443 Salmonella typhimurium 98 Serratia marcescens 97 | India | [56] |
U. dioica L. supercritical CO2 extract | Bacillus subtilis Saccharomyces cerevisiae Aspergillus niger Botrytis cinerea Geotrichum candidum | Macedonia | [49] |
U. dioica L. ethanol extract | Salmonella spp. Bacillus subtilis Staphylococcus aureus Pseudomonas aeruginosa | Iraq | [50] |
U. dioica L. methanol extract | 15 different strains of Staphylococcus aureus MRSA | Iran | [54] |
U. dioica L. methanol extract | Shigella dysenteriae Salmonella enteritidis | Iran | [55] |
U. dioica L. leaves methanol extract | Escherichia coli Streptococcus pyogenes Listeria monocytogenes Pseudomonas aeruginosa Klebsiella pneumoniae Proteus vulgaris Erwinia carotovora | Turkey | [51] |
U. dioica L. root methanol extract | Enterococcus gallinarum Xanthomonas vesicatoria | ||
U. dioica L. seeds methanol extract | Enterococcus gallinarum Enterococcus faecalis Streptococcus pyogenes Staphylococcus aureus Listeria monocytogenes Pseudomonas aeruginosa Proteus vulgaris Shigella spp. Bacillus pumilus Clavibacter michiganensis Xanthomonas vesicatoria | ||
U. dioica L. flowers methanol extract | Escherichia coli Bacillus subtilis Staphylococcus aureus Pseudomonas aeruginosa Candida albicans Aspergillus niger | Iran | [52] |
U. pilulifera L. leaves aqueous extract | Enterococcus faecalis Streptococcus pyogenes | Turkey | [51] |
U. pilulifera L. root aqueous extract | Xanthomonas vesicatoria | ||
U. pilulifera L. seeds aqueous extract | Enterococcus faecalis Proteus vulgaris Shigella spp. | ||
U. pilulifera L. leaves methanol extract | Enterococcus gallinarum Enterococcus faecalis Streptococcus pyogenes Listeria monocytogenes Pseudomonas aeruginosa Klebsiella pneumoniae Proteus vulgaris Shigella spp. Bacillus pumilus Clavibacter michiganensis Pseudomonas tomato Erwinia carotovora | ||
U. pilulifera L. roots methanol extract | Enterococcus gallinarum Enterococcus faecalis Streptococcus pyogenes Clavibacter michiganensis Pseudomonas tomato Erwinia carotovora | ||
U. pilulifera L. seeds methanol extract | Enterococcus gallinarum Enterococcus faecalis Streptococcus pyogenes Staphylococcus aureus Listeria monocytogenes Pseudomonas aeruginosa Proteus vulgaris Shigella spp. Bacillus pumilus Clavibacter michiganensis | ||
U. urens L. ethanol extract | Staphylococcus aureus ATCC 6538 Pseudomonas aeruginosa ATCC 27893 Bacillus subtilis JN 934392 Salmonella enteritidis Escherichia coli ATCC 25922 Staphylococcus epidermidis MTCC 3615 Micrococcus luteus ATCC 4698 Enterococcus faecalis ATCC 29212 | Tunisia | [53] |
Urtica spp. Extract | Microorganisms | Minimal Inhibitory Concentration (MIC) | Location | Reference |
---|---|---|---|---|
U. dioica L. ethanol extract | Bacillus subtilis Escherichia coli (food-origin) Escherichia coli (urine-origin) Pseudomonas aeruginosa Lactobacillus plantarum | 36.21 mg/mL 36.21 mg/mL 72.43 mg/mL 72.43 mg/mL 72.43 mg/mL | Serbia | [16] |
U. dioica L. hexane extract | Staphylococcus aureus MRSA Bacillus cereus Bacillus spizizenii ATCC 663 Vibrio parahaemolyticus | 66.66 mg/mL 16.66 mg/mL 16.66 mg/mL 66.66 mg/mL | Iran | [57] |
U. dioica L. chloroform extract | Bacillus cereus Vibrio parahaemolyticus | 33.33 mg/mL 4.16 mg/mL | ||
U. dioica L. | Acinetobacter calcoaceticus | 33.33 mg/mL | ||
U. dioica L. ethyl acetate extract I | Bacillus spizizenii ATCC 663 Vibrio parahaemolyticus Saccharomyces cerevisiae | 8.33 mg/mL 16.66 mg/mL 2.08 mg/mL | ||
U. dioica L. ethyl acetate extract II | Vibrio parahaemolyticus | 0.13 mg/mL | ||
U. dioica L. methanol extract | Acinetobacter calcoaceticus | 16.66 mg/mL | ||
U. dioica L. butanol extract | Escherichia coli Bacillus subtilis Staphylococcus aureus MRSA | 66.66 mg/mL 8.33 mg/mL 16.66 mg/mL | ||
U. dioica L. hexane fraction | Aeromonas hydrophila Aeromonas salmonicida subsp. salmonicida Flavobacterium columnare Vibrio salmonicida Yersinia ruckeri Pseudomonas aeruginosa Staphylococcus aureus Salmonella typhi Klebsiella pneumoniae Enterococcus faecalis | 125 µg/mL 125 µg/mL 250 µg/mL 62.5 µg/mL 31.25 µg/mL 250 µg/mL 31.25 µg/mL 7.81 µg/mL 31.25 µg/mL 125 µg/mL | India | [58] |
U. dioica L. leaves hexane fraction | Staphylococcus aureus Pseudomonas aeruginosa Salmonella typhi Klebsiella pneumoniae Shigella flexneri | 31.25 µg/mL 250 µg/mL 7.81 µg/mL 31.25 µg/mL 125 µg/mL | India | [59] |
U dioica L. essential oils hydrodistillation method | Bacillus cereus PTCC1565 Staphylococcus aureus Pseudomonas aeruginosa Klebsiella pneumoniae Enterococcus faecalis PTCC1239 Escherichia coli ATCC1533 | 1.8 µg/mL 3.75 µg/mL 3.75 µg/mL 3.75 µg/mL 7.5 µg/mL 7.5 µg/mL | Iran | [60] |
U. dioica L. ethanol extract | Methicillin-sensitive strains of S. aureus Methicillin-resistant strains of S. aureus | 0.188–0.500 mg/mL 0.063–0.500 mg/mL | Portugal | [61] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kregiel, D.; Pawlikowska, E.; Antolak, H. Urtica spp.: Ordinary Plants with Extraordinary Properties. Molecules 2018, 23, 1664. https://doi.org/10.3390/molecules23071664
Kregiel D, Pawlikowska E, Antolak H. Urtica spp.: Ordinary Plants with Extraordinary Properties. Molecules. 2018; 23(7):1664. https://doi.org/10.3390/molecules23071664
Chicago/Turabian StyleKregiel, Dorota, Ewelina Pawlikowska, and Hubert Antolak. 2018. "Urtica spp.: Ordinary Plants with Extraordinary Properties" Molecules 23, no. 7: 1664. https://doi.org/10.3390/molecules23071664
APA StyleKregiel, D., Pawlikowska, E., & Antolak, H. (2018). Urtica spp.: Ordinary Plants with Extraordinary Properties. Molecules, 23(7), 1664. https://doi.org/10.3390/molecules23071664