Sensitive Detection of 8-Nitroguanine in DNA by Chemical Derivatization Coupled with Online Solid-Phase Extraction LC-MS/MS
Abstract
:1. Introduction
2. Results
2.1. LC-MS/MS Characteristics of 8-NitroG-MTNG
2.2. Optimization of Derivatization Reaction with MTNG
2.3. Method Validation
2.4. 8-NitroG in Calf Thymus DNA Treated with Peroxynitrite
2.5. Comparison between 8-NitroG Analysis Using Online SPE LC-MS/MS Method with and without MTNG Derivatization
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Stock and Working Solutions
4.3. Nitration of Calf Thymus DNA by Peroxynitrite
4.4. Hydrolysis and Derivatization of DNA Samples for 8-NitroG Analysis
4.5. Automated Online Extraction System and Liquid Chromatography
4.6. ESI-MS/MS
4.7. Optimization of MTNG Derivatization
4.8. Direct Measurement of 8-NitroG by Online SPE LC-MS/MS without Derivatization
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
8-nitroG | 8-Nitroguanine |
LC-MS/MS | liquid chromatography-tandem mass spectrometry |
LOD | limit of detection |
LOQ | imit of quantification |
MTNG | 6-methoxy-2-naphthyl glyoxal hydrate |
MRM | multiple reaction monitoring |
ONOO− | peroxynitrite |
SPE | solid-phase extraction |
UPLC-HRMS | ultra-performance liquid chromatography-high resolution mass spectrometry |
References
- Fougere, B.; Boulanger, E.; Nourhashemi, F.; Guyonnet, S.; Cesari, M. Chronic Inflammation: Accelerator of Biological Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 72, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- El Assar, M.; Angulo, J.; Rodriguez-Manas, L. Oxidative stress and vascular inflammation in aging. Free Radic. Biol. Med. 2013, 65, 380–401. [Google Scholar] [CrossRef] [PubMed]
- Niles, J.C.; Wishnok, J.S.; Tannenbaum, S.R. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: Structures and mechanisms of product formation. Nitric Oxide 2006, 14, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Beckman, J.S.; Chen, J.; Ischiropoulos, H.; Crow, J.P. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994, 233, 229–240. [Google Scholar] [PubMed]
- Squadrito, G.L.; Pryor, W.A. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 1998, 25, 392–403. [Google Scholar] [CrossRef]
- Cadet, J.; Wagner, J.R.; Shafirovich, V.; Geacintov, N.E. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int. J. Radiat. Biol. 2014, 90, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, H.; Sawa, T.; Akaike, T. 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: Formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid. Redox Signal. 2006, 8, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Yasui, M.; Geacintov, N.E.; Shafirovich, V.; Shibutani, S. Miscoding events during DNA synthesis past the nitration-damaged base 8-nitroguanine. Biochemistry 2005, 44, 9238–9245. [Google Scholar] [CrossRef] [PubMed]
- Hiraku, Y. Oxidative and nitrative DNA damage induced by environmental factors and cancer risk assessment. Fukuoka Igaku Zasshi 2014, 105, 33–41. [Google Scholar] [PubMed]
- Sawa, T.; Ohshima, H. Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 2006, 14, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, S.; Hiraku, Y. Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation. Antioxid. Redox Signal. 2006, 8, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, S.; Ohnishi, S.; Ma, N.; Hiraku, Y.; Oikawa, S.; Murata, M. Nitrative and oxidative DNA damage in infection-related carcinogenesis in relation to cancer stem cells. Genes Environ. 2016, 38, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Thanan, R.; Ma, N.; Kawanishi, S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J. Biomed. Biotechnol. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hiraku, Y.; Sakai, K.; Shibata, E.; Kamijima, M.; Hisanaga, N.; Ma, N.; Kawanishi, S.; Murata, M. Formation of the nitrative DNA lesion 8-nitroguanine is associated with asbestos contents in human lung tissues: A pilot study. J. Occup. Health 2014, 56, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Saigusa, S.; Araki, T.; Tanaka, K.; Hashimoto, K.; Okita, Y.; Fujikawa, H.; Okugawa, Y.; Toiyama, Y.; Inoue, Y.; Uchida, K.; et al. Identification of patients with developing ulcerative colitis-associated neoplasia by nitrative DNA damage marker 8-nitroguanin expression in rectal mucosa. J. Clin. Gastroenterol. 2013, 47, e80–e86. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, S.; Hiraku, Y.; Pinlaor, S.; Ma, N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol. Chem. 2006, 387, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.S.; Chen, B.C.; Shiow, S.J.; Wang, H.C.; Hsu, J.D.; Wang, C.J. Formation of 8-nitroguanine in tobacco cigarette smokers and in tobacco smoke-exposed Wistar rats. Chem. Biol. Interact. 2002, 140, 67–80. [Google Scholar] [CrossRef]
- Yermilov, V.; Rubio, J.; Ohshima, H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 1995, 376, 207–210. [Google Scholar] [CrossRef]
- Chang, H.R.; Lai, C.C.; Lian, J.D.; Lin, C.C.; Wang, C.J. Formation of 8-nitroguanine in blood of patients with inflammatory gouty arthritis. Clin. Chim. Acta 2005, 362, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, H.; Yoshie, Y.; Auriol, S.; Gilibert, I. Antioxidant and pro-oxidant actions of flavonoids: Effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic. Biol. Med. 1998, 25, 1057–1065. [Google Scholar] [CrossRef]
- Tuo, J.; Liu, L.; Poulsen, H.E.; Weimann, A.; Svendsen, O.; Loft, S. Importance of guanine nitration and hydroxylation in DNA in vitro and in vivo. Free Radic. Biol. Med. 2000, 29, 147–155. [Google Scholar] [CrossRef]
- Hu, C.W.; Chang, Y.J.; Hsu, Y.W.; Chen, J.L.; Wang, T.S.; Chao, M.R. Comprehensive analysis of the formation and stability of peroxynitrite-derived 8-nitroguanine by LC-MS/MS: Strategy for the quantitative analysis of cellular 8-nitroguanine. Free Radic. Biol. Med. 2016, 101, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Garratt, L.W.; Mistry, V.; Singh, R.; Sandhu, J.K.; Sheil, B.; Cooke, M.S.; Sly, P.D. Arestcf, Interpretation of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine is adversely affected by methodological inaccuracies when using a commercial ELISA. Free Radic. Biol. Med. 2010, 48, 1460–1464. [Google Scholar] [CrossRef] [PubMed]
- Katayama, M.; Matsuda, Y.; Kobayashi, K.; Kaneko, S.; Ishikawa, H. Monitoring of 8-oxo-7,8-dihydro-2′-deoxyguanosine in urine by high-performance liquid chromatography after pre-column derivatization with glyoxal reagents. Biomed. Chromatogr. 2006, 20, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Villaño, D.; Vilaplana, C.; Medina, S.; Cejuela-Anta, R.; Martínez-Sanz, J.M.; Gil, P.; Genieser, H.G.; Ferreres, F.; Gil-Izquierdo, A. Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radic. Res. 2015, 49, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, S.T.; Peng, K.H.; Cheng, T.J.; Wu, K.Y. Concurrent quantification of multiple biomarkers indicative of oxidative stress status using liquid chromatography-tandem mass spectrometry. Anal. Biochem. 2016, 512, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Ogara, A.; Okamura, T.; Umemura, T.; Nishikawa, A.; Iwasaki, Y.; Ito, R.; Saito, K.; Hirose, M.; Nakazawa, H. Development of quantitative analysis of 8-nitroguanine concomitant with 8-hydroxydeoxyguanosine formation by liquid chromatography with mass spectrometry and glyoxal derivatization. J. Pharm. Biomed. Anal. 2007, 43, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Li, M.J.; Zhang, J.B.; Li, W.L.; Chu, Q.C.; Ye, J.N. Capillary electrophoretic determination of DNA damage markers: Content of 8-hydroxy-2′-deoxyguanosine and 8-nitroguanine in urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 3818–3822. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin. Biochem. Rev. 2009, 30, 19–34. [Google Scholar] [PubMed]
- Sawa, T.; Tatemichi, M.; Akaike, T.; Barbin, A.; Ohshima, H. Analysis of urinary 8-nitroguanine, a marker of nitrative nucleic acid damage, by high-performance liquid chromatography-electrochemical detection coupled with immunoaffinity purification: Association with cigarette smoking. Free Radic. Biol. Med. 2006, 40, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Chen, S.T.; Wu, H.Y.; Hsu, H.C.; Chen, M.F.; Lee, Y.T.; Wu, K.Y.; Chien, K.L. Urinary biomarkers of oxidative and nitrosative stress and the risk for incident stroke: A nested case-control study from a community-based cohort. Int. J. Cardiol. 2015, 183, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.W.; Chen, M.L.; Huang, L.W.; Yang, W.; Wu, K.Y.; Huang, Y.F. Nonylphenol exposure is associated with oxidative and nitrative stress in pregnant women. Free Radic. Res. 2015, 49, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Dizdaroglu, M. Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography mass spectrometry. Free Radic. Res. 1998, 29, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Levrand, S.; Pesse, B.; Feihl, F.; Waeber, B.; Pacher, P.; Rolli, J.; Schaller, M.D.; Liaudet, L. Peroxynitrite is a potent inhibitor of NF-κB activation triggered by inflammatory stimuli in cardiac and endothelial cell lines. J. Biol. Chem. 2005, 280, 34878–34887. [Google Scholar] [CrossRef] [PubMed]
- Nakae, D.; Mizumoto, Y.; Kobayashi, E.; Noguchi, O.; Konishi, Y. Improved genomic/nuclear DNA extraction for 8-hydroxydeoxyguanosine analysis of small amounts of rat liver tissue. Cancer Lett. 1995, 97, 233–239. [Google Scholar] [CrossRef]
- Chao, M.R.; Wang, C.J.; Yen, C.C.; Yang, H.H.; Lu, Y.C.; Chang, L.W.; Hu, C.W. Simultaneous determination of N7-alkylguanines in DNA by isotope-dilution LC-tandem MS coupled with automated solid-phase extraction and its application to a small fish model. Biochem. J. 2007, 402, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.W.; Chao, M.R.; Sie, C.H. Urinary analysis of 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction: Study of 8-oxo-7,8-dihydroguanine stability. Free Radic. Biol. Med. 2010, 48, 89–97. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of 8-nitroguanine and [13C2,15N]-8-nitroguanine are available from the authors. |
Characteristics for 8-nitroG a | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|
Intraday variation (pmol, mean ± SD) b (CV, %) | 0.67 ± 0.02 (2.4) | 0.90 ± 0.02 (2.7) | 1.42 ± 0.01 (1.0) |
Interday variation (pmol, mean ± SD) b (CV, %) | 0.64 ± 0.02 (2.5) | 0.90 ± 0.01 (2.0) | 1.37 ± 0.03 (2.0) |
Time (min) | Eluent I (SPE Column) | Eluent II (Analytical Column) | Valve Position | Flow Rate (μL/min) | Remarks | ||
---|---|---|---|---|---|---|---|
Solvent Ia a (%) | Solvent Ib b (%) | Solvent Iia a (%) | Solvent Iib b (%) | ||||
0.0 | 70 | 30 | 50 | 50 | A | 200 | Sample injection and washing |
7.5 | 70 | 30 | 50 | 50 | B | 200 | Start of elution of 8-nitroG-MTNG to the analytical column |
9.5 | 70 | 30 | 50 | 50 | A | 200 | End of elution; SPE column cleanup and reconditioning |
10.0 | 70 | 30 | 50 | 50 | A | 200 | |
10.1 | 0 | 100 | 50 | 50 | A | 200 | |
10.5 | 0 | 100 | 0 | 100 | A | 200 | |
11.5 | 0 | 100 | 0 | 100 | A | 200 | |
12.0 | 70 | 30 | 50 | 50 | A | 200 | |
15.0 | 70 | 30 | 50 | 50 | A | 200 |
Compound | Q1 Mass (amu) | Q3 Mass (amu) | Dwell Time (ms) | DP a (V) | EP b (V) | CXP c (V) | CE d (V) |
---|---|---|---|---|---|---|---|
8-nitroG-MTNG | 391 | 363 e | 100 | −50 | −11 | −11 | −30 |
391 | 348 | 100 | −50 | −11 | −11 | −40 | |
[13C2,15N]-8-nitroG-MTNG | 394 | 366 e | 100 | −50 | −11 | −11 | −30 |
394 | 351 | 100 | −50 | −11 | −11 | −45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.-W.; Chang, Y.-J.; Chen, J.-L.; Hsu, Y.-W.; Chao, M.-R. Sensitive Detection of 8-Nitroguanine in DNA by Chemical Derivatization Coupled with Online Solid-Phase Extraction LC-MS/MS. Molecules 2018, 23, 605. https://doi.org/10.3390/molecules23030605
Hu C-W, Chang Y-J, Chen J-L, Hsu Y-W, Chao M-R. Sensitive Detection of 8-Nitroguanine in DNA by Chemical Derivatization Coupled with Online Solid-Phase Extraction LC-MS/MS. Molecules. 2018; 23(3):605. https://doi.org/10.3390/molecules23030605
Chicago/Turabian StyleHu, Chiung-Wen, Yuan-Jhe Chang, Jian-Lian Chen, Yu-Wen Hsu, and Mu-Rong Chao. 2018. "Sensitive Detection of 8-Nitroguanine in DNA by Chemical Derivatization Coupled with Online Solid-Phase Extraction LC-MS/MS" Molecules 23, no. 3: 605. https://doi.org/10.3390/molecules23030605
APA StyleHu, C.-W., Chang, Y.-J., Chen, J.-L., Hsu, Y.-W., & Chao, M.-R. (2018). Sensitive Detection of 8-Nitroguanine in DNA by Chemical Derivatization Coupled with Online Solid-Phase Extraction LC-MS/MS. Molecules, 23(3), 605. https://doi.org/10.3390/molecules23030605