Improvement of Adhesion Properties and Corrosion Resistance of Sol-Gel Coating on Zinc
Abstract
:1. Introduction
2. Results and Discussion
2.1. TEOS/MAP and GPTMS/ASB Coatings
2.2. TEOS/(MAP + UPS) Coating
3. Materials and Methods
3.1. Materials and Surface Preparation
3.2. Sol Preparation and Coating Process
3.3. Characterization Techniques
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Liu, Y.W.; Wang, Z.Y.; Cao, G.W.; Cao, Y.; Huo, Y. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment. Mater. Chem. Phys. 2017, 198, 243–249. [Google Scholar] [CrossRef]
- Duran, A.; Castro, Y.; Aparicio, M.; Conde, A.; De Damborenea, J.J. Protection and surface modification of metals with sol-gel coatings. Int. Mater. Rev. 2007, 52, 175–192. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.P. Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Figueira, R.B.; Silva, C.J.R.; Pereira, E.V. Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: A review of recent progress. J. Coat. Technol. Res. 2015, 12, 1–35. [Google Scholar] [CrossRef]
- Van Ooij, W.J. Corrosion Protection Properties of Organofunctional Silanes—An Overview. Tsinghua Sci. Technol. 2005, 10, 639–664. [Google Scholar] [CrossRef]
- Osborne, J.H. Observations on Chromate Conversion Coatings from a Sol–Gel Perspective. Prog. Org. Coat. 2001, 41, 280–286. [Google Scholar] [CrossRef]
- Metroke, T.L.; Parkhill, R.L.; Knobbe, E.T. Passivation of Metal Alloys Using Sol–Gel-Derived Materials—A Review. Prog. Org. Coat. 2001, 41, 233–238. [Google Scholar] [CrossRef]
- Eliziane, M.; Ariza, E.; Baleester, M.; Pagotto, I.V.; Rocha, L.A.; De Alvarenga, C.M. Characterization of Organic–Inorganic Hybrid Coatings for Corrosion Protection of Galvanized Steel and Electroplated ZnFe Steel. Mater. Res. 2006, 9, 59–64. [Google Scholar]
- Singh, A.K.; Rout, T.; Narayan, R.; Verma, A.K.; Bandyopadhayay, N.; Rani, N. Anti Corrosion Sol-Gel Hybrid Coating on Zinc and Zinc Alloy Steel Sheets and Preparing Method Thereof. India Patent WO/2010/095146, 26 August 2010. [Google Scholar]
- Singh, A.K.; Rout, T.; Narayan, R.; Verma, A.K.; Bandyopadhayay, N.; Rani, N. Anticorrosive Hybrid Sol-Gel Film on Metallic Substrates and Method of Producing the Same. U.S. Patent 201100916541A, 21 April 2011. [Google Scholar]
- Volentiru, E.; Nyari, M.; Szabo, G.; Horvolgyi, Z.; Muresan, L.M. Silica sol-gel protective coatings against corrosion of zinc substrates. Per. Pol. Chem. Eng. 2014, 58, 61–66. [Google Scholar] [CrossRef]
- Ali Shimaa, M.; Al lehaibi Hamedh, A. Protective sol-gel coatings for zinc corrosion: Precursor type effect. Surf. Coat. Technol. 2017, 311, 172–181. [Google Scholar]
- Garcia-Heras, M.; Jimenez-Morales, A.; Casal, B.; Galvan, J.C.; Radzki, S.; Villegas, M.A. Preparation and electrochemical study of cerium–silica sol–gel thin films. J. Alloys Compd. 2004, 380, 219–224. [Google Scholar] [CrossRef]
- Bibber, J.W. Non-chrome-Containing Conversion Coatings for Zinc and Zinc Alloys: Environmentally Friendly Alternatives Provide Equal or Better Adhesion and Corrosion Resistance as Conventional Methods. Met. Finish. 2008, 106, 41–46. [Google Scholar] [CrossRef]
- Fedel, M.; Olivier, M.; Poelman, M.; Deflorian, F.; Rossi, S.; Druart, M.-E. Corrosion protection properties of silane pre-treated powder coated galvanised steel. Prog. Org. Coat. 2009, 66, 118–128. [Google Scholar] [CrossRef]
- Meiffren, V.; Dumont, K.; Lenormand, P.; Manov, S. Development of new processes to protect zinc against corrosion, suitable for on-site use. Prog. Org. Coat. 2011, 71, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Cambon, J.B.; Esteban, J.; Ansart, F.; Bonino, J.P.; Turq, V.; Santanieli, S.H.; Santilli, C.V.; Pulcinelli, S.H. Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior. Mater. Res. Bull. 2012, 47, 3170–3176. [Google Scholar] [CrossRef] [Green Version]
- Cambon, J.B.; Ansart, F.; Bonino, J.P.; Turq, V. Effect of cerium concentration on corrosion resistance and polymerization of hybrid sol-gel coating on martensitic stainless steel. Prog. Org. Coat. 2012, 75, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Fir, M.; Orel, B.; Šurca Vuk, A.; Vilčnik, A.; Ješe, R.; Francetič, V. Corrosion Studies and Interfacial Bonding of Urea/Poly(dimethylsiloxane) Sol/Gel Hydrophobic Coatings on AA 2024 Aluminum Alloy. Langmuir 2007, 23, 5505–5514. [Google Scholar] [CrossRef] [PubMed]
- Šurca Vuk, A.; Fir, M.; Ješe, R.; Vilčnik, A.; Orel, B. Structural studies of sol–gel urea/polydimethylsiloxane barrier coatings and improvement of their corrosion inhibition by addition of various alkoxysilanes. Prog. Org. Coat. 2008, 63, 123–132. [Google Scholar] [CrossRef]
- Cousinié, S.; Gressier, M.; Alphonse, P.; Menu, M.J. Silica-Based Nanohybrids Containing Dipyridine, Urethan, or Urea Derivatives. Chem. Mater. 2007, 19, 6492–6503. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, L.; Nie, Z.R.; Chen, H.Q.; Wang, Y.L.; Li, Q.Y.; Zou, J.X. Functionalization of periodic mesoporous organosilica with ureidopropyl groups by a direct synthesis method. Microporous Mesoporous Mater. 2007, 101, 381–387. [Google Scholar] [CrossRef]
- Certhoux, E.; Ansart, F.; Turq, V.; Bonino, J.P.; Sobrino, J.M.; Garcia, J.; Reby, J. New sol-gel formulations to increase the barrier effect of a protective coating against the corrosion of steels. Prog. Org. Coat. 2013, 76, 165–172. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Molar Ratio | ||
---|---|---|
% MAP | % UPS | |
TEOS/MAP | 100 | - |
TEOS/(75%MAP + 25%UPS) | 75 | 25 |
TEOS/(50%MAP + 50%UPS) | 50 | 50 |
TEOS/(25%MAP + 75%UPS) | 25 | 75 |
TEOS/UPS | - | 100 |
Element | Zinc | Titanium | Copper | Aluminum |
---|---|---|---|---|
% mass | balance | 0.06 to 0.20 | 0.08 to 1 | 0 to 0.015 |
Step | Atmosphere | Temperature | Duration |
---|---|---|---|
1 | Humid | 60 °C | 4 h |
2 | dry | 35 °C | 1 h |
3 | Humid | 60 °C | 4 h |
4 | dry | 35 °C | 1 h |
5 | Humid | 60 °C | 6 h |
6 | dry | 35 °C | 2 h |
7 | Humid | 60 °C | 3 h |
8 | dry | 55 °C | 3 h |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savignac, P.; Menu, M.-J.; Gressier, M.; Denat, B.; Khadir, Y.E.; Manov, S.; Ansart, F. Improvement of Adhesion Properties and Corrosion Resistance of Sol-Gel Coating on Zinc. Molecules 2018, 23, 1079. https://doi.org/10.3390/molecules23051079
Savignac P, Menu M-J, Gressier M, Denat B, Khadir YE, Manov S, Ansart F. Improvement of Adhesion Properties and Corrosion Resistance of Sol-Gel Coating on Zinc. Molecules. 2018; 23(5):1079. https://doi.org/10.3390/molecules23051079
Chicago/Turabian StyleSavignac, Pauline, Marie-Joëlle Menu, Marie Gressier, Bastien Denat, Yacine El Khadir, Stephan Manov, and Florence Ansart. 2018. "Improvement of Adhesion Properties and Corrosion Resistance of Sol-Gel Coating on Zinc" Molecules 23, no. 5: 1079. https://doi.org/10.3390/molecules23051079
APA StyleSavignac, P., Menu, M.-J., Gressier, M., Denat, B., Khadir, Y. E., Manov, S., & Ansart, F. (2018). Improvement of Adhesion Properties and Corrosion Resistance of Sol-Gel Coating on Zinc. Molecules, 23(5), 1079. https://doi.org/10.3390/molecules23051079