Next Article in Journal
An Anti-Inflammatory Azaphenothiazine Inhibits Interferon β Expression and CXCL10 Production in KERTr Cells
Next Article in Special Issue
Synthesis of Acridines through Alkyne Addition to Diarylamines
Previous Article in Journal
Thermochemical Measurements of Alkali Cation Association to Hexatantalate
Previous Article in Special Issue
Highly Efficient Recyclable Sol Gel Polymer Catalyzed One Pot Difunctionalization of Alkynes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Acetylene in Organic Synthesis: Recent Progress and New Uses

by
Vladimir V. Voronin
1,
Maria S. Ledovskaya
1,
Alexander S. Bogachenkov
1,
Konstantin S. Rodygin
1 and
Valentine P. Ananikov
1,2,*
1
Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia
2
N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
*
Author to whom correspondence should be addressed.
Molecules 2018, 23(10), 2442; https://doi.org/10.3390/molecules23102442
Submission received: 16 August 2018 / Revised: 14 September 2018 / Accepted: 17 September 2018 / Published: 24 September 2018
(This article belongs to the Special Issue Alkynes: From Reaction Design to Applications in Organic Synthesis)

Abstract

:
Recent progress in the leading synthetic applications of acetylene is discussed from the prospect of rapid development and novel opportunities. A diversity of reactions involving the acetylene molecule to carry out vinylation processes, cross-coupling reactions, synthesis of substituted alkynes, preparation of heterocycles and the construction of a number of functionalized molecules with different levels of molecular complexity were recently studied. Of particular importance is the utilization of acetylene in the synthesis of pharmaceutical substances and drugs. The increasing interest in acetylene and its involvement in organic transformations highlights a fascinating renaissance of this simplest alkyne molecule.

Graphical Abstract

1. Introduction

Since the discovery of acetylene, new areas of acetylene chemistry have been continuously developed. The rich scope of chemical transformations available for a C≡C triple bond can be exemplified by coupling [1,2,3,4,5] and addition reactions [6,7]. The removal of trace acetylene from ethylene has led to another important process, selective hydrogenation of acetylene [8]. Recently, several opportunities of controlled accommodation of acetylene in microporous materials have appeared [9]. New functional materials allow separating, sensing and storing acetylene and other small molecules [10,11].
Acetylene, or ethyne, with the molecular formula C2H2, is the simplest alkyne. Due to its structural simplicity and high reactivity, acetylene represents a versatile building block for organic synthesis, and its chemistry has evolved rapidly [12]. In recent reviews [13,14] acetylene is compared with ethylene. Acetylene is commonly obtained from coal and natural gas and these sources will last longer than current oil sources. Acetylene chemistry is therefore of high importance in various aspects [15].
Acetylene can be produced by several well-established methods. One of them is based on the reaction of calcium carbide (obtained from coal and lime) with water [16]. The other methods include partial combustion of hydrocarbons, electrothermal cracking in an electric arc furnace, and thermal cracking with heat carriers [14,16].
Pure acetylene is a colorless gas with no odor. It is lightweight and flammable, with a high combustion temperature [17]. Due to this, acetylene is widely used in welding [16,18]. It is also suitable for brazing, cutting, hardening, texturing, and thermal spraying of many materials. Besides, the acetylene flame is extraordinary bright, which formerly contributed to the wide use of carbide lamps. The term “carbide lamp” reflects the interaction of calcium carbide with water, followed by burning of the released acetylene in another compartment of the device [19].
Chemical applications of acetylene are diverse, and a brief summarized scope is shown in Scheme 1. Some of them are of great practical relevance, e.g., the vinylation reaction (Scheme 1, path a) [20], a common route to vinyl-containing monomers for polymeric materials production. Polyvinyl derivatives are indispensable components of many varnishes, paints, adhesives, packing materials [15], in electroluminescent materials [21], coatings or fillers for pharmaceutical excipients and many more [22].
Hydrochlorination of acetylene (Scheme 1, path b), or addition of hydrochloric acid, is the simplest and widely used route to vinyl chloride [16], a commodity chemical used for production of the polyvinyl chloride resins [23]. Polyvinyl chloride is the third most commonly used sort of plastic, behind polyethylene and polypropylene, and the global demand for it continues to increase [24].
The other way of industrial acetylene utilization is carbonylation (Scheme 1, path c). By this way acrylic acid and derivatives can be obtained [25]. Produced on a global scale of more than three million tons a year, acrylic acid is widely used as a basic material for paints, plastics, superabsorbent polymers, and rubbers [26,27,28]. Partial reduction of acetylene (Scheme 1, path d) provides alternative means for ethylene synthesis [29,30,31,32,33]. This reaction has industrial prospects that will be discussed in detail.
Ethynylation with acetylene (Scheme 1, paths e and f) is a powerful approach to prepare substituted acetylenes. Ethynylation strategies include the base-catalyzed addition of acetylene to carbonyl compounds (Favorskii reaction, path e) [34,35] and various cross-coupling reactions (path f) [36,37,38].
Addition of ketoximes to acetylene (Scheme 1, path g) provides an access to a range of pyrroles, indoles, and related compounds [13,39] for applications in pharmaceutical chemistry, polymer synthesis, and dye manufacturing [21,22,40].
Cycloaddition reactions with acetylene (Scheme 1, path h) provide a shortcut to isoxazoles, pyrazoles, and triazoles [41,42,43,44]. This segment of acetylene chemistry is especially promising for obtaining novel heterocyclic molecules.
This review discusses recent advances in acetylene chemistry by describing the most important processes at various levels of chemical complexity. Recent literature within the time period of 2013–2018 was considered to highlight emerging directions and applications in organic chemistry. Representative examples in each research direction are provided to cover most important trends in synthetic acetylene chemistry. It should be emphasized that the present review is focused on the reactions of acetylene (C2H2)—a fascinating molecule with significant practical importance and future potential. Reactions involving substituted alkynes have been described in details elsewhere and these discussions were not repeated here.

2. Acetylene in Organic Synthesis

Versatile and ubiquitously used synthetic transformations of acetylene involve functionalization of the C≡C bond; these processes are considered first (Section 2.1). Next, access to acrylic acid derivatives (Section 2.2) and preparation of substituted alkynes (Section 2.3) are discussed, followed by preparation of heterocyclic molecules (Section 2.4). Selected applications of acetylene in the synthesis of drugs and pharmaceutical substances is highlighted in a separate section (Section 2.5). Synthetic organic and organometallic reactions are also considered (Section 2.6 and Section 2.7), followed by industry-related reactions involving hydrogenation, hydrochlorination reactions and their mechanisms (Section 2.8 and Section 2.9). Finally, useful emerging concepts from the chemistry of alkynes are briefly mentioned (Section 2.10).

2.1. Functionalization of Triple Bond

Polymerization of vinyl-containing substrates has been a subject of close attention for many years. Polyvinyl compounds constitute a basis of many composites including paints, adhesives, varnishes, packaging [15], electroluminescent materials [21], pill coatings and many more [22]. Despite the widest range of applications, their chemistry is still in progress. Vinyl ethers, thioethers, sulfur- and nitrogen analogs become increasingly involved in synthesis of various cyclic compounds [45,46,47,48,49,50], natural substances, and medicinal chemicals [51,52], hence the demand for their development, modification, and systematization. A number of studies have been devoted to metathesis [53,54] and cross-coupling reactions of vinyl derivatives [55,56]. This section presents a review of the latest achievements in this field.

2.1.1. Synthesis of Vinyl Ethers

Addition of alcohols to acetylenes was introduced by Favorskii [57,58]. While studied isomerization of alkynes in the presence of alcohols and alkalis, he found that the alcohols react with acetylenes to give ethers. Later on, this reaction was turned into an industrial method for vinyl ether synthesis based on the addition of alcohols to acetylene, known as vinylation [14,20]. Under industrial conditions, it is carried out in autoclaves at elevated pressures and high temperatures in the presence of alkaline catalysts [13,14]. It can be performed on a smaller scale in special laboratory reactors or standard flasks and tubes. In the laboratory practice of the last decade, gaseous acetylene is frequently and effectively replaced with calcium carbide as an acetylene source. Calcium carbide readily reacts with water and produces gaseous acetylene [59]. Here we will consider the recent examples of acetylene and carbide usage in vinyl ether synthesis.
The reaction of alcohols with acetylene can be classified as nucleophilic addition to carbon-carbon triple bond (Scheme 2). This process requires the presence of a base as a catalyst. The base interacts with an alcohol molecule 1 giving alcoholate anion 2. The alkoxide ion reacts with acetylene forming the corresponding carbanion 3. The latter acts with the molecule of alcohol or water, thus giving vinyl ether 4 [20,60].
An effective vinylation methodology for 3,4,5-trimethoxybenzyl alcohol (5) was proposed [61]. The resulting 3,4,5-trimethoxybenzyl vinyl ether (6) is a promising starting material for drug synthesis. The reaction was carried out under the standard vinylation conditions [20]: superbasic KOH-DMSO system as a reaction media, high temperature and elevated acetylene pressure. The desired vinyl derivative was isolated in 85% yield (Scheme 3).
Vinylation of triterpenoid 7 under atmospheric acetylene pressure resulted in vinyl derivative 10 in good yield (64%) [62]. Formation of the oxygen bridge was thought to occur through intramolecular formation of vinyl ether 8 with its subsequent devinylation-cyclization and vinylation of the last OH-group (Scheme 4). The side product 9 with a free hydroxyl group can be easily converted to the desired ether 10.
Another recently published example of superbase-catalyzed (KOH-DMSO system-mediated) vinylation involves hydroxymethyl- and α-hydroxyethylferrocenes 11 [63]. Vinyl ethers 12 were obtained in excellent yields (Scheme 5) and represented a promising route for development of new polymeric materials with specific physical and chemical properties.
Despite the outstanding chemical versatility of acetylene and the widest range of possibilities for its application, it is a highly flammable gaseous substance [64]. Safety precautions should be taken to avoid its leakage and explosion. Besides, gaseous materials usage requires additional measuring equipment and high-pressure furnishing. The development of alternatives for gaseous acetylene is an important problem of modern chemistry. A reasonable solution of these complications is provided by utilization of calcium carbide as an in situ source of acetylene, which is immediately released upon reaction of CaC2 with water (Scheme 6) [59]. A small admixtures of water does not interfere with the vinylation, and sometimes is even favorable [60,65].
Successful vinylation of benzyl alcohols 13 with calcium carbide was performed without any complicate equipment [66]. The reactions were conducted in standard reaction tubes or in a flask for gram-scale synthesis. The desired vinyl ethers 14 were obtained in good to excellent yields (Scheme 7). Using CaC2 instead of gaseous acetylene provides certain economy, as only 2.5 to 3.3-fold excess of it is required to complete the reaction. Similar reactions with gaseous acetylene (see Scheme 3, Scheme 4 and Scheme 5) were carried out under high acetylene pressures (10-13 atm) or in acetylene flow [61,62,63].
Apart from benzyl alcohols, the successful vinylation of dodecyl alcohol (15a), 3-phenylpropanol (15b) and 3-(pyridine-2-yl)propanol (15c) was also performed under the same conditions (Scheme 8) [66]. Vinyl ethers 16a-c were obtained in very good yields. For phenethyl alcohol (17), the unexpected formation of styrene 19 instead of vinyl ether 18 was observed (Scheme 8).
The reaction of phenols 20 with calcium carbide as an acetylene source was carried out at similar conditions [67,68]. Apparently, Cs2CO3 is also capable of providing a superbasic system with DMSO. The method allows obtaining vinyl derivatives 21 in up to 96% yields (Scheme 9A). Using the developed technique, diphenyl carbonate 22 was also transformed to phenyl vinyl ether (23) in 73% yield (see Scheme 9B) [67].
The vinylation of 1,5-pentanediol, ethylene glycol, glycerol and erythritol with carbide was also performed in a superbasic Cs2CO3-DMSO system [67]. The corresponding vinyl derivatives 2427 were obtained in moderate to excellent yields (Scheme 10).
Another synthetic procedure for vinylation of alcohols and phenols was recently developed [69,70]. It employs KOH-DMSO-KF and K2CO3-DMSO-KF ternary mixtures instead of the renowned KOH-DMSO and Cs2CO3-DMSO systems. Potassium fluoride significantly accelerates the reaction [70]. The KOH-DMSO-KF mixture works well for aliphatic alcohols, particularly steroids and carbohydrates, giving vinyl ethers 28 in good to excellent yields (Scheme 11) [69,70]. It also favors the reaction with ferrocenyl alcohol and allows obtaining its vinylated derivative 28g in 76% yield. The alternative K2CO3-DMSO-KF system is perfect for vinylation of phenols.
In general, both acetylene and calcium carbide as an acetylene source can be used in vinyl ether synthesis. The reaction of alcohols with acetylene or CaC2 is applicable to a wide variety of substrates. It can effectively proceed with aliphatic substrates, phenols, naphthols, ferrocene-derived alcohols, nitrogen-containing substrates, carbohydrates, etc. Using calcium carbide in a laboratory is preferable for its convenience and safety, as CaC2 is a solid material that can be easily quantified and handled without special equipment. Direct addition of carbide into the mixture allows carrying out the reaction under milder conditions. When using gaseous acetylene, the expenditure is considerably higher, even under low pressures, because the constant gas flow must be maintained until the end of the reaction.

2.1.2. Synthesis of S-, Se- and Te-Vinyl Derivatives

Organochalcogen compounds occupy an important niche in contemporary organic synthesis due to their availability, rich chemistry [71,72,73] and the biological activities [74]. Among the organochalcogen compounds, vinyl chalcogenides have attracted a considerable attention in recent years [75,76,77]. Vinyl sulfides are of particular interest as intermediates for various organic transformations. Sulfur-containing polymers derived from vinyl monomers have attracted a great deal of attention, due to their potential applications in numerous areas in polymer research. For example, they have a wide variety of applications in plastic lenses, optical disc substrates, optical adhesives or encapsulants, antireflective coatings, photoresists [75,76,77,78,79].
Addition of thiols and selenols to acetylene is the simplest route to vinyl sulfides and vinyl selenides. It is chemically similar with the nucleophilic addition of alcohols to acetylene described previously and it is also require basic catalysis [20], and is accordingly called thiovinylation.
The common approach to this reaction based on the use of gaseous acetylene was proposed recently. The simplest alkyl vinyl sulfides 31ad and phenyl vinyl sulfide 31e were synthesized in excellent yields [80]. On the first step, generation of potassium thiolate 30 from thiol 29 occurred (Scheme 12). Potassium thiolate further reacted with acetylene and water giving vinyl ether 31. This approach can be considered as green, because the reactions were performed in aqueous media. It is probably applicable to a wide range of thiols. Its serious disadvantage is the high acetylene pressure requirement.
The same is possible with calcium carbide as an acetylene source [81,82]. The wide substrate scope of CaC2-mediated thiovinylation includes thiophenols [81], alkyl thiols [81], dithiols [82], and imidazole and benzimidazole thiols (Scheme 13) [82]. For most of them, vinyl sulfides 32 were obtained in excellent yields (88–96%), with exceptions of the pyridine-2-thiol and 1-methylimidazole-2-thiol addition to acetylene that resulted in 72% and 58% yields, respectively.
Phenyl selenol (33) was also modified by calcium carbide. Vinyl derivative 34 was obtained in 62% yield (Scheme 14) [81].
Another reaction, which is also acetylene-dependent, allows obtaining vinyl chalcogenides from disulfides, diselenides, and ditellurides; it leads to vinyl sulfides, vinyl selenides, and vinyl tellurides, respectively. It has several reported implementations [61,83,84]. The first resulted from interaction of a dichalcogenide 35 with gaseous acetylene in the presence of a reducing agent, e.g., hydrazine-KOH mixture or sodium borohydride. To complete the reaction, the presence of the reducing agent is required (Scheme 15) [61,84]. Using this methodology, the corresponding vinyl chalcogenides 36 were obtained in excellent yields.
The reaction proceeds in two steps. At first, dichalcogenide 35 interacts with the reducing-basic mixture giving potassium chalcogenide 37 (Scheme 16), which further reacts with acetylene and water to produce vinyl derivative 36 [84].
Another variation on the theme was recently proposed [61,83,84]. In this setting, alkyl or aryl halide was directly exposed to sulfur, selenium or tellurium one-flask with a reducing agent and acetylene. Heating of this mixture under high acetylene pressure promoted formation of vinyl chalcogenides in moderate yields (52–68%) [83,84].
The third protocol for synthesis of vinyl chalcogenides from dichalcogenides and acetylene is based on the in situ generation of the acetylene itself. As a source of acetylene calcium carbide can be used [85]. Vinyl sulfides 38a and phenyl vinyl selenide (38b) were obtained in up to 93% yields (Scheme 17), although in a number of cases the yields are diminished by competitive formation of bis-chalcogenide derivatives 39.
Thus, reactions of thiols and selenols (or dichalcogenides) with acetylene (or calcium carbide as its source) provide convenient access to the wide range of vinyl chalcogenides. Availability of both acetylene and calcium carbide associates with good prospects of development in this direction.

2.1.3. Synthesis of N-Vinyl Derivatives

N-Vinylated compounds are versatile building blocks for polymerization. The nitrogen-containing polymers showed exceptional electroluminescent properties and photoconductivity and widely used in the pill coating or excipient formulations [21,22,86,87,88,89]. The synthesis of N-vinyl derivatives is a demanded goal of modern chemistry.
A simplest synthetic route to N-vinyl derivatives is provided by addition of nitrogen compounds to acetylene. For example, reaction of indole (40) with acetylene in the presence of potassium hydroxide gives N-vinylindole (41) in 94% yield (Scheme 18) [90]. This reaction illustrates common route to vinylated nitrogen derivatives due to the high availability of acetylene and the wide scope of potentially suitable nitrogen substrates [20].
Replacement of gaseous acetylene with solid calcium carbide, proposed in several recent publications [68,91], seems reasonable. Calcium carbide facilitated obtaining of N-vinylindoles 43 from the corresponding substituted indoles 42 in good to excellent yields (Scheme 19) [68]. The reaction was performed in a Cs2CO3-DMSO mixture, similarly with the above-mentioned protocol for alcohol vinylation. In one case, reaction of 1H-indol-5-ol (44) with CaC2 reproducibly resulted in formation of a divinyl derivative 45.
A new protocol was developed for the carbide-mediated nitrogen core vinylation in superbasic KOH-KF-DMSO system (Scheme 20) [91]. Its application to various indoles, carbazoles, diaryl amines, pyrroles, pyrazoles, and other nitrogen substrates results in moderate to good yields of the target products, additionally increased by the presence of fluoride.
Thus, both acetylene and calcium carbide effectively promote the synthesis of vinyl indoles. The reaction has a wide substrate scope, as it also works for diarylamines, indoles, carbazoles, and other nitrogen heterocycles.

2.1.4. Synthesis of C-Vinyl Derivatives

Vinylation of carbon atoms with acetylene affords a number of important polymers, e.g., polystyrenes for manufacturing of plastic tableware, packaging, building blocks and accessories (insulation, tapes, plugs, cases), and other useful items [92].
Acetylene gas was successfully used in the synthesis of fluorinated styrene compounds. The transition metal-catalyzed reaction was accelerated by a stop-flow micro-tubing reactor developed by the authors [93]. Within this device, fluorinated aryl bromides 46 reacted with acetylene in the presence of iridium photocatalyst 47 and diisipropyl ethylamine giving the corresponding vinyl derivatives 48 in 37–70% yields (Scheme 21). Application of this approach is compromised by formation of side products.
A recently published example of a modification of N-benzyl-3-hydroxy-2-oxindole (49) with acetylene involves ruthenium carbonyl catalysis [94]. The reaction proceeds in the presence of 1,3-bis(diphenylphosphino)propane and adamantanecarboxylic acid and allows obtaining vinyl derivative 50 in 69% yield (Scheme 22). This product is a potential spirooxindole precursor with specific arrangement of functional groups in its structure [94].
The examples of C-vinylation are of certain theoretical importance and immense practical relevance. Further progress in discovering their potential is expected in the near future.

2.2. Synthesis of Acrylic Acid Derivatives

Acrylic acid (AA) and its derivatives are important components of plastics, rubbers, superabsorbent polymers, and paints. In industry, AA is prepared by partial oxidation of propene [95], which is refined from petroleum. Carbonylation of acetylene, introduced by Reppe [96], represents an alternative route to AA, which is better in terms of atom economy and independence from oil sources (Scheme 23).
Reppe used the nickel carbonyl as a catalyst to yield AA under 313.15 K and 0.1 MPa. Ni-Catalysts, especially nickel halides, are commonly used as homogeneous catalysts for AA production [14,97]. Ni2O3 is active as a heterogeneous catalyst in the presence of copper salts [98]. It was experimentally compared with NiO and other common homogeneous catalysts, including NiBr2, NiCl2, Ni(NO3)2, and Ni(OAc)2. Under fixed conditions (4 MPa, 235 °C, and CuBr2 as a promoter), Ni2O3 showed the best average activity with 764.6 (mol AA) (mol Ni)−1 h−1. It could be reused at least five times without loss of activity and regenerated through calcination within 400 °C. The other catalysts’ activities were related as Ni(OAc)2 > NiCl2 ≈ NiBr2 > NiO > Ni(NO3)2 > Ni(OAc)2/PPh3/ methanesulfonic acid.
Molecular sieves (zeolites) are one of the most common and versatile heterogeneous catalysts [99]. Zeolite-based Ni catalysts were tested in acetylene carbonylation [97,100]. Comparison of the catalysts prepared by using different supports and nickel introduction procedures (incipient wetness impregnation and aqueous ion exchange) revealed the best catalytic activity of Ni-exchanged Y zeolites in the presence of Cu salt as a promoter (62 g AA/(gcat.∙h)). Multiple reuse of NiY in a batch reactor confirmed its stable activity at 235 °C and 3.6 MPa of initial total pressure.
An alternative acetylene carboxylation approach is based on using formic acid (FA) instead of toxic CO. FA provides an efficient in situ source of CO for hydrocarboxylation and hydroformylation of olefins [101].
Hydrocarboxylation of acetylene with FA in the presence of palladium catalysts and a catalytic amount of benzoic or acetic anhydride is shown in Scheme 24 [28].
Procedure of hydrocarboxylation with FA promotes conversion of acetylene into AA with TONs of up to 350 s−1 under mild conditions in the presence of [Pd2(dba)3]·CHCl3. Effects of reaction temperature, acetylene pressure, FA concentration, and reaction time on the outcomes are presented in Figure 1, Figure 2, Figure 3 and Figure 4.
The same combined catalytic system is suitable for effective hydrocarboxylation of other terminal alkynes. Its application to internal alkynes provides 2,3-substituted derivatives of AA in up to 97% yields.
Homogeneous catalytic systems composed of 2-pyridyl-diphenylphosphine (2-PyPPh2), palladium acetate (Pd(OAc)2), and sulfonic acid are highly active and selective in alkyne carbonylation (Scheme 25) [102]. Synthesis of a 2-PyPPh2 ligand-based porous organic polymer (POL-2V-P,N) laid the foundation for Pd/POL-2V-P,N catalyst. It is prepared by immobilizing Pd(OAc)2 on the POL-2V-P,N support [103]. The heterogenized Pd/POL-2V-P,N catalyst shows higher activity in acetylene methoxycarbonylation than the corresponding Pd-P,N complex under the same conditions.
A multifunctional copolymer (PyPPh2–SO3H@porous organic polymers, POPs) was prepared by combining acidic groups and heterogeneous P, N ligands through the copolymerization of vinyl-functionalized 2-pyridyldiphenylphosphine (2-PyPPh2) and p-styrene sulfonic acid (Scheme 26) [104].
In comparison with traditional homogeneous Pd(OAc)2/2-PyPPh2/ P-toluenesulfonic acid catalysts, the copolymer supported palladium catalyst (Pd–PyPPh2–SO3H@POPs) exhibits higher activity in alkoxycarbonylation of terminal alkynes under the same conditions. The advantage is attributed to synergistic action of the single-site Pd centers, 2-PyPPh2 ligands, and SO3H groups, as well as the swelling properties and high enrichment of the reactant concentrations by the porous catalyst.

2.3. Preparation of Substituted Alkynes

2.3.1. Cross-Coupling Reactions

Sonogashira reaction was discovered in 1975 [105] and represents a fascinating route to various alkynes. Sonogashira cross coupling of acetylene with iodo- and bromoarenes can be successfully applied to obtain symmetric diaryl ethynes [42,106,107,108]. For example, palladium-catalyzed Sonogashira coupling of acetylene with methyl 4-iodobenzoate (51) gives 4,4′-(1,2-ethynediyl)-bisbenzoic acid (52), a comonomer for the synthesis of liquid crystalline polymer (Scheme 27) [107].
In recent studies [37,42,106], calcium carbide was directly used as an acetylene source in cross-coupling reactions to synthesize symmetric diaryl ethynes. Sonogashira coupling of generated from CaC2 and water acetylene with aryl halides 53 gave rise to substituted diphenylacetylenes 54 (Scheme 28) [42]. The reaction was carried out in a multiphase one-pot system with fluorinated solvent Galden HT135. The solvent formed a liquid membrane, which separates CaC2 from the water phase and facilitates reagents transport in a controllable manner.
Sufficiently good yields were obtained with aryl iodides; the yields for aryl bromides were significantly lower. Using di(4-trifluoromethylphenyl)acetylene resulted in moderate yields of the product (Scheme 28), and 1-bromo-4-methylbenzene showed no reactivity under these conditions [42]. Tetra-n-butyl ammonium fluoride (TBAF) effectively promoted Sonogashira cross coupling reactions between the in situ released acetylene and aryl bromides [106]. For example, yield of diphenylacetylene 55 was increased up to 97% by using TBAF as an additive (Scheme 29) [106].
Palladium-catalyzed cross coupling of arylboronic acids or arylboronic pinacol esters with the carbide-derived acetylene led to corresponding diaryl ethynes 56 (Scheme 30) [37]. The synthesis was initiated by simple mixing of the components and afforded the desired products in satisfactory yields.
Catalytic cross coupling with acetylene allows facile production of terminal alkynes, versatile building blocks for drug development and material synthesis. However, constructing terminal alkynes directly from acetylene is problematic due to the low selectivity between terminal and symmetric disubstituted alkynes. This obstacle can be successfully resolved by using flow reactors [93,109]. Significant improvements of the reactivity and selectivity result from the distinguished gas/liquid interfacial contact. Sonogashira coupling between acetylene and aryl iodides 57 in a stop-flow microtubing reactor convincingly affords terminal arylacetylenes 58 as major products (Scheme 31) [93].
Mono-vs. disubstituted product selectivities of the TBAF-promoted Sonogashira coupling of arylhalides 60 with carbide-derived acetylene under various conditions have been examined in a pilot study [106]. The best monosubstitution selectivity was achieved when extra amounts of TBAF and water were gradually added to the reaction mixture during the reaction. The ratio of calcium carbide and water is also important; the best results were obtained at H2O:CaC2 molar ratio of 1.3:1. Reactions with 4-methyl-, 4-phenyl-, 4-(dimethylamino)phenyl bromides and 3,5-dimethylphenyliodide gave the corresponding monosubstituted products 61 in 28–57% yields. Using other aryl halides afforded mixtures of mono- and di-coupled products (with 61:62 ratio of 1:1 to 4:1) in 57–90% yields (Scheme 32).
A three-component aldehyde-alkyne-amine coupling reaction was also possible with calcium carbide as an acetylene source [42]. The reaction has been originally performed with cyclohexanone (instead of aldehydes) in the multiphase one-pot system with fluorous liquid membrane Galden HT135. The system allows obtaining up to 75% yields of the desired products (Scheme 33).
A copper-catalyzed Sonogashira-type reaction provides the means for allylation of acetylene with allyl halides [110]. Mono-coupled product 64 can be obtained in up to 80% yield by cross-coupling of acetylene with allyl halides 63 under atmospheric pressure in the presence of copper(I) iodide, a base, and a reducing agent. Excess amounts of allyl halide over acetylene lead to predominant formation of disubstituted product 65 in up to 72% yield (Scheme 34).
A recently reported catalytic system promoted oxidative homocoupling of acetylene under oxygen atmosphere in the presence of carbon-supported gold nanoparticles [111]. The reaction resulted in 70% yield of corresponding dimer 66 (Scheme 35) [111].

2.3.2. Favorskii Reaction

Introduced in the early 20th century by Favorskii [112] the reaction for obtaining propargyl alcohols by alkynylation of carbonyl compounds is still a heavy hitter [34,113,114,115,116,117,118,119,120]. Convenient and mild synthetic procedures for alkynylation of various aldehydes and ketones have been recently reported by Trofimov et al. [34,113,114]. The catalytic system KOH-H2O-DMSO [34,113] was appropriate for the synthesis of secondary propargyl alcohols 68 from aromatic and heteroaromatic aldehydes 67 and acetylene (Scheme 36). The reaction was performed under atmospheric pressure, at constant bubbling of acetylene through a reaction mixture. The target products were obtained in satisfactory yields.
The procedure was modified by addition of ethanol to the KOH-H2O-DMSO system and used for the Favorskii reaction of alkyl aryl ketones 69 with acetylene (Scheme 37) [114]. The desired tertiary propargyl alcohols 70 were obtained in good yields.
The Bu4NOH-H2O-DMSO [115] catalytic system was suitable for alkynylation of both aromatic and aliphatic aldehydes and ketones. The reaction was carried out in a flow reactor under atmospheric pressure of acetylene. This protocol was efficient for different types of substrates: propargylic alcohols were prepared in high yields from aromatic, heteroaromatic, cyclic and acyclic aliphatic carbonyl compounds (Scheme 38).
The synthesis of ferrocene-derived propargylic alcohol demonstrates the versatility of Favorskii reaction. 1-Phenyl-1-ferrocenyl-2-propin-1-ol (72) was formed through passing of acetylene into a KOH suspension in THF with benzoylferrocene 71 (Scheme 39) [116].
Alkynylation of carbonyl compounds with metal acetylides represents an alternative to the direct base-catalyzed alkynylation with gaseous acetylene [117,118]. Reaction of aldehydes and ketones with in situ generated ethynylmagnesium bromide is carried out in a commercially available falling film microreactor (FFMR) [117]. Consistent gas-liquid contact in the continuous microflow setting is a prerequisite for effective generation of ethynyl-Grignard reagent from EtMgBr and acetylene. The protocol affords a number of propargyl alcohols in high yields and short reaction times, under atmospheric pressure and low reaction temperature (Scheme 40).
Lithium acetylide was used for the preparation of decalin-derived acetylenic alcohol 74, an intermediate for the multistep synthesis of racemic forskolin [118]. Selective addition of monolithium acetylide to one of the two carbonyl groups in cis-decalin 73 and subsequent epimerization in the presence of aluminum oxide afforded trans-decalin 74 in overall yield 82% (Scheme 41).
Replacement of gaseous acetylene with solid calcium carbide is frequently proposed in recent studies of Favorskii reaction [119,120]. Reactions can be performed for a wide substrate scope including aromatic and aliphatic aldehydes and ketones (Scheme 42).
TBAF [119] or Cs2CO3 [120] were used as catalysts, and using of TBAF provided higher yields. Activation of calcium carbide by fluoride is thought to generate an acetylide “ate”-complex that readily adds to carbonyl groups [119]. Both Sonogashira cross coupling and Favorskii alkynylation with acetylene are currently in demand. Mild and environmentally benign protocols for these reactions, including those with the in situ generated acetylene, continuously evolve.

2.4. Synthesis of Heterocycles

2.4.1. Cycloaddition Reactions

Priority of pot-, atom-, and step-economy is one of the prevailing concepts in modern applied chemistry [121]. Cycloaddition reactions of acetylene fully conform to these rules, which makes these reactions especially relevant. Cycloaddition usually implies formation of several C-C and C-heteroatom bonds in one synthetic operation. Besides, these reactions afford many useful heterocyclic compounds. In particular, [3 + 2]-cycloaddition reactions of acetylene with active dipoles are increasingly used in synthesis of five-membered heterocycles [41,42,43,44,122,123,124,125,126,127,128].
1,2,3-Triazoles are produced in the copper-catalyzed click-reactions of organic azides with acetylene [44,122,123,124]. These reactions can be performed in aqueous media under atmospheric pressure [44,122]. A handy procedure for obtaining 1-substituted 1,2,3-triazoles involves CuI-Et3N as a catalyst and water as a solvent [44]. Its application to a variety of substrates facilitates transformation of substituted phenyl, benzyl, and octyl azides into corresponding substituted triazoles 75 in up to 96% yield (Scheme 43).
A water soluble catalyst 77 based on N-heterocyclic carbenes-Cu complex for [3 + 2]-cycloaddition of azides 76 and acetylene was proposed [122]. Various alkyl and benzyl triazoles 78 were obtained in high yields using 77 as catalyst. The reactions were carried out in water or 1:1 DMSO/water mixture (Scheme 44).
Triazole-fused benzoheterocycles were prepared via Cu-catalyzed click-reaction of o-iodo-azides 79 with acetylene and subsequent Pd-catalyzed intramolecular coupling [123]. The triazole-fused isoindole derivative 80 can be obtained in one-pot manner. Obtaining of six-, seven- and eight-membered heterocycles 81 requires a two-step procedure (Scheme 45).
Identical Cu-catalyzed cycloadditions can be performed with calcium carbide instead of gaseous acetylene [42]. Triethylamine serves as a solvent and base simultaneously, while Galden HT135 effectively separates CaC2 from the organic phase. Benzyl azides with variously substituted phenyl rings undergo cyclization with the released acetylene to afford good yields of the corresponding triazoles (Scheme 46).
Similar 1,3-dipolar cycloadditions of the calcium carbide-derived acetylene to diazo compounds [126], nitrile oxides [41] and nitrile imines [43] were reported.
Calcium carbide was used as an acetylene source to react with a wide range of N-tosylhydrazones 82 derived from aldehydes or ketones, affording various substituted pyrazoles in good yields with high regioselectivities [126]. When N-tosylhydrazones were derived from aldehydes, the starting materials were smoothly transformed into the corresponding products 83. Ketone-derived N-tosylhydrazones afforded the pyrazoles 84 and 85 with regioselectivities of more than 5:1 (Scheme 47).
The mechanism of these transformations plausibly involves [3 + 2]-cycloadditions of in situ generated diazo compounds followed by [1,5]-sigmatropic rearrangements (Scheme 48) [126]. Initial deprotonation of N-tosylhydrazone 82 in the presence of Cs2CO3 gives cesium salt A, which undergoes rapid transformation into reactive diazo compound B. Its [3 + 2]-cycloaddition with acetylene affords a 3H-pyrazole compound C. When R1 is H, 83 is formed via [1,5-H]-shift and tautomerization. When R1 is aryl and R2 is alkyl, migration of R1 or R2 to C4 occurs. Subsequent multiple [1,5]-sigmatropic rearrangements result in formation of 84 or 85. Since the migration ability of electron-rich aryl group is higher than that of alkyl group [126], migration of R1 to C4 is favored, and pyrazoles 84 predominate as major products. This proposed mechanism was supported by deuterium-labeling experiments [126].
A convenient synthetic methodology for the one-pot preparation of isoxazoles 87 directly from the reaction of calcium carbide with aldoximes 86 was developed [41]. This method is based on a 1,3-dipolar cycloaddition of nitrile oxides to acetylene. Nitrile oxides precursors, chloroaldoximes 88 were formed in situ by aldoxime chlorination with N-chlorosuccinimide (NCS). Reaction of CaC2 with the water provides the sources of both acetylene and Ca(OH)2 base to enable generation of nitrile oxides 89. Various 3-substituted isoxazoles 87 were synthesized from the corresponding aldoximes 86 in up to 95% yields (Scheme 49).
An efficient protocol for the preparation of 1,3-disubstituted pyrazoles 91 from [3 + 2]-cycloaddition reactions of in situ generated nitrile imines 92 with CaC2-derived acetylene was reported [43]. The reactions were performed in a two-chambered reactor in order to separate the water-sensitive nitrile imines from the acetylene-generating mixture. One part of the reactor was loaded with hydrazonoyl chloride precursors 90 of active nitrile imine species and Et3N as a base. The other part was used to generate acetylene from CaC2 and water. Escaping from the carbide chamber, acetylene readily dissolves in the reaction mixture with nitrile imines freshly derived from hydrazonoyl chlorides and Et3N as a base. A variety of 1,3-disubstituted pyrazoles 91 were produced in up to quantitative yields by this approach (Scheme 50).
Utilization of carbide and water as an acetylene source in cycloaddition reactions is not just safe and convenient, but allows to obtain deuterium-labeled heterocycles by using deuterated water, as exemplified by syntheses of 4,5-dideuteroisoxazoles and 4,5-dideuteropyrazoles [41,43].
Unusual dipoles, diazoalkane complexes 93 reacted with acetylene under mild conditions [127]. The reactions proceeded through the [3 + 2]-cycloaddition of the acetylene to the coordinated diazoalkane, yielded 3H-pyrazole derivatives 94 (Scheme 51).
Three-component cycloaddition reactions of acetylene were also described [129,130,131,132]. Rhodium-catalyzed [4 + 2 + 2]-cycloaddition of dienynes and acetylene gave rise to oxygen- and nitrogen-containing polycyclic cyclooctatrienes in moderate to good yields (Scheme 52) [129]. The desired products were obtained in greater than 20:1 diasteromeric excess.
Cobalt-mediated [2 + 2 + 2]-cycloaddition reaction of acetylene and diyne 96 afforded bicyclic product 97, which was employed as an intermediate in the total synthesis of the putative structure of xylarinol B (Scheme 53) [130].
Synthesis of boron-containing heterocycles [131,132] through [2 + 2 + 2]-cycloaddition reactions involving acetylene was also reported. In addition, [2 + 2]-cycloaddition with acetylene were used for the preparation of Ge- [133], Si- and Ti-containing [134] inorganic heterocycles.

2.4.2. Trofimov Reaction

Reaction of ketoximes with acetylene under superbasic conditions, known as Trofimov reaction, is widely used for synthesis of pyrroles and 1-vinylpyrroles [13,39]. The reaction mechanism [39] involves initial O-vinylation of starting oxime 98 and subsequent [3,3]-sigmatropic shift in the intermediate O-vinyl oxime 99 to form aldehyde-imine compound 100. The aldehyde-imine intermediate undergoes a cyclization-dehydration-tautomerization sequence to give pyrrole 101. Further reaction with the second acetylene molecule leads to the formation of N-vinyl pyrrole 102 (Scheme 54).
Heterocyclization of ketoximes with acetylene into pyrroles and N-vinylpyrroles is normally performed in an autoclave under an initial acetylene pressure of 8-16 atm (most commonly 10–12 atm) [135] with KOH-DMSO as a superbase [135]. A recently developed modification of the procedure involves a flow reactor [136]; it allows to perform the synthesis of 3-alkyl-2-phenyl-1-vinylpyrroles under atmospheric acetylene pressure (Scheme 55) [137].
The substrate scope of Trofimov reaction is constantly expanding [138,139,140]. The synthesis of 3-(E)-styrylpyrroles 104 from (E)-styrylmethyl ketoximes 103 and acetylene was recently reporded [138]. Phenyl- and naphthyl-derivatives 104a gave rise to the corresponding 1-vinylpyrroles 104a. 1H-Pyrrole 104b was obtained from biphenyl-derived oxime 103b (Scheme 56).
Other biphenyl-derived oximes 105 reacted with acetylene under superbasic conditions to afford predominantly 1-vinylpyrroles 106 [139]. 1-Unsubstituted pyrroles 107 can be obtained by devinylation of 1-vinylpyrroles 106 in the presence of mercuric acetate (Scheme 57) [139].
Various 2-arylpyrroles 108 were synthesized through the Trofimov reaction directly from calcium carbide as an acetylene source (Scheme 58) [40].
The reactions were performed using DMSO with 2% of water as a solvent. 18-Crown-6 was used as a catalyst to improve the pyrroles yields. It proceeds selectively and results in formation of 1H-pyrroles with only trace amounts of 1-vinylpyrroles When using ketoximes with only one neighboring C-H bond, the formation of 1H-pyrroles is inhibited. In such cases the intermediate 5-hydroxypyrrolines [141,142] and 3H-pyrroles [143,144] can be isolated as main products. Reactions of acetylene with various sec-alkyl aryl ketoximes 109 afforded the corresponding 5-hydroxypyrrolines 110 in moderate yields [141,142]. The reaction can be performed in a one-pot manner [141] or in a two-step sequence [142] isolating O-vinylketoxime intermediates 111 in low yields (Scheme 59).

2.4.3. Other Reactions for Accessing Heterocyclic Molecules

As an alternative to Favorskii reaction, ketones and acetylene can undergo a one-pot cascade cyclization to give 7-methylene-6,8-dioxabicyclo[3.2.1]octanes [145,146,147,148,149,150]. Under optimized conditions [145,146] a variety of bicyclic products were obtained from dialkyl [145] and aryl alkyl [146,147] ketones (Scheme 60).
A proposed mechanism for this reaction involves the following cascade transformations [145]. A superbase-promoted addition of the initial ketone to acetylene yields an intermediate 2-propenyl ketone, which undergoes prototropic isomerization into 1-propenyl ketone A. The next step involves Michael addition of a second initial ketone molecule to A thus affording 1,5-diketone B. Further on, an acetylene unit is added to a carbonyl group of B to form acetylenic ketoalcohol C. Subsequent cascade cyclizations include reversible formation of hemiacetal D, which undergoes nucleophilic addition to the triple bond and becomes the exocyclic enol ether moiety in the final product (Scheme 61).
The mechanism implies that 1,5-diketones readily cyclize with acetylene under superbasic conditions to give 7-methylene-6,8-dioxabicyclo[3.2.1]octanes. Indeed, the alkyl and aryl substituted 1,5-diketones are susceptible to cascade cyclization with acetylene [148]. The reactions were performed under conditions similar to those for the monoketones and afforded both symmetrically and unsymmetrically substituted 7-methylene-6,8-dioxabicyclo[3.2.1]octanes 112 (Scheme 62).
A recently reported synthesis of methyl-substituted benzofuran rings resulted from combination of calcium carbide-derived acetylene with salicylaldehyde p-tosylhydrazones 113a and 2-hydroxyacetophenone p-tosylhydrazones 113b [151]. The reactions were performed with a copper chloride catalyst. Various 2-methylbenzofurans 114a and 2,3-dimethylbenzofurans 114b were obtained in satisfactory yields (Scheme 63).
The following mechanism was proposed for this reaction (Scheme 64) [151]. Initial reaction of calcium carbide with water in the presence of CuCl gives ethynylcopper as an intermediate and coincides with the in situ formation of 2-(diazomethyl)phenol 115. The ethynylcopper intermediate reacts with 2-(diazomethyl)phenol to give a copper-carbene species A, which transforms into B by reductive elimination. Subsequent acidolysis of B leads to intramolecular cyclization to afford the final product 116.
A palladium-catalyzed cascade protocol for the synthesis of 4-methyl-1-(1H-pyrrolo[2,3-b]-quinoxalin-2-yl)cyclohexanols 119a and 2-phenyl-1-(1H-pyrrolo[2,3-b]quinoxalin-2-yl)propan-1-ols 119b from N-alkyl(aryl)-3-chloroquinoxalin-2-amines 117, calcium carbide and cyclohexanones 118a or 2-phenylpropanal 118b has been developed [152].
The reactions were performed in the presence of catalytic amounts of Pd(PPh3)2Cl2 in a DMSO/H2O solvent mixture. This copper-free one-pot Sonogashira-type synthesis provided high yields of 2,3-disubstituted pyrrolo[2,3-b]quinoxalines (Scheme 65)A proposed reaction mechanism [152] includes the following steps. Initially, calcium acetylide A is generated from CaC2 and water. Aldehyde or ketone activation by cesium cation promotes a nucleophilic attack of acetylide A on the carbonyl group to afford propargyl alcohol C via intermediate B. A subsequent palladium-catalyzed cross-coupling reaction involves heteroaryl chloride 117 and propargyl alcohol C to afford intermediate D. At the final step, ring closure by intramolecular hydroamination leads to the formation of 2-substituted pyrrolo[2,3-b]quinoxalines 119 (Scheme 66).
In summary, acetylene is available and flexible starting material for heterocycles synthesis. The classical protocols for 1,3-dipolar cycloaddition and Trofimov reaction are constantly modified, and new methodologies based on cascade reactions of acetylene continuously develop, as they allow obtaining fine and versatile heterocyclic compounds from simple and inexpensive chemicals.

2.5. Applications in Medicinal Chemistry and Drug Discovery

Acetylene is involved in drug synthesis by two chemical approaches: reactive species vinylation and Favorskii reaction.
Vinylation of trifluoroethanol 120 with acetylene gave an inhalation anesthetic fluoroxene 122 (Scheme 67) [153]. The transformation was performed in two steps: first, the starting alcohol was treated with potassium, and then the resulting alkoxide 121 was heated under the elevated pressure in a metal pressure reactor giving the vinyl ether 122.
Fluroxene (122) was also prepared from acetylene by an alternative two-step procedure (Scheme 68) [154]. First, trifluoroethanol (120) reacted with acetylene in the presence of mercury oxide and boron trifluoride diethyl etherate giving di(2,2,2-trifluoroethyl) acetaldehyde acetal. The latter was heated with montmorillonitrile producing 122.
The Favorskii reaction is usually performed either by using a Grignard method, or in the presence of a base (Scheme 69) [155]. The first procedure involves a preliminary reaction of acetylene with Grignard reagent or lithium, sodium, potassium in liquid ammonia or lithium-organic compounds [155,156,157]. The resulting acetylide reacts with the ketone giving a tertiary acetylenic alcohol. The second procedure is equally widespread [155,158]. Both procedures afford acetylenic alcohols from aldehydes and ketones with arbitrarily chosen substituents in moderate to excellent yields [155,156,157,158].
A sedative drug ethchlorvynol 124 was obtained from ethyl β-chlorovinyl ketone 123 and lithium acetylenide in 80% yield (Scheme 70). Lithium acetylide was generated from acetylene and lithium metal in liquid ammonia. The procedure allows obtaining a range of ethynyl β-halogenvinyl carbinols [157].
Combining the Favorskii reaction with other synthetic methods, some terpenes were synthesized [156]. Starting from ketone 125 and sodium acetylide, generated by bubbling of acetylene throught sodium-ammonia mixture, the precursor 126 of isophytol 127 was obtained (Scheme 71). Isophytol 127 can be converted to rac-vitamin K1 128 in some steps. Linalool 129 and nerolidol 130 can be obtained by similar procedures, starting from acetone and subsequently involving Favorskii reaction with partial hydrogenation and condensations [156].
The wide class of steroids ethynyl derivatives was synthesized by Favorskii reaction. These substances are used for the improvement of elderly human health and well-being quality (hormonal therapy), the treatment of rheumatic diseases, to improve sports performance and in cancer therapy [159,160].
17-Ethynylestradiol [161,162] (132a) and its prodrug quinestrol [163] (132b), which are used in female hormonal therapy, were obtained from estrone (131a) and estrone 3-cyclopentyl ether (131b), correspondingly (Scheme 72). Both ethynyl derivatives can be produced from acetylene in the presence of strong bases as catalysts or from ethynyl magnesium bromide or ethynyl lithium as a starting material [161,162,163]. Quinestrol can be produced by etherification of 17-ethynylestradiol [159].
Another prodrug of 17-ethynylestradiol, mestranol (134), was synthesized recently from the solid acetylene source, calcium carbide, and estrone 3-methyl ether (133) (Scheme 73) [119]. The presence of fluoride reportedly enhances the reaction. Such procedures are safer than the use of gaseous acetylene in the presence of metals and strong bases.
A similar synthetic procedure allows obtaining desogestrel, a highly potent oral contraceptive medication (136, Scheme 74). Subsequential reaction of acetylene with lithium in ethylenediamine and the isomeric starting material 135 gave 136 in 83% yield [164].
Eplerenone, which is used in the treatment of congestive heart failure and hypertension, can be synthesized by Favorskii reaction. The key step in its synthesis is provided by a reaction of acetylene with TMS-protected precursor 137 (Scheme 75). This step gave an acetylene-derived alcohol 138, which was successively converted into eplerenone 139 [165].
Favorskii reactions with acetylene, acetylenides, or calcium carbide provide a neat and effective means for the synthesis of ethynyl-substituted steroids [159,160,166]. The approach allows obtaining a wide range of active pharmaceutical ingredients for hormone medications, anti-rheumatic and other anti-inflammatory drugs, medications for prevention and treatment of heart disorders, and many more [167].

2.6. Organometallic Complexes of Acetylene

Transition metal alkynyl complexes are potent intermediates in supramolecular design and organometallic synthesis [168,169,170,171]. Their tunable nature makes them excellent candidate molecules in non-linear optics [172,173] and polymer chemistry [174,175], as antitumor drugs [176,177] and luminescent materials [178,179]. In most cases, acetylene is utilized as a bridge and possesses a high potential due to possibility of Sonogashira-like reactions.
A symmetrical bis(alkynyl) derivative 141 is obtained essentially in compliance with the established Sonogashira mechanism (Scheme 76) [180]. The reaction is carried out under atmospheric acetylene pressure; it is initiated by mixing acetylene with metal cluster 140 in 2:1 molar ratio.
Insertion of acetylene into Pt-X bonds of square planar [PtX2(N^N)] complexes (X = Cl, Br, I), e.g., [PtX2(Me2phen)] complexes 142, has been demonstrated [181]. Formation of Pt(II) five-coordinate comlexes is favored when X = bromide or iodide; with chloride, the complexes show negligible reactivity. The obtained five-coordinate complexes [PtX2(η2-CH≡CH)Me2phen)] 144 quickly relapse into four-coordinate alkenyl complexes [PtX2(η1-E-CH=CHX)Me2phen)] 143. Excess of acetylene results in equilibrium between four- and five- coordinate complexes. Facile substitution of the π-bonded acetylene with free olefins or CO results, respectively, in alkene-alkenyl 145 or carbonyl-alkenyl 146 complexes (Scheme 77). In some cases, it is possible to isolate Pt-containing intermediates with acetylene to study kinetics and other properties [182].
An unusual heterobimetallic Au(I)/Pt(II) complex with acetylide (-C≡CH) bridge was formed in reaction between Au(I) and Pt(0) complexes 147 and 148 [183]. These complexes with bulky ligands terphenyl phosphine and tri-tert-butylphosphine, respectively, act as a Lewis acid and a Lewis base. The metal pair acquires a remarkable capacity of activating acetylene molecule. Upon exposure of benzene solutions of complexes 147 and 148 to acetylene their color instantly changes from bright yellow to intense orange. According to NMR data, the Au and Pt complexes were converted into two structurally distinct products (Scheme 78). In complex 149, the triple bond bridge is π-bonded to a cationic Au(I) center and σ-bonded to a Pt(II) hydride fragment. In complex 150, which lacks the triple bond, the metals are linked by a μ-ethene-1,2-diyl moiety.
Hydroarylation of alkynes provides a valuable route to various alkenes, although chemo-, regio and stereoselectivities of this reaction may be compromised by collateral formation of diaryl alkanes, dialkenyl arenes, and aryl dienes. An in situ generated dicationic complex [Pt(2,6-bis(dephinylphosphinomethyl)pyridine)C2H2](BF4)2 151 reacts with arenes [184]. Only electron-rich arenes are incorporated into arylalkenyl products 152 (Scheme 79). Another interesting study of unsaturated Pt(II) complex showed tautomerization of acetylene to vinylidene [185]. In this case, C-C bond formation occurs via isomeric methyl vinylidene structure instead of the classical migratory insertion reactivity. Vinylidene formation is also characteristic of the iridium pyridylidenes Molecules 23 02442 i001 (R = H, Me, Ph) reaction with acetylene [186] The reaction afforded four-membered iridacycles with IrC(=CH2)N moiety.
Insertion into Ir-H bond is also possible. Acetylene and terminal alkynes react with Ir complex 153 to produce five-coordinate styryl derivatives 154 (Scheme 80). The short-lived yellow-orange six-coordinate vinyl complexes are emissive upon photoexcitation [187].
An electrophilic cationic complex [(η5-C5Me5)Ir(C^P)]+ reacted with acetylene at room temperature to form the [(η5-C5Me5)Ir(C^P)(η2-acetylene)]+ π adducts 155 [188]. The C-C bond formation led to an iridium-bound alkene moiety as a thermodynamic product, whereas similar complexes with bulkier alkynes underwent further transformation into allylic structures. NMR experiments with D-labeled compounds implicated an undetected vinylidene structure, Ir=C=C(H)Ph, in the key C-C bond formation. Heating of complex 155 solution in a pressure vessel afforded an extraordinary thermostable complex 156 (Scheme 81).
Selective insertion of alkynes into Mo-H and W-H bonds was catalyzed by Pd(0) complex and resulted in alkenylmolybdenum and alkenyltungsten complexes [189]. Interestingly, no incorporation of deuterium into trans and geminal positions of vinyltungsten complex 157 was observed in the reaction of acetylene with tungsten complex WDCp(CO)3 (Scheme 82). Tungsten complexes with diphosphines [Tp*W(CO)(I){η2-C2(PPh2)2}] (Tp* = hydrido-tris(3,4,5-trimethyl-pyrazolyl)borate) showed highly reversible redox potentials [190]. A variety of substituted bisphosphine acetylene bridged dinuclear complexes with a side-on bound Tp*W(CO)(I) moiety and a chelate-like coordinated PtCl2 unit was reported [191].
Thus, promotion of acetylene insertion by metal atoms results in modified metal complexes, which can be isolated. Various metal complexes are used as catalysts or building blocks and also, notably, in luminescence applications. Here we descried a few representative examples of reactions with organometallic complexes, where a number of other possibilities are available as well as other terminal alkynes react with metal complexes in a similar manner [192].

2.7. Miscellaneous Synthetic Transformations

Other applications of acetylene involve addition, cycloaddition, and polymerization reactions. A reaction of tellurium tetrabromide with acetylene in tetrachloromethane provides stereoselective synthesis of (E)-2-bromovinyltellurium tribromide 158 (Scheme 83) [193].
Compounds with 2-bromovinyltellanyl group are used in stereoselective syntheses of alkenes via consecutive replacement of bromine and tellurium atoms by organic groups in cross-coupling reactions [194].
The reaction of iodomethane and acetylene in the presence of Na2PtCl4 and NaI yielded a mixture of iodoethylenes (Scheme 84) [195]. A mechanism proposed by the authors involved intermediate formation of a Pt(IV) methyl vinyl derivative by iodoplatination of acetylene with a reversibly formed Pt(IV) methyl complex.
Another example of catalytic addition to acetylene, preparation of 1,2-bis(diphenylphosphino)ethane dioxide (dppeO2), proceeded in the presence of t-BuOLi (Scheme 85) [196]. A possible mechanism for this reaction includes deprotonation of Ph2P(O)H by t-BuOLi. The resulting formation of anion A directs the catalytic cycle toward dppeO2.
A tandem addition reaction of acrolein with acetylene to form (E)-5-bromopent-4-enal 160 involved Pd(OAc)2 as a catalyst (Scheme 86) [197]. The best yields (73%) are obtained under optimized conditions of 1.5/1 AcOH/H2O molar ratio, C2H2 pressure of 1.2 atm for 72 h at 25 °C, with 1 mmol% Pd(OAc)2, 1 mol% LiBr, and 1.2 mol% acrolein.
(E)-5-Bromopent-4-enal 160 provides starting material for synthesis of (4E,6Z,10Z)-hexadeca-4,6,10-trien-1-ol 161 and (4E,6E,10Z)-hexadeca-4,6,10-trien-1-ol 162 [197], the active pheromone components of cocoa pod borer moth (Conopomorpha cramerella), the most injurious pest that damages cocoa plantations in Southeast Asia (Scheme 87) [198].
Direct carboxylation of acetylene with CO2 in the presence of 1,5,7-triazabicyclo[4.4.0]dec-1-ene (TBD) led to acetylene dicarboxylic acid derivatives (Scheme 88) [199].
A possible mechanism for this reaction is shown in Scheme 89. The carboxylation is initiated by formation of a TBD-CO2 adduct, which undergoes nucleophilic addition of acetylene to afford a propiolate-TBD salt.
Enaminones 165 can be obtained by a three component reaction of calcium carbide, aryl aldehydes 163, and amines 164 (Scheme 90) [200].
Another interesting example of acetylene addition is provided by a non-classical Diels-Alder reaction with substituted cyclobutadiene 166 [201]. The dried acetylene is bubbled into a toluene solution of pentafluorophenyltris(trimethylsilyl)cyclobutadiene to afford the Dewar benzene-like structure 167 (Scheme 91).
A catalytic insertion of acetylene into polystannane (Scheme 92) [202] provides an interesting link with the chemistry of polystannanes, the unique conductive main group polymers with a backbone composed entirely of tin [203].

2.8. Selective Semi-Hydrogenation of Acetylene

Naphtha cracking generates streams of ethylene, which may be directly used in polymerization or partial oxidation to ethylene oxide. Acetylene impurities constitute 0.5–2 vol% of the primary ethylene streams. Their amount should be diminished to 5 vol% prior to polymerization. Acetylene, which is poisonous to the downstream polymerization catalysts, is removed from the gas mixture by hydrogenation. This step involves hydrogenation of acetylene to ethylene (i), hydrogenation of ethylene to ethane (ii), acetylene polymerization into green oil (iii), and carbonaceous deposition (iv, Scheme 93). The aim of the purification step is to achieve (i) avoiding (ii), (iii), and (iv).
Selective hydrogenation of acetylene requires π-bonding of its molecules to the surface of a catalyst. The process is hindered when the adsorption centers are placed too densely; its performance can be enhanced by the active-site-isolation approach. As for the selectivity, all improvements fall into three groups. The first type of improvements results from modification of electronic properties of the catalyst is caused by alloying and/or support influence. The ligand effect [204] is caused by interaction of two metals and results in shift of their d-band center, which affects the adsorption strength and, the activation energy. Concomitant changes in structure and composition of the surface have modulatory effect on the number and geometry of the adsorption sites (the so-called ensemble effect). The emerging A sites are mainly responsible for selective acetylene hydrogenation, whereas the larger Pd ensembles, E sites, favor the ethylene-to-ethane conversion. The second type of selectivity improvements results from modification of the active site geometry and morphology. The third type of improvements is achieved by dilution or blocking of large active sites caused by reducing, deposition technique and ligands addition.
The catalysts used for selective acetylene hydrogenation can be divided into Pd-based (Pd/Ga [29,30], Pd/Ag [31,32,33], Pd/Cu [205]) and Pd-free, further subdivided into monometallic (Cu [206], Ag [207], Fe [208], Ni [209,210], Au [211]), bimetallic (Au/Ni [212,213], Au/Ag [214], Ni/Zn [8], Cu/Al hydrotalcite [215]), tri-metallic (Cu-Ni-Fe [216]), and metal free (CeO2 [217,218]). Today, Pd-based catalysts are often used for selective removal of acetylene [219,220]. However, they are prone to contamination with Pd carbides [221,222,223] and Pd hydrides [31,224], which worsen the performance and lead to over-hydrogenation [225,226]. Addition of carbon monoxide improves the selectivity, because CO competes for adsorption sites with ethylene but not acetylene [32,227]. However, CO co-feeding is inconvenient, as it requires continuous control of CO amounts in order to maintain the full acetylene conversion. In addition, CO promotes the formation of so-called green oil, which is composed of acetylene oligomers [210]. Although the activity of pure Pd is high, its selectivity is limited to 20% at 200 °C [228]. The optimum temperatures for such catalysts are much higher than those accepted in industry; besides, they are really expensive. Addition of the second metal improves the selectivity for two reasons: by changing electronic properties of Pd and by dilution of adsorption sites and thereby reducing the number of E sites.
An alternative approach is based on addition of selective surface modifiers, that is, ligands with specific affinity to Pd surface. The ligands can be used during both liquid and gas phase hydrogenation. The nitrogen- [229,230], sulfur- [231,232], and phosphorus-containing [233,234] modifiers of this type usually enhance the selectivity by adsorption to the metal surface, which causes the decreasing the number of large Pd ensembles sites.
The third approach involves reducible oxide support modifications and deposition technique. TiO2, La2O3, Nb2O5, and CeO2 migrate onto the Pd surface during reduction, diluting the multiply coordinated sites and enriching the electron density of Pd [205,235,236,237] Dispersion across the surface of graphene [238] and insertion into zeolite frameworks [239] may also be considered as support modifications.
When pure palladium catalyzes acetylene hydrogenation, conversion and selectivity of the reaction depend on size and morphology of the metal particles. Acetylene hydrogenation is sensitive to the surface structure of Pd NPs. The most selective facet for acetylene hydrogenation is Pd(100). Cubic palladium nanoparticles (NPs) (100) facets can be prepared under controlled conditions [240,241,242,243,244]. Quite unluckily, the low-index facets of Pd [245,246] and Pt [247] are unstable and changed under the reaction conditions. After the reaction, the flat facets turn into sunken facets, and the cubic shape becomes twisted (Figure 5). The selectivity is maintained high for 27 h of the reaction and then sharply decreases [248]. Microstructural changes on the surface of the well-defined (100) facets result in rough (100) facets with steps and corners. These changes are induced by multiple repetitive adsorptions-desorptions.
Cubic NPs with Pd(100) facets show better results than spherical NPs of a similar size, which comprise significant portion of Pd(111) facets [249]. The temperatures of Pd hydride decomposition and hydrocarbon desorption for the cubic NPs are lower than for the spherical NPs. They also show higher acetylene conversion rates and better ethylene selectivity than Pd(222)-faceted spherical particles (Figure 6) or smaller Pd(I) NPs prepared by using the incipient wetness method.
Surface acidity and basicity effect on the status of metals and on catalytic performance. Palladium supported hydrotalcite (Pd/HT) exhibits higher conversion of acetylene compared with aluminum oxide and magnesium oxide supports [250]. HT is a synthetic anionic clay, [M2+1-xM3+x(OH)2]x+(An-)x/n·mH2O, where M stands for metal cations and A represents an interlayer anion. After heat treatment, the interlayer anion and water are removed, leaving a mixture of metal oxides, which determines the acidity/basicity of the surface. Full conversion of acetylene over Pd/HT is reached at 55 °C (Pd/MgO and Pd/Al2O3 are left behind with 31% and 22%, respectively, Figure 7). Ethylene selectivity of the system is 88% at 80% isoconversion, which is respectively 1.8 and 2.1 times higher than for Pd/MgO and Pd/Al2O3. It is well known that changing the support affects the parameters of catalytic reduction. Atomic Pd samples deposited on nanocarbons of differential morphology (representing different proportions of nanotubes, nanofibers, and other nanocarbon species) show differential conversions and selectivities [251].
Pd is usually present as a skin on the surface of a support layer. Dispersion of Pd active sites over the skin favors acetylene hydrogenation and inhibits over-hydrogenation and oligomer formation. Tunable thickness of a support layer allows effective control of Pd penetration range and results in uniform lateral distribution of Pd active sites. Egg-shell Pd/α-Al2O3@SiC catalysts with the controlled thickness of support layer (50–300 μm, Figure 8) were obtained by a specifically developed procedure and tested in acetylene hydrogenation [252]. The catalysts had the same acetylene conversion but higher ethylene selectivity as compared with the conventional Pd-Ag/α-Al2O3 catalyst.
A more than 10 times increase in surface area can be achieved by using porous hollow silica NPs as a coating in combination with monolithic cordierite as a ceramic substrate (Figure 9) [253]. Catalytic activity of the samples is enhanced by increasing reaction temperature, although by the cost of ethylene selectivity. The best results among the series are achieved for PdO/PHSNs-Al2O3/MC with 100% acetylene conversion and 47% ethylene selectivity. This study is an example of successful development of a new monolithic catalyst with increased surface area and maintainable mesoporous structure of the coating layer.
Ionic liquids stabilize nanoscale structures by forming the protective anionic and cationic layers [254,255]. Ionic liquid supports in gas phase hydrogenation, catalyzed by Pd, Ru, Ir, and Rh NPs, resulted in formation of 1,3-butadiene, C6-olefins, and benzene [256,257,258]. In the case of acetylene hydrogenation, ionic liquids with [BF4] anion promote higher conversion and lower selectivity, whereas the effects of ionic liquids with [PF6] anion are quite the opposite [259]. The Pd/BmimBF4/SiO2 stability is slightly decreasing after 6 h. The Ar plasma/H2-treated Pd/EmimBF4/SiO2 is more stable than the corresponding product of conventional reduction, due to minimized Pd/IL/SiO2 fluctuation phenomena. Noteworthy, the size of Pd NPs and ionic liquids are stable under plasma conditions [260]. The catalytic properties of Pd/TiO2 catalysts depend on the way of preparation (impregnation vs electroless deposition) and the type of atmosphere used for calcination-O2/N2 [261] or H2 [262]. Dispersion of Pd increased in the presence of Ti3+ significantly. TiO2 support prepared in N2 atmosphere under electroless conditions possessed similar average crystallite size, surface area and pore diameter resulted in improved catalytic performance. Full acetylene conversion with high ethylene selectivity (92%) is achievable with 1%Pd/TiO2-N2. At the same time, H2 treatment of sol-gel derived TiO2 increases the number of Ti3+ defective sites on its surface.
Treatment of a Pd/TiO2 catalyst with triphenylphosphine (TPP) improves the selectivity and limits over-hydrogenation under low pressures [263]. Acetylene and ethylene have similar rates of hydrogenation over the unmodified Pd catalyst (Figure 6, label 1). Adding CO (3 ppm) has little impact on the results; although it diminishes the ethylene conversion rate (Figure 6, label 2), continuous addition of CO is required to maintain the gain in selectivity. Adding TPP suppresses ethylene hydrogenation (Figure 10, label 3) and promotes a 10-fold decrease in formation of the gas phase-specific byproducts (Table 1). Probably, acetylene more readily adsorbs to the modified catalyst, whereas ethylene adsorption is hindered. Stability of TPP under both low and high pressures makes its superiority especially relevant.
Double additives (Ti and La oxides) are moderate improvers of Pd catalysis [264]. La oxide is beneficial to the performance, but its reduction requires high temperatures. Ti oxide partially covered by La oxide maintained the modified geometric and electronic structures of the catalyst even after low-temperature reduction. It also confers higher ethylene selectivity than the single La oxide. Probably, Ti oxide prevents the La species from re-migrating during high-temperature reduction to their initial positions after air contact. In total, the Pd catalyst modified with Ti and La simultaneously exhibited the best results compared with pure Pd and monomodified catalysts (Figure 11).

2.8.1. Bimetallic Pd-based Catalysts: Pd and Ga/In

As compared with ethylene, acetylene is much more soluble in acetone, dimethylformamide, N-methylpyrrolidone (NMP) and some ionic liquids (Figure 12) [265]. At conversions near 100%, ethylene selectivity becomes unevenly distributed between the liquid and gas phases. For instance, it may constitute 80–96% in the NMP liquid phase and 70% in gas phase. For this reason, NMP augments the hydrogenation, which a nonpolar solvent (e.g., decane) would be incapable of. NMP was also used for acetylene hydrogenation in the presence of 1% Pd/Ga2O3 catalyst [266]. Another study with a similar catalyst was less successful, providing only 53% acetylene conversion and 36% ethylene selectivity in liquid phase, possibly due to the low solubility of hydrogen in NMP in the presence of alloys with 0.5%Pd–0.08%Ga [267]. Low selectivity at full conversion was also reported for Pd/Ga2O3-Al2O3 catalysts in NMP as a liquid phase [268].
A bimetallic Mg-Ga-Al-layered double hydroxide (LDH) Pd catalyst is more effective than a monometallic Pd/MgO-Al2O3 system [269]. Although bimetallic Pd/Ga catalysts are just behind the pure Pd catalyst in activity, the bimetallic system shows much better selectivity in comparison with the monometallic Pd/MgO-Al2O3 catalyst without Ga. High dispersion of bimetallic Pd/Ga nanoalloy, with the average particle size of 2.6 nm, is due to the uniform distribution of Ga and the electrostatic interaction between Pd and support layer (Figure 13). Strong adhesion of MgGaAl-LDH to Al2O3 is a consequence of direct growth of the catalyst on the spherical Al2O3. Pure Pd/Ga alloys (GaPd2 and GaPd) are also moderately active, but there was no rate limitation of acetylene concentration and occupation on the catalyst surface [270]. Inkjet printing allows to obtain Pd/Ga catalysts with thin, uniform and homogeneous wall coatings over the entire channel surface [271]. But even in this case the best ethylene selectivity is only 76%. Using Ni instead of Ga in the NiMgAl-LDH catalysts is not particularly beneficial [272], although the strong interaction between Pd and Ni modulates the affinity of hydrogen to the catalyst surface in comparison with similar monometallic systems.
Deposition of Ga2O3 adlayers on Pd particles supported on alumina enhance the catalyst performance by activating edge sites [273]. The atomic layer deposition results in Ga2O3 accumulation at the edges and open facets of Pd. These edges are transformed into catalytically active terrace-like sites. The treatment promotes an increase in the number of active sites and suppresses the formation of poisoning carbonaceous deposits on open facets. The catalytically active particles acquire polyhedron shape with (111) and (100) facets (Figure 14). They show 95% ethylene selectivity at 75% acetylene conversion.

2.8.2. Bimetallic Pd-based Catalysts: Pd and Zn/Co

A series of Pd/ZnO single-atom catalysts shows 80% ethylene selectivity at nearly full acetylene conversion [274]. Decreasing the Pd loading from 1% to 0.1% and reduction of the samples at relatively low temperatures of ~100 °C leads to smaller Pd NPs with distributed single-atom Pd sites for the 0.01-Pd/ZnO catalyst (Figure 15). These high-valent Pd active sites promote electrostatic interactions with acetylene, but restrain ethylene hydrogenation due to the inability of σ-bond formation. Using Zn as an intermetallic catalyst instead of ZnO improves the performance to 90% selectivity at full conversion [275]. Nanostructured Pd-Zn-Pd ensembles have moderate σ-bonding mode for acetylene with two neighboring Pd sites and weak π-bonding of ethylene adsorption on the single Pd site.
Well-defined hollow Zn/Co ZIF rhombic dodecahedron was obtained using special modification of ZIF-67@ZIF-8 structures in the presence of Co2+ [276]. A noble metal@MOF yolk-shell composite was prepared and tested as a catalyst for acetylene hydrogenation. The high-angle annular dark-field scanning TEM (HAADF-STEM) analysis showed that Pd@H-Zn/Co-ZIF was composed of hollow coordination polymer with embedded Pd NPs (Figure 16). The obtained catalysts were compared with Pd NPs in selective acetylene hydrogenation and demonstrated high activity and ethylene selectivity at mild temperatures.
Polyols (tri-ethylene glycol and ethylene glycol) were used as a medium for Pd/Co bimetallic system preparation [277]. CoPd NPs were deposited on active carbon, MgO, and Al2O3 using poly(N-vinylpyrrolidone) as a stabilizing agent. Addition of Co led to formation of bimetallic NPs with better dispersion, as compared with monometallic Co or Pd NPs (Figure 17). Spherically shaped Co/Pd NPs of 3 nm diameter were catalytically active in hydrogenation and showed significantly higher ethylene selectivity, as compared with Pd NPs (Figure 18). The decreases in acetylene and ethylene adsorption heat were due to effects of Co on the electronic structure of Pd, whereas the increase in ethylene selectivity was caused by separation of individual Pd sites by Co incorporation.

2.8.3. Pd-Based Bimetallic Catalysts: Pd-Cu/Ag/Au

Pd single-atom alloyed structures supported on silica, with ppm content of Pd, were alloyed with gold NPs and tested in hydrogenation [278]. Interestingly, the bimetallic systems showed a 1000% better ethylene selectivity at 160 °C as compared to monometallic Pd/SiO2 with similar Pd loadings (Figure 19).
The role of Pd in this case is to increase the conversion and to decrease the reaction temperatures, whereas Au provides isolation between Pd atoms and prevents acetylene over-hydrogenation. An Au/Pd alloy with TiO2 support, prepared with the 2-nozzle system, exhibited the highest conversion (50%) with high ethylene selectivity (95%) at only 40 °C [279]. Partial coating of the most active bimetallic Au/Pd particles with the Ti precursor afforded less active catalysts due to the formation of Ti-O species. Various configurations of the particles were achieved by using different types of feeding system (single- vs. double-nozzle). Formation of bimetallic NPs was minimized by separated feeding and enhanced by co-feeding.
The results of acetylene hydrogenation over Ag- and Au-Pd/SiO2 bimetallic catalysts suggest the possibility of two alternative pathways [280]. High coverage of Pd with Ag or Au leaves small ensembles of Pd sites, which adsorb acetylene as a π-bonded complex thus promoting its semi-hydrogenation to ethylene. The lower coverage leaves much larger, contiguous and merging Pd surface sites, where acetylene is adsorbed as a multi-σ-bonded complex preferably resolved by ethane formation.
The alumina phases of Al2O3 support and the mode of metal deposition on TiO2 support dramatically affect the Pd/Ag catalyst performance. Specific combinations of electrostatic properties with acidity determine differential strength of active sites: decreasing acidity of support is caused by a decrease in site strength [281]. A core-shell Pd@Ag bimetallic catalyst of this type, showing 73.5% selectivity at 98.5% conversion, is prepared by photodeposition of Pd and Ag, with the support acting as a photocatalyst during the preparation procedure [33]. The formed species have superficial Pd core and support specific growth of Ag on the Pd particle surface during the photocatalytic deposition process. Blockage of the high coordination Pd sites by the Ag shell, as well as the increased number of isolated Pd sites, results in better performance.
A defect-rich Pd/Ag catalyst on NiTi-layered double hydroxide support was tested in acetylene hydrogenation [282]. The compromise values of selectivity (82%) and conversion (90%) were achieved by virtue of the small size and high dispersion of Pd/Ag NPs and the abundance of Ti3+ defective sites. Withdrawing of electron density from Ti3+ by Pd enhanced the Pd-support interaction. Using ZnAl instead of TiO2 significantly improved the selectivity/conversion and also the oligomer selectivity [283]. Decreased amounts of carbonaceous deposits were observed for PdAg/ZnO-Al2O3 in comparison with Pd/Al2O3, PdAg/Al2O3, and Pd/ZnO-Al2O3 (Figure 20). The results were further improved to full acetylene conversion with 83.8% ethylene selectivity at 70 °C by using mixed Mg-Ti supports [284]. Presumably, the moderate acidic sites of Mg0.5Ti0.5Oy support accelerate hydrogen-spillover effect followed by facilitated hydrogen activation and dissociation. The selectivity is additionally improved by electron transfer from basic sites and Ti3+ species of Mg0.5Ti0.5Oy support. A silica gel-supported single-atom Pd/Ag catalyst demonstrated 92.3%/92.6% selectivity/conversion due to extremely low content of Pd (ppm) [285]. The isolated electron-rich Pd atoms are capable of achieving the best results even in an ethylene-rich stream.
A bimetallic Pd/Cu (1:50) catalyst on alumina showed a good 70%/99% selectivity/conversion at 423 K [286]. The catalyst combines the properties of Cu and Pd; its high ethylene-selective activity at moderately low temperatures is attributed to facile dissociation of H2 on Pd with the immediate spillover onto Cu sites where the reaction proceeds. At lower temperatures, the ability of Cu to convert acetylene is poor (9.59%, Table 2). At higher temperatures, the acetylene conversion increases and the ethane selectivity is kept constant, but the ethylene selectivity is limited to 72% because of oligomerization. A modified Pd/Al2O3 catalyst shows better acetylene conversion at lower temperatures, but predominantly to ethane. Efficient and selective acetylene hydrogenation over Pd/Cu catalysts proceeds at higher temperatures. Copper generally acts as a surface diluent decreasing the size of the palladium ensembles. After the hydrogenation over Pd/Cu(111) catalyst, the products were simultaneously analyzed in gas phase [287], and reflection absorption infrared spectroscopy and Auger electron spectroscopy confirmed the presence of a carbonaceous layer on the surface (Figure 21). Palladium alters the nature of the carbonaceous species by promoting hydrogenation of polyacetylene, the product of copper-mediated acetylene coupling.
A silica gel-supported alloyed Pd/Cu single atom catalyst showed 85% ethylene selectivity at full acetylene conversion [288]. The mechanistic investigations confirmed the role electron transfer from Cu to Pd in promoting hydrogen (Figure 22). Pd-doped Cu/Al2O3 catalysts with 50:1 Cu/Pd ratio, prepared by co-impregnation, sequential impregnation, or colloidal approach, show 80%/98% selectivity/conversion at only 353 K [289]. It is important to note that Cu/Pd bimetallic catalysts with fixed Pd content and varied Cu loadings are not as sensitive to the reductive pretreatment as the Pd/Ag catalysts [290]. However, being reduced at 400 °C and 250 °C, these catalysts show similar behaviors.

2.8.4. Pd-Free Monometallic Catalysts: Mo

A rare reported example of a non-precious metal catalyst for acetylene hydrogenation is based on tri-, tetra-, and hexanuclear mixed-valence molybdenum clusters [291]. The liquid phase reaction was carried out in the presence of Na or Eu amalgams, the [Mo4Cl4O2(OCH3)6(CH3OH)4] complex, and methanol as a medium. After the catalyst reduction, ethylene and ethane were detected in the parallel reactions simultaneously. After addition of tributylphosphine to Mo-complex, both ethylene and ethane yields increased more than 50% (Figure 23).

2.8.5. Pd-Free Monometallic Catalysts: Au

Gold catalysts, obtained by photo-dependent synthesis, showed 80% ethylene selectivity at full acetylene conversion after 12 h at 225 °C [292]. The best of them, 1% Au/C-TiO2 and 5% Au/C-TiO2, were tested for different H2/C2H2 ratios. At low H2/C2H2, both catalysts showed higher ethylene selectivities at limited acetylene conversion. Reciprocally, the excess of C2H2 favored its high conversion with low ethylene selectivity. After reduction at 250 °C, the 1% Au/C-TiO2 stably supported full acetylene conversion with 80% ethylene selectivity.

2.8.6. Pd-Free Monometallic Catalysts: In

Indium oxide catalysts showed extraordinary good results at 550 K, with 85% ethylene selectivity at full conversion even for the ethylene excess conditions [293]. The most stable surface configuration, In2O3-y(111), was chosen to investigate the mechanisms of the main reaction and side reactions. Formation of a unique In3O5 site with O vacancy was predicted by theoretical calculations. Acetylene and H2 molecules co-adsorb to the catalytic site composed of In trimer and adjacent O atoms. This is an example of single-ensemble heterogeneous catalysis, which requires several particular atoms surrounding the empty site for the reaction to occur.

2.8.7. Pd-Free Bimetallic Catalysts: Ni/Zn

Nickel-zinc catalysts specifically suppress the oligomeric species formation by decreasing acetylene adsorption energy. This effect contributes to the higher ethylene selectivity [294]. Isotope labeling studies in a batch reactor confirmed that ethane was produced from both acetylene and ethylene, while oligomeric species were produced from acetylene only. Partial hydrogenation of acetylene led to adsorbed vinyl, which immediately reacted with adsorbed acetylene yielding C4H5, whose reaction with adsorbed hydrogen yielded butadiene as a final product (1-butene, cis-2-butene, and trans-2-butene can also be formed depending on the hydrogen availability). The carbohydrates can desorb from the catalyst surface and further react with acetylene molecules to form higher molecular weight oligomers. Transition states for vinyl hydrogenation and C-C bond formation on Ni and NiZn are shown in Figure 24.

2.8.8. Pd-Free Bimetallic Catalysts: Fe/Mo

Nitrogenases (Nases) are able to reduce nitrogen to ammonia and acetylene to ethylene [295,296,297,298,299,300,301]. Inorganic Fe/Mo clusters with a [Fe2MoOS3] core resemble a part of FeMo-cofactor, the active center of nitrogenases [302]. The dihydride complex reduced acetylene to ethylene via the vinyl monohydride complex; the detailed mechanism, verified by using various combinations of reductants, substrates, and heavy water, is shown in Figure 25. Even very small (2.0 ± 0.5 nm) and probably planar Fe2,3+ oxide NPs on slightly acidic inorganic oxide supports (TiO2, ZrO2, or ZnO) are capable of mimicking the natural enzyme activities [303]. Surprisingly, these catalysts selectively and almost totally reduce acetylene and other alkynes not only in batch reactors, but also in flowing streams. Mixed Fe-oxides dissociate and transfer hydrogen onto alkynes in a chemo- and stereoselective manner. Cheap, nontoxic, ligand-free, and ambient condition-resistant, the solid iron catalysts ensure cis-selective semi-hydrogenation of different alkynes, including acetylene, in high yields and with good selectivities.

2.8.9. Pd-Free Bimetallic Catalysts: Pt/Sn

Colloidally prepared platinum and platinum-tin nanocrystals with controllable structural properties were tested in the acetylene semi-hydrogenation [304]. The ligand-free and ligand-capped bimetallic catalysts were separately compared with Pt NPs to sort out possible specific effects of Sn and organic ligands (Figure 26). Using dodecylamine (DDA) promoted a decrease in the unwanted ethylene hydrogenation. Organic ligands are thought to act by diluting or blocking the large Pt ensembles (E sites), while diminishing the surface enrichment of Sn, and thereby suppress ethylene hydrogenation. The bimetallic dodecylamine-capped Pt/Sn catalyst showed the best selectivity in this series, especially relative to the ligand-free and pure Pt catalysts.

2.8.10. Pd-Free Bimetallic Catalysts: Cu/Au

The synergistic effect of bimetallic Cu/Au catalyst is provided by a combo of the electronic effect and the sintering resistance [305]. As it is, the bimetallic 1:3 Cu/Au catalyst shows an upgraded performance (Figure 27). Probably, the gold renders the copper more electron-deficient. The added amounts of Au reduce the size of Cu ensembles, which suppresses the C-C coupling reactions and results in better ethylene desorption. When Cu dominates in the alloy, the selectivity is very low; the addition of Au leads to an increase in selectivity.

2.8.11. Non-Metallic Catalysts

A one-atom-thick layer of carbon atoms effectively catalyzed the selective acetylene semi-hydrogenation in the absence of a metal [306]. This graphene-based material was catalytically active at room temperature, but achieved its utmost performance at 110–120 °C, with 99% acetylene conversion and 21% ethylene conversion. GO was able to convert 50.6% of acetylene with no measurable ethylene hydrogenation at 150 °C, while rGO converted all acetylene with only 5% ethylene hydrogenation. These results indicate a very high potential of graphene-based catalysts (Table 3). Given that the graphene oxides were contaminated with ppm traces of metals (Fe and Mn) due to the presence of these metals in the parent graphite, the results were validated in additional experiments. Selected GO samples were purposefully contaminated with two known amounts of MnCl2 and PdCl2 before testing. The results confirmed the intrinsic catalytic potential of graphene materials.
Multiwalled carbon nanotubes (MWCNTs) showed 90% acetylene conversion at 350 °C [307]. The ethylene selectivity constituted ~90% and loosely depended on the acetylene concentration. The higher temperatures led to acetylene decomposition and oligomerization, while the lower temperatures provided no support to acetylene conversion (3% at 80 °C). The nanotubes had cylindrical shape of 10 to 60 nm in diameter (Figure 28). The thicker tubes had thick walls and no sharp bends; the thinner tubes comprised thin walls and a large number of bends. Metal NPs contaminated the inner space of the tubes, and it was impossible to remove them even by heating at reflux in nitric acid. The high number of defects, the low oxygen content, and basicity of the surface compromised the MWCNT performance in selective acetylene hydrogenation.
In summary, the unique properties of Pd-based complexes and nanostructures make them the catalysts of choice for the ethylene-selective acetylene hydrogenation. Huge variety of the available Pd-based materials allows fine tuning of the catalytic process to optimize relative values of selectivity, conversion, and other parameters. Nevertheless, the Pd-based catalysts have certain drawbacks, hence the prospective relevance of their non-Pd and metal-free counterparts.

2.9. Synthesis of Vinyl Chloride

Polyvinyl chloride is a commodity chemical, which is employed in manufacturing of electric wires, water pipes and fittings, plastic membranes, and many other items. The monomer, vinyl chloride (VCM), is produced by two alternative routes. The first is based on chlorination and oxychlorination of ethylene, the second is the direct catalytic hydrochlorination of acetylene (Scheme 94).
In industry, the hydrochlorination proceeds at temperatures 130–180 °C with a catalyst, mercuric chloride HgCl2, supported on activated carbon (AC). However, HgCl2 is highly toxic and causes environmental pollution. An active search for environment-friendly alternative catalytic systems is currently under way.
Noble (Au, Pt, Pd) and some non-noble metal catalysts have been intensively studied as an alternative to catalize the hydrochlorination reaction. Hutchings and co-workers [308] was the first who demonstrated the high activity of AuCl3 and dynamic nature of catalyst caused Au3+ to Au0 reduction during the reaction. Treatment of the catalyst with aqua regia was proposed as an effective regeneration method for this system [309]. Specific effects of the aqua regia constituents, HCl/HNO3, as well as the metal/support modifications in the course of deactivation/regeneration of Au catalysts, were also demonstrated [310,311,312]. Despite HCl and HNO3 being able to affect the carbon support prior to deposition, the enhancement effect of aqua regia was observed only in the presence of Au during the impregnation step of the catalyst preparation. This was considered to be due to the oxidizing effect of HNO3 on both the carbon support and gold, in combination with the nucleation effect of HCl on gold particles over the carbon surface. The activity depends on the presence of Au3+ species in the catalyst, and their spatial distribution in particular (not only the concentration matters).
Despite the glorious history of the catalysis by gold, its mechanistic understanding is still incomplete. A series of gold catalysts was prepared by using the aqueous HCl/HF pretreated activated carbon at 300 °C (Cat300), 600 °C (Cat600), and 900 °C (Cat900, Figure 29) [313]. The C2H2 temperature-programmed desorption of the catalysts was also measured. Compared with Catoriginal and CatHF, the CatHCl catalyst showed an increased initial activity with the same decrement over time.
The results indicate that dispersibility of gold positively correlates with the stability of the catalyst. Accordingly, the C2H2 adsorption/activation capacity negatively correlates with both the catalyst stability and gold dispersibility. Which means, that the active site is not composed entirely of gold dispersed on the carbon surface, and that the carbon itself works as a constituent part of the site responsible for the acetylene activation.
Stability of Au-catalysts can be enhanced by inhibiting Au3+ reduction [314], which can be achieved by strengthening the adsorption of hydrogen chloride to the catalyst. The enhanced catalytic activity and stability of AuCl3/PPy–MWCNTs in acetylene hydrochlorination, as compared with AuCl3/MWCNT, is explained as follows. During the reaction, a lone pair on the nitrogen atom of pyrrole is transferred to the Au3+ center via the metal-support interaction. This event increases the electron density of the Au3+ center to strengthen the bond between HCl and AuCl3. Other N-doped material-based catalysts, such as carbon [315], carbon nanotubes [316], SiC [317], graphene [318] were studied with some interesting results; however, the low conversion efficiencies and high energy demands do not contribute to their commercial applicability. The nitrogen-containing ligands are able to inhibit the reduction of Au3+ to Au0 [319], although the synthesis of AuCl3 complex with 1,10-phenanthroline [AuCl2(phen)]Cl and its successful application in acetylene hydrochlorination have been reported [320].
Catalytic stability of Au catalysts can be improved by addition of a second metal component, for example, CoCl3 [321] or CsCl [322,323]. Currently available Au catalysts for hydrochlorination contain more than 1 wt % of Au. Addition of Cu as a third metallic component to an AC-supported AuCs catalyst allowed obtaining of a trimetallic catalyst with enhanced activity and stability at ~0.25 wt % Au loading [324]. Particularly remarkable activity enhancement in this series was shown by a catalyst with 1:1:4 Au:Cu:Cs weight ratio, at turnover frequency of 73.8 min−1 based on Au. The synergy between Au, Cu, and Cs is associated with enhancements in dispersion of Au particles, stabilization of Au in the state of Au3+, and adsorption kinetics of the C2H2 substrate molecules.
Trimetallic Au–Co(III)–Cu(II) catalysts were prepared by using spherical AC (SAC) as a support [325]. The best performance in this series was achieved with Au1Co(III)3-Cu(II)1/SAC, showing 99.9% VCM selectivity at 99.7% acetylene conversion.
ACs have micropores and no interconnected porous network. Mesoporous carbons with regularly interconnected 2–50 nm mesopores could provide an excellent alternative support for the acetylene hydrochlorination catalysts. Mesoporous carbon materials with controllable pore sizes within the range of 5.6–40.2 nm were synthesized using colloidal silica as hard templates and boric acid as a pore expanding agent. The Au catalysts on mesoporous carbon showed excellent performances with increased acetylene conversion. Another material, γ-Al2O3, was used as support for an AuCl3-CuCl2 bimetallic catalyst. The AuCl3-CuCl2/γ-Al2O3 catalyst promoted 97% acetylene conversion, which is close to AuCl3–CuCl2/AC. The advantages of using γ-Al2O3 as a support are provided by its mechanical strength and mesoporous structure. Some zeolite-supported Pd catalysts [326,327,328] are also good for acetylene hydrochlorination.
Another important trend in the acetylene hydrochlorination catalysis involves ruthenium. The calculated activation barriers for acetylene hydrochlorination over HgCl2, AuCl3 and RuCl3 constitute 16.3, 11.9, and 9.1 kcal mol−1, respectively [329]. Certain advantages of Ru catalysts make them a proper alternative to other metal catalysts.
Catalytic performance of Ru-catalysts including monometallic Ru, bimetallic Ru–Cu and Ru–Co with spheric active carbon (SAC) as the support was studied [330]. C2H2 conversion and the selectivity to vinyl chloride (VCM) over monometallic and bimetallic Ru-catalysts are depicted at Figure 30 and Figure 31 (reaction conditions: T = 170 °C, C2H2 GHSV = 180 h−1, V(HCl)/V(C2H2) = 1.1).
The 1%Ru/SAC catalyst is capable of 91% acetylene conversion at 48 h on stream. Addition of cobalt significantly enhances its catalytic activity leading to 95% acetylene conversion at 48 h on stream, whereas addition of copper results in lower acetylene conversion. A remarkable 99.9% VCM selectivity at 95.0% acetylene conversion has been shown by RuCl3/MWCNT catalyst under 170 °C, C2H2 GHSV= 90 h−1, and V(HCl)/V(C2H2) = 1.1 for 10 h [331].
Potassium represents a promising promoter for Ru catalysis [332]. RuCl3-KCl/SAC catalysts perform better than Ru/SAC catalysts, with the optimal conversion of acetylene over Ru1K1/SAC reaching 93.4% under 170 °C, C2H2 hourly space velocity (GHSV) of 180 h−1, and V(HCl)/V(C2H2) = 1.1 feed volume ratio.
Among a variety of non-noble metals, Cu occupies a worthy position due to its low cost and good thermostability. A catalyst with 400 ppm Ru and 4.24 wt % Cu on carbon nanotubes was highly active (TOF = 1.81 min−1) due the synergistic effect between Cu and Ru [333]. Despite the slower acetylene hydrogenation rates in comparison with AuCl3 catalysts, this catalyst is superior to other metal complexes known to catalyze this reaction (Figure 32).
Nitrogen-doping of AC [334] and its chemical modification by consecutive nitration, amination and reaction with pyridine [335] were also performed to improve the activity and stability of Ru-based catalysts.
Despite the obvious advantages of Ru catalysts, their usage is fraught with risks of coke deposition. The imidazolium-based ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4), 1-butyl-3-methylimidazoliumhexafluorophosphate ([BMIM]PF6), and 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), were tested as possible inhibitors of the coke deposition [336]. An exemplary Ru10%[BMIM]BF4/AC catalyst achieved 99.8% VCM selectivity at 98.9% acetylene conversion under 170 °C and C2H2 (GHSV) of 180 h−1. The results indicate that the addition of imidazolium-based ionic liquids can significantly improve the dispersion of ruthenium species and prevent the coke deposition.

2.10. Emerging Fundamental Concepts for Alkynes Transformations

As has been shown in the previous sections (2.1–2.9), the chemistry of acetylene is diverse and occupies a unique position in organic synthesis. Undoubtedly, the synthetic utility of acetylene will be further expanded to a number of new opportunities. Effective translation of new concepts from the emerging areas of alkyne chemistry plays an important role and essentially increases synthetic potential of acetylene. Examples of useful concepts from the area of substituted alkyne chemistry will be briefly discussed in this section. It should be noted, that no detailed coverage of alkyne chemistry will be provided in this section. Instead, it provides a representative selection of recent examples as conceptual highlights. The key emphasis is made on efficient increase in molecular complexity, which is a priority goal in modern organic chemistry [337].
The orthogonality of the two π-orbitals in alkynes can be used for the metal-free cascade transformations [338]. The existing examples include ionic chemistry of neutral hydrocarbons, preparation of radicals without radical initiators, generation of excited states without light, “1,2-dicarbene reactivity” of alkynes in “boomerang” radical processes, selective conversion of alkynes into carbonyl compounds, and full disassembly of the alkyne moiety (Figure 33) [338]. This feature provides an access to a wide scope of organic molecules.
The unique property of triple bond is in a high exergonic effect in comparison with the analogous double bond. It explains one of the reasons of the richness of acetylene chemistry in comparison with the unsaturated compounds with double bond (Figure 34) [339]. The high exergonic effect provides a driving force for a number of fascinating transformations. On the other hand, the unique combination of electronic and structural properties balances the activation energy barriers and favors the formation of relatively stable intermediate species. Trapping of relatively stable intermediates provides the mechanistic means for a diversity of organic functionalizations.
Cascade reactions with polyacetylenic derivatives have been recently described as an effective one-pot route to increased molecular complexity [338,339]. Interestingly, a minor activating influence on a triple bond of the polyacetylene molecule is sufficient to initiate the avalanche-like process with all the other reactive centers (Figure 35). The use of metal catalysis or a radical initiator triggers the cascade process and directs the pathway toward polyaromatics [340,341].
The methodology is advantageous since it requires the minimal quantities of a catalyst or other initiator. This advantage is explained by the specific properties of triple bond mentioned above (see Figure 34); the mechanism has been discussed in the literature [341]. Compatibility of the cascade reactions with Sonogashira cross-coupling and other transformations [342,343] makes them relevant for fine organic synthesis. Although this concept of increasing molecular complexity was not yet applied to the unsubstituted acetylene, we believe that its potential should be thoroughly evaluated.
Synthesis of macrocyclic polyethynes is another way of rapid assembling of complex molecular structures, especially in combination with the involvement of energy-reach macrocycles in further transformations. In a recent article, an example of successive phenyl acetylene 168 polymerization was described [344]. By subsequent propagation-insertion on a catalyst 169, a cyclic polyethyne 170 of Mn = 45,600 Da was obtained in a high yield (Scheme 95). Since the cyclic polymers have no terminal groups, they show a number of unique physical properties [344]. For example, the density [345], refractive index [346,347], glass-transition temperature [348], viscoelasticity [349] and surface properties [350] of cyclic polymers differ from those of their linear analogues. Partial replacement of alkynes with acetylene allows obtaining a unique cyclic copolymer material, which is worth studying.
Other potential applications of acetylene are related to additive manufacturing technologies. These technologies have been dramatically upgraded in recent years, due to the progress in research and industrial development. 3D printing provides a rapid link from computer-designed digital models to prototyping/production of materials and objects of desired shape and composition. 3D printing at the molecular level seems promising for direct construction of complex molecules; however the idea is highly challenging. To pump it up to the level of technology, it would be necessary to select a scope of simple molecules (versatile, accessible and modifiable) to be used as building blocks. The simplest low-molecular weight hydrocarbons—methane, ethylene and acetylene—can be certainly considered. The key restrictions for molecular 3D printing with hydrocarbons are related to the limited possibilities of the C-H-activation and atom-economical modification. By contrast with more saturated candidates, acetylene is capable of being engaged in two atom-economical addition reactions; it has a relatively reactive hydrogen atom at each of the carbons and no unreactive C-H bonds (Table 4) [351]. Hence, it is highly probable that alkyne molecules will serve as a main building material for molecular 3D printing [351].
In this section, only few examples are shown to illustrate some important directions of acetylene chemistry. Given the rapidity of contemporary progress, many other possibilities of acetylene utilization may arise in the nearest future.

3. Conclusions

Chemistry of alkynes is a well-developed area, which represents a fundamental tool for organic synthesis. In contrast with other alkynes, the use of acetylene in research practice is rather limited, mostly due to the technical difficulties of handling gaseous acetylene and for the concomitant safety reasons. Circumvention of these obstacles would undoubtedly boost the use of acetylene in organic synthesis. A corresponding rapid trend observed in recent years favors a renaissance of acetylene chemistry, with full actualization of its rich potential.
Literature analysis carried out in the present review shows a wide scope of chemical transformations, which relate acetylene with such processes as vinylation, cross-coupling reactions, access to substituted alkynes and synthesis of heterocycles. These transformations provide an access to new drugs, pharmaceutical substances, biologically active molecules and valuable building blocks (synthones). Safe and reliable procedures for preparation of vinyl derivatives are in high demand, as they allow production of monomers for the synthesis of polymers and copolymers with unique properties. Particularly tempting are applications of acetylene-derived functionalized molecules in materials science.
Besides the noticeable progress in acetylene chemistry, several problems still remain a challenge. Of particular importance is the development of convenient practical procedures with high safety standards to utilize acetylene-based syntheses in everyday laboratory practice. Another challenging topic concerns the development of Green reactions involving acetylene, directed towards minimization of wastes and increased cost-efficiency.
Exceptional reaction capacities of acetylene are associated with several different reaction channels and complex mechanisms. Comprehensive understanding of the mechanisms of organic transformations of acetylene is one of the primary challenges. Even the well-known acetylene transformations (for example, selective hydrogenation or hydrochlorination) have rather complex mechanisms, which must be taken into account when developing chemical procedures and industrial technologies.
Considered in the present review, the current research trends clearly show that the great potential of acetylene molecule is far from being completely utilized, and a number of fascinating studies can be anticipated in the nearest future. Translation of new basic findings from alkyne chemistry to applied fields is of special importance. Cutting-edge research projects reinforce a dedicated search for effective routes of transforming acetylene into the products of increasing molecular complexity. This direction will remain a top priority in the nearest future.

Author Contributions

The review was prepared by joint work of all the co-authors on all parts of the manuscript.

Funding

Activity on the topics of organic chemistry, synthesis and applications was supported by Russian Science Foundation (RSF grant 16-13-10301). Activity on the topics of catalysis and carbon materials was supported by Russian Science Foundation (RSF grant 14-13-01030).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hay, A.S. Oxidative coupling of acetylenes. II. J. Org. Chem. 1962, 27, 3320–3321. [Google Scholar] [CrossRef]
  2. Larock, R.C.; Yum, E.K. Synthesis of indoles via palladium-catalyzed heteroannulation of internal alkynes. J. Am. Chem. Soc. 1991, 113, 6689–6690. [Google Scholar] [CrossRef]
  3. Lin, V.S.; DiMagno, S.G.; Therien, M.J. Highly conjugated, acetylenyl bridged porphyrins: New models for light-harvesting antenna systems. Science 1994, 264, 1105. [Google Scholar] [CrossRef] [PubMed]
  4. Siemsen, P.; Livingston Robert, C.; Diederich, F. Acetylenic coupling: A powerful tool in molecular construction. Angew. Chem. Int. Ed. 2000, 39, 2632–2657. [Google Scholar] [CrossRef]
  5. Sonogashira, K. Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem. 2002, 653, 46–49. [Google Scholar] [CrossRef]
  6. Winterfeldt, E. Additions to the activated CC triple bond. Angew. Chem. Int. Ed. 1967, 6, 423–434. [Google Scholar] [CrossRef]
  7. Teles, J.H.; Brode, S.; Chabanas, M. Cationic gold(I) complexes: Highly efficient catalysts for the addition of alcohols to alkynes. Angew. Chem. Int. Ed. 1998, 37, 1415–1418. [Google Scholar] [CrossRef]
  8. Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R.Z.; Christensen, C.H.; Nørskov, J.K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320. [Google Scholar] [CrossRef] [PubMed]
  9. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R.V.; Kobayashi, T.C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; et al. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 2005, 436, 238. [Google Scholar] [CrossRef] [PubMed]
  10. Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 2010, 43, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
  11. Getman, R.B.; Bae, Y.-S.; Wilmer, C.E.; Snurr, R.Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703–723. [Google Scholar] [CrossRef] [PubMed]
  12. Diederich, F.; Stang, P.J.; Tykwinski, R.R. Acetylene Chemistry: Chemistry, Biology, and Material Science; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; p. 508. [Google Scholar]
  13. Trofimov, B.A.; Gusarova, N.K. Acetylene: New prospects of classical reactions. Russ. Chem. Rev. 2007, 76, 507. [Google Scholar] [CrossRef]
  14. Trotuş, I.-T.; Zimmermann, T.; Schüth, F. Catalytic reactions of acetylene: A feedstock for the chemical industry revisited. Chem. Rev. 2014, 114, 1761–1782. [Google Scholar] [CrossRef] [PubMed]
  15. Tedeschi, R.J. Acetylene-Based Chemical from Coal and Other Natural Resources; Dekker: New York, NY, USA, 1982; p. 232. [Google Scholar]
  16. Pässler, P.; Hefner, W.; Buckl, K.; Meinass, H.; Meiswinkel, A.; Wernicke, H.J.; Ebersberg, G.; Müller, R.; Bässler, J.; Behringer, H.; et al. Acetylene; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; Volume 1. [Google Scholar]
  17. Williams, A.; Smith, D.B. Combustion and oxidation of acetylene. Chem. Rev. 1970, 70, 267–293. [Google Scholar] [CrossRef]
  18. Weman, K. Gas welding. Welding Processes Handbook, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 13–18. [Google Scholar]
  19. Morehead, J.T.; de Chalmot, G. The manufacture of calcium carbide. J. Am. Chem. Soc. 1896, 18, 311–331. [Google Scholar] [CrossRef]
  20. Ledovskaya, M.S.; Voronin, V.V.; Rodygin, K.S. Methods for the synthesis of O-, S- and N-Vinyl derivatives. Russ. Chem. Rev. 2018, 87, 167–191. [Google Scholar] [CrossRef]
  21. Maki, Y.; Mori, H.; Endo, T. Xanthate-mediated controlled radical polymerization of N-Vinylindole derivatives. Macromolecules 2007, 40, 6119–6130. [Google Scholar] [CrossRef]
  22. Bühler, V. Polyvinylpyrrolidone Excipients for Pharmaceuticals: Povidone, Crospovidone and Copovidone; Springer: Berlin, Germany, 2005. [Google Scholar]
  23. Allsopp, M.W.; Vianello, G. Poly(vinyl chloride). In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000; Volume 28, pp. 441–468. [Google Scholar]
  24. Zhang, J.; Liu, N.; Li, W.; Dai, B. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Front. Chem. Sci. Eng. 2011, 5, 514–520. [Google Scholar] [CrossRef]
  25. Ohara, T.; Sato, T.; Shimizu, N.; Prescher, G.; Schwind, H.; Weiberg, O.; Marten, K. Acrylic acid and derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; Volume 1, pp. 347–364. [Google Scholar]
  26. Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann Wolfgang, A.; Kühn Fritz, E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge? Angew. Chem. Int. Ed. 2011, 50, 8510–8537. [Google Scholar] [CrossRef] [PubMed]
  27. Herth, G.; Schornick, G.; Fredric, L.B. Polyacrylamides and Poly(acrylic acids); Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; Volume 28. [Google Scholar]
  28. Hou, J.; Xie, J.H.; Zhou, Q.L. Palladium-catalyzed hydrocarboxylation of alkynes with formic acid. Angew. Chem. Int. Ed. 2015, 54, 6302–6305. [Google Scholar] [CrossRef] [PubMed]
  29. Osswald, J.; Kovnir, K.; Armbrüster, M.; Giedigkeit, R.; Jentoft, R.E.; Wild, U.; Grin, Y.; Schlögl, R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part II: Surface characterization and catalytic performance. J. Catal. 2008, 258, 219–227. [Google Scholar] [CrossRef]
  30. Osswald, J.; Giedigkeit, R.; Jentoft, R.E.; Armbrüster, M.; Girgsdies, F.; Kovnir, K.; Ressler, T.; Grin, Y.; Schlögl, R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions. J. Catal. 2008, 258, 210–218. [Google Scholar] [CrossRef]
  31. Khan, N.A.; Shaikhutdinov, S.; Freund, H.J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal. Lett. 2006, 108, 159–164. [Google Scholar] [CrossRef]
  32. Borodziński, A.; Bond, G.C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal. Rev. 2008, 50, 379–469. [Google Scholar] [CrossRef]
  33. Han, Y.; Peng, D.; Xu, Z.; Wan, H.; Zheng, S.; Zhu, D. Tio2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chem. Commun. 2013, 49, 8350–8352. [Google Scholar] [CrossRef] [PubMed]
  34. Sobenina, L.N.; Tomilin, D.N.; Petrova, O.V.; Mikhaleva, A.I.; Trofimov, B.A. Synthesis of secondary propargyl alcohols from aromatic and heteroaromatic aldehydes and acetylene in the system KOH-H2O-DMSO. Russ. J. Org. Chem. 2013, 49, 356–359. [Google Scholar] [CrossRef]
  35. Kutepow, N.; Viehe, H.G. Chemistry of Acetylenes; Marcel Dekker Inc.: New York, NY, USA, 1969. [Google Scholar]
  36. Vasilevsky, S.F.; Klyatskaya, S.V.; Elguero, J. One-pot synthesis of monosubstituted aryl(hetaryl)acetylenes by direct introduction of the C≡CH residue into arenes and hetarenes. Tetrahedron 2004, 60, 6685–6688. [Google Scholar] [CrossRef]
  37. Fu, R.; Li, Z. Direct synthesis of symmetric diarylethynes from calcium carbide and arylboronic acids/esters. Eur. J. Org. Chem. 2017, 2017, 6648–6651. [Google Scholar] [CrossRef]
  38. Turberg, M.; Ardila-Fierro, K.J.; Bolm, C.; Hernández, J.G. Altering copper-catalyzed A3 couplings by mechanochemistry: One-pot synthesis of 1,4-diamino-2-butynes from aldehydes, amines, and calcium carbide. Angew. Chem. Int. Ed. 2018, 57, 10718–10722. [Google Scholar] [CrossRef] [PubMed]
  39. Trofimov, B.A. Acetylene and its derivatives in reactions with nucleophiles: Recent advances and current trends. Curr. Org. Chem. 2002, 6, 1121–1162. [Google Scholar] [CrossRef]
  40. Kaewchangwat, N.; Sukato, R.; Vchirawongkwin, V.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S. Direct synthesis of aryl substituted pyrroles from calcium carbide: An underestimated chemical feedstock. Green Chem. 2015, 17, 460–465. [Google Scholar] [CrossRef]
  41. Ledovskaya, M.S.; Rodygin, K.S.; Ananikov, V.P. Calcium-mediated one-pot preparation of isoxazoles with deuterium incorporation. Org. Chem. Front. 2018, 5, 226–231. [Google Scholar] [CrossRef] [Green Version]
  42. Matake, R.; Niwa, Y.; Matsubara, H. Phase-vanishing method with acetylene evolution and its utilization in several organic syntheses. Org. Lett. 2015, 17, 2354–2357. [Google Scholar] [CrossRef] [PubMed]
  43. Voronin, V.V.; Ledovskaya, M.S.; Gordeev, E.G.; Rodygin, K.S.; Ananikov, V.P. [3 + 2]-cycloaddition of in situ generated nitrile imines and acetylene for assembling of 1,3-disubstituted pyrazoles with quantitative deuterium labeling. J. Org. Chem. 2018, 83, 3819–3828. [Google Scholar] [CrossRef] [PubMed]
  44. Wu, L.; Yan, B.; Yang, G.; Chen, Y. Green synthesis of 1-monosubstituted 1,2,3-triazoles via ‘click chemistry’ in water. Heterocycl. Commun. 2013, 19, 397. [Google Scholar] [CrossRef]
  45. Schmidt, C.D.; Kaschel, J.; Schneider, T.F.; Kratzert, D.; Stalke, D.; Werz, D.B. Donor-substituted nitrocyclopropanes: Immediate ring-enlargement to cyclic nitronates. Org. Lett. 2013, 15, 6098–6101. [Google Scholar] [CrossRef] [PubMed]
  46. Garve, L.K.B.; Barkawitz, P.; Jones, P.G.; Werz, D.B. Ring-opening 1,3-dichlorination of donor–acceptor cyclopropanes by iodobenzene dichloride. Org. Lett. 2014, 16, 5804–5807. [Google Scholar] [CrossRef] [PubMed]
  47. Cavitt, M.A.; France, S. Aluminum(III)-catalyzed, formal homo-nazarov-type ring-opening cyclizations toward the synthesis of functionalized tetrahydroindolizines. Synthesis 2016, 48, 1910–1919. [Google Scholar] [CrossRef]
  48. Jiménez-Moreno, E.; Guo, Z.; Oliveira Bruno, L.; Albuquerque Inês, S.; Kitowski, A.; Guerreiro, A.; Boutureira, O.; Rodrigues, T.; Jiménez-Osés, G.; Bernardes Gonçalo, J.L. Vinyl ether/tetrazine pair for the traceless release of alcohols in cells. Angew. Chem. 2016, 129, 249–253. [Google Scholar] [CrossRef]
  49. Jia, Z.; Wang, K.; Tan, B.; Gu, Y. Ruthenium complexes immobilized on functionalized knitted hypercrosslinked polymers as efficient and recyclable catalysts for organic transformations. Adv. Synth. Catal. 2017, 359, 78–88. [Google Scholar] [CrossRef]
  50. Wallbaum, J.; Garve, L.K.B.; Jones, P.G.; Werz, D.B. Ring-opening 1,3-halochalcogenation of cyclopropane dicarboxylates. Org. Lett. 2017, 19, 98–101. [Google Scholar] [CrossRef] [PubMed]
  51. Leger, P.R.; Murphy, R.A.; Pushkarskaya, E.; Sarpong, R. Synthetic efforts toward the lycopodium alkaloids inspires a hydrogen iodide mediated method for the hydroamination and hydroetherification of olefins. Chem. Eur. J. 2015, 21, 4377–4383. [Google Scholar] [CrossRef] [PubMed]
  52. Lu, H.-H.; Pronin, S.V.; Antonova-Koch, Y.; Meister, S.; Winzeler, E.A.; Shenvi, R.A. Synthesis of (+)-7,20-diisocyanoadociane and liver-stage antiplasmodial activity of the isocyanoterpene class. J. Am. Chem. Soc. 2016, 138, 7268–7271. [Google Scholar] [CrossRef] [PubMed]
  53. Koh Ming, J.; Khan, R.K.M.; Torker, S.; Hoveyda Amir, H. Broadly applicable Z- and diastereoselective ring-opening/cross-metathesis catalyzed by a dithiolate ru complex. Angew. Chem. Int. Ed. 2014, 53, 1968–1972. [Google Scholar]
  54. Torker, S.; Koh, M.J.; Khan, R.K.M.; Hoveyda, A.H. Regarding a persisting puzzle in olefin metathesis with ru complexes: Why are transformations of alkenes with a small substituent Z-selective? Organometallics 2016, 35, 543–562. [Google Scholar] [CrossRef]
  55. Nishimoto, Y.; Kita, Y.; Ueda, H.; Imaoka, H.; Chiba, K.; Yasuda, M.; Baba, A. Coupling reaction of enol derivatives with silyl ketene acetals catalyzed by gallium trihalides. Chem. Eur. J. 2016, 22, 11837–11845. [Google Scholar] [CrossRef] [PubMed]
  56. Iwasaki, T.; Miyata, Y.; Akimoto, R.; Fujii, Y.; Kuniyasu, H.; Kambe, N. Diarylrhodates as promising active catalysts for the arylation of vinyl ethers with grignard reagents. J. Am. Chem. Soc. 2014, 136, 9260–9263. [Google Scholar] [CrossRef] [PubMed]
  57. Favorskii, A.E. Action of potassium hydroxide on mixtures of ketones and phenylacetylene. Zhurnal Russkago Fiziko-Khimicheskago Obshchestva 1905, 37, 643–645. [Google Scholar]
  58. Favorskii, A.E. Action de la potasse caustique sur les mélanges des cétones avec le phénylacétylène. Bulletin de la Société Chimique de France 1907, 2, 1087–1088. [Google Scholar]
  59. Rodygin, K.S.; Werner, G.; Kucherov, F.A.; Ananikov, V.P. Calcium carbide: A unique reagent for organic synthesis and nanotechnology. Chem. Asian J. 2016, 11, 965–976. [Google Scholar] [CrossRef] [PubMed]
  60. Ban, M.; Yamamoto, T.; Otsuka, S. Vinylation of phenols in aqueous solution. (the researches of vinylation reaction. X.). Nippon kagaku Zassi 1956, 77, 176–182. [Google Scholar] [CrossRef]
  61. Potapov, V.A.; Panov, V.A.; Musalov, M.V.; Zhivet’eva, S.A.; Musalova, M.V.; Khabibulina, A.G.; Amosova, S.V. Efficient synthetic methods for unsaturated 3,4,5-trimethoxybenzyl sulfides and ethers. Russ. J. Org. Chem. 2016, 52, 1571–1575. [Google Scholar] [CrossRef]
  62. Orlov, A.V.; Komissarova, N.G.; Shitikova, O.V.; Spirikhin, L.V.; Yunusov, M.S. Intramolecular cyclization involving O-vinyl or O-vinylketoxime function in a number of pentacyclic triterpenoids in superbasic medium. Russ. Chem. Bull. 2013, 62, 687–691. [Google Scholar] [CrossRef]
  63. Trofimov, B.A.; Oparina, L.A.; Tarasova, O.A.; Artem’ev, A.V.; Kobychev, V.B.; Gatilov, Y.V.; Albanov, A.I.; Gusarova, N.K. Tuneable superbase-catalyzed vinylation of α-hydroxyalkylferrocenes with alkynes. Tetrahedron 2014, 70, 5954–5960. [Google Scholar] [CrossRef]
  64. Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev. 2014, 114, 1743–1760. [Google Scholar] [CrossRef] [PubMed]
  65. Miller, S.I.; Shkapenko, G. Vinylation: Kinetics and mechanism of the methoxide-catalyzed addition of methanol to phenylacetylene1. J. Am. Chem. Soc. 1955, 77, 5038–5041. [Google Scholar] [CrossRef]
  66. Matake, R.; Adachi, Y.; Matsubara, H. Synthesis of vinyl ethers of alcohols using calcium carbide under superbasic catalytic conditions (KOH/DMSO). Green Chem. 2016, 18, 2614–2618. [Google Scholar] [CrossRef]
  67. Teong, S.P.; Chua, A.Y.H.; Deng, S.; Li, X.; Zhang, Y. Direct vinylation of natural alcohols and derivatives with calcium carbide. Green Chem. 2017, 19, 1659–1662. [Google Scholar] [CrossRef]
  68. Rattanangkool, E.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S. An atom-economic approach for vinylation of indoles and phenols using calcium carbide as acetylene surrogate. Eur. J. Org. Chem. 2016, 2016, 4347–4353. [Google Scholar] [CrossRef]
  69. Rodygin, K.S.; Werner, I.; Ananikov, V.P. A green and sustainable route to carbohydrate vinyl ethers for accessing bioinspired materials with a unique microspherical morphology. ChemSusChem 2017, 11, 292–298. [Google Scholar] [CrossRef] [PubMed]
  70. Werner, G.; Rodygin, K.S.; Kostin, A.A.; Gordeev, E.G.; Kashin, A.S.; Ananikov, V.P. A solid acetylene reagent with enhanced reactivity: Fluoride-mediated functionalization of alcohols and phenols. Green Chem. 2017, 19, 3032–3041. [Google Scholar] [CrossRef]
  71. Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C−S, C−Se, and C−Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev. 2011, 111, 1596–1636. [Google Scholar] [CrossRef] [PubMed]
  72. Alonso, F.; Beletskaya, I.P.; Yus, M. Transition-metal-catalyzed addition of heteroatom−hydrogen bonds to alkynes. Chem. Rev. 2004, 104, 3079–3160. [Google Scholar] [CrossRef] [PubMed]
  73. Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon Press: Oxford, UK, 1986. [Google Scholar]
  74. Marcantoni, E.; Massaccesi, M.; Petrini, M.; Bartoli, G.; Bellucci, M.C.; Bosco, M.; Sambri, L. A novel route to the vinyl sulfide nine-membered macrocycle moiety of griseoviridin. J. Org. Chem. 2000, 65, 4553–4559. [Google Scholar] [CrossRef] [PubMed]
  75. Perez-Pineiro, R.; Dai, S.; Alvarez-Puebla, R.; Wigginton, J.; Al-Hourani, B.J.; Fenniri, H. Synthesis of sulfur-containing aryl and heteroaryl vinyls via suzuki–miyaura cross-coupling for the preparation of sers-active polymers. Tetrahedron Lett. 2009, 50, 5467–5469. [Google Scholar] [CrossRef] [PubMed]
  76. Nakabayashi, K.; Abiko, Y.; Mori, H. RAFT polymerization of S-vinyl sulfide derivatives and synthesis of block copolymers having two distinct optoelectronic functionalities. Macromolecules 2013, 46, 5998–6012. [Google Scholar] [CrossRef]
  77. Silveira, C.C.; Martins, G.M.; Mendes, S.R. Regio- and stereoselective synthesis of (Z)-2-arylsulfanyl allylic alcohols using anhydrous CeCl3 as catalyst under solvent free conditions. Tetrahedron Lett. 2013, 54, 5492–5495. [Google Scholar] [CrossRef]
  78. Liu, J.-G.; Ueda, M. High refractive index polymers: Fundamental research and practical applications. J. Mater. Chem. 2009, 19, 8907–8919. [Google Scholar] [CrossRef]
  79. Huang, H.M.; Chang, C.Y.; Liu, I.C.; Tsai, H.C.; Lai, M.K.; Tsiang Raymond, C.C. Synthesis of gold nanocomposite via chemisorption of gold nanoparticles with poly(p-methylstyrene) containing multiple bonding groups on the chain side. J. Polym. Sci. A Polym. Chem. 2005, 43, 4710–4720. [Google Scholar] [CrossRef]
  80. Gusarova, N.K.; Chernysheva, N.A.; Yas’ko, S.V.; Trofimov, B.A. Highly efficient atom economical “green chemistry” synthesis of vinyl sulfides from thiols and acetylene in water. Russ. Chem. Bull. 2013, 62, 438–440. [Google Scholar] [CrossRef]
  81. Rodygin, K.S.; Ananikov, V.P. An efficient metal-free pathway to vinyl thioesters with calcium carbide as the acetylene source. Green Chem. 2016, 18, 482–486. [Google Scholar] [CrossRef]
  82. Rodygin, K.S.; Kostin, A.A.; Ananikov, V.P. Calcium carbide as a convenient acetylene source in the synthesis of unsaturated sulfides, promising functionalized monomers. Mendeleev Commun. 2015, 25, 415–416. [Google Scholar] [CrossRef]
  83. Potapov, V.A.; Malinovich, D.A.; Amosova, S.V.; Bhasin, K.K. Synthesis of 2-(vinylselanyl)pyridine. Russ. J. Org. Chem. 2015, 51, 443–444. [Google Scholar] [CrossRef]
  84. Potapov, V.A.; Musalova, M.V.; Ishigeev, R.S.; Musalov, M.V.; Panov, V.A.; Khabibulina, A.G.; Amosova, S.V.; Bhasin, K.K. Efficient and selective syntheses of novel unsaturated chalcogen-containing pyridine derivatives. Tetrahedron Lett. 2016, 57, 5341–5343. [Google Scholar] [CrossRef]
  85. Rodygin, K.S.; Gyrdymova, Y.V.; Zarubaev, V.V. Synthesis of vinyl thioethers and bis-thioethenes from calcium carbide and disulfides. Mendeleev Commun. 2017, 27, 476–478. [Google Scholar] [CrossRef]
  86. Zhang, Y.; Chen, X.; Lan, J.; You, J.; Chen, L. Synthesis and biological applications of imidazolium-based polymerized ionic liquid as a gene delivery vector. Chem. Biol. Drug. Des. 2009, 74, 282–288. [Google Scholar] [CrossRef] [PubMed]
  87. Oshiro, Y.; Shirota, Y.; Mikawa, H. Synthesis of polymers with polar side groups. III. Tricyanovinylation of poly(N-Vinylindole) and N-Vinylindole-fumaronitrile copolymer, and dielectric properties of these polymers. Polym. J. 1974, 6, 364. [Google Scholar] [CrossRef]
  88. Hoegl, H. On photoelectric effects in polymers and their sensitization by dopants1. J. Phys. Chem. 1965, 69, 755–766. [Google Scholar] [CrossRef]
  89. Grazulevicius, J.V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. Carbazole-containing polymers: Synthesis, properties and applications. Prog. Polym. Sci. 2003, 28, 1297–1353. [Google Scholar] [CrossRef]
  90. Shmidt, E.Y.; Protsuk, N.I.; Vasil’tsov, A.M.; Ivanov, A.V.; Mikhaleva, A.I.; Trofimov, B.A. Improved method for the synthesis of 1-vinylindole. Chem. Heterocycl. Compd. 2013, 49, 404–407. [Google Scholar] [CrossRef]
  91. Rodygin, K.S.; Bogachenkov, A.S.; Ananikov, V.P. Vinylation of a secondary amine core with calcium carbide for efficient post-modification and access to polymeric materials. Molecules 2018, 23, 648. [Google Scholar] [CrossRef] [PubMed]
  92. Wünsch, J.R. Polystyrene: Synthesis, Production and Applications; Rapra Technology Limited: Croydon, UK, 2000; p. 171. [Google Scholar]
  93. Xue, F.; Deng, H.; Xue, C.; Mohamed, D.K.B.; Tang, K.Y.; Wu, J. Reaction discovery using acetylene gas as the chemical feedstock accelerated by the “stop-flow” micro-tubing reactor system. Chem. Sci. 2017, 8, 3623–3627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Luong, T.; Chen, S.; Qu, K.; McInturff, E.L.; Krische, M.J. Ruthenium(0)-catalyzed C–C coupling of alkynes and 3-hydroxy-2-oxindoles: Direct C–H vinylation of alcohols. Org. Lett. 2017, 19, 966–968. [Google Scholar] [CrossRef] [PubMed]
  95. Bertleff, W.; Roeper, M.; Sava, X. Carbonylation. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
  96. Reppe, W. Carbonylierung i. Über die umsetzung von acetylen mit kohlenoxyd und verbindungen mit reaktionsfähigen wasserstoffatomen synthesen α,β-ungesättigter carbonsäuren und ihrer derivate. Liebigs Ann. 1953, 582, 1–37. [Google Scholar] [CrossRef]
  97. Xie, H.; Lin, T.; Shi, L.; Meng, X. Acetylene carbonylation over Ni-containing catalysts: Role of surface structure and active site distribution. RSC Adv. 2016, 6, 97285–97292. [Google Scholar] [CrossRef]
  98. Lin, T.J.; Meng, X.; Shi, L. Catalytic hydrocarboxylation of acetylene to acrylic acid using Ni2O3 and cupric bromide as combined catalysts. J. Mol. Catal. A Chem. 2015, 396, 77–83. [Google Scholar] [CrossRef]
  99. Bond, J.Q.; Alonso, D.M.; Wang, D.; West, R.M.; Dumesic, J.A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 2010, 327, 1110. [Google Scholar] [CrossRef] [PubMed]
  100. Lin, T.J.; Meng, X.; Shi, L. Ni-exchanged Y-zeolite: An efficient heterogeneous catalyst for acetylene hydrocarboxylation. Appl. Catal. A General 2014, 485, 163–171. [Google Scholar] [CrossRef]
  101. Wu, L.; Liu, Q.; Jackstell, R.; Beller, M. Carbonylations of alkenes with co surrogates. Angew. Chem. Int. Ed. 2014, 53, 6310–6320. [Google Scholar] [CrossRef] [PubMed]
  102. Chinchilla, R.; Nájera, C. Chemicals from alkynes with palladium catalysts. Chem. Rev. 2014, 114, 1783–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Chen, X.; Zhu, H.; Wang, T.; Li, C.; Yan, L.; Jiang, M.; Liu, J.; Sun, X.; Jiang, Z.; Ding, Y. The 2V-P,N polymer supported palladium catalyst for methoxycarbonylation of acetylene. J. Mol. Catal. A Chem. 2016, 414, 37–46. [Google Scholar] [CrossRef]
  104. Chen, X.; Zhu, H.; Wang, W.; Du, H.; Wang, T.; Yan, L.; Hu, X.; Ding, Y. Multifunctional single-site catalysts for alkoxycarbonylation of terminal alkynes. ChemSusChem 2016, 9, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
  105. Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470. [Google Scholar] [CrossRef]
  106. Hosseini, A.; Pilevar, A.; Hogan, E.; Mogwitz, B.; Schulze, A.S.; Schreiner, P.R. Calcium carbide catalytically activated with tetra-n-butyl ammonium fluoride for sonogashira cross coupling reactions. Org. Biomol. Chem. 2017, 15, 6800–6807. [Google Scholar] [CrossRef] [PubMed]
  107. Iqbal, M.; Picken, S.J.; Dingemans, T.J. Synthesis and properties of aligned all-aromatic liquid crystal networks. High Perform. Polym. 2014, 26, 381–391. [Google Scholar] [CrossRef]
  108. Kozhemyakin, Y.; Kretzschmar, A.; Krämer, M.; Rominger, F.; Dreuw, A.; Bunz Uwe, H.F. Synthesis and properties of functional twisted tolanes. Chem. Eur. J. 2017, 23, 9908–9918. [Google Scholar] [CrossRef] [PubMed]
  109. Kitching Matthew, O.; Dixon Olivia, E.; Baumann, M.; Baxendale Ian, R. Flow-assisted synthesis: A key fragment of SR 142948A. Eur. J. Org. Chem. 2017, 2017, 6540–6553. [Google Scholar] [CrossRef]
  110. Potapov, V.; Musalov, M.; Panov, V.A.; Musalova, M.; Amosova, S. Allylation of acetylene under atmospheric pressure. Russ. J. Org. Chem. 2013, 2013, 1834–1835. [Google Scholar] [CrossRef]
  111. Boronat, M.; Laursen, S.; Leyva-Pérez, A.; Oliver-Meseguer, J.; Combita, D.; Corma, A. Partially oxidized gold nanoparticles: A catalytic base-free system for the aerobic homocoupling of alkynes. J. Catal. 2014, 315, 6–14. [Google Scholar] [CrossRef]
  112. Favorskii, A.E.; Skosarevskii, M.P. O reaktsii poroshkovatogo edkogo kali na smes fenilatsetilena s atsetonom. Zh. Russ. Khim. Ob–va. 1900, 32, 652. [Google Scholar]
  113. Tomilin, D.N.; Petrova, O.V.; Sobenina, L.N.; Mikhaleva, A.I.; Trofimov, B.A. A convenient synthesis of hetarylethynyl ketones from hetarylcarbaldehydes and acetylene. Chem. Heterocycl. Compd. 2013, 49, 341–344. [Google Scholar] [CrossRef]
  114. Shmidt, E.Y.; Bidusenko, I.A.; Protsuk, N.I.; Mikhaleva, A.I.; Trofimov, B.A. Improved synthesis of tertiary propargyl alcohols by the favorskii reaction of alkyl aryl (hetaryl) ketones with acetylene. Russ. J. Org. Chem. 2013, 49, 8–11. [Google Scholar] [CrossRef]
  115. Schmidt, E.Y.; Cherimichkina, N.A.; Bidusenko, I.A.; Protzuk, N.I.; Trofimov, B.A. Alkynylation of aldehydes and ketones using the Bu4NOH/H2O/DMSO catalytic composition: A wide-scope methodology. Eur. J. Org. Chem. 2014, 2014, 4663–4670. [Google Scholar] [CrossRef]
  116. Valova, T.M.; Gorelik, A.M.; Barachevsky, V.A. Synthesis of photochromic optically transparent polycarbonate glasses and study of their properties. Russ. J. Appl. Chem. 2017, 90, 501–506. [Google Scholar] [CrossRef]
  117. Deng, Q.; Shen, R.; Ding, R.; Zhang, L. Generation of ethynyl-grignard reagent in a falling film microreactor: An expeditious flow synthesis of propargylic alcohols and analogues. Adv. Synth. Catal. 2014, 356, 2931–2936. [Google Scholar] [CrossRef]
  118. Hylse, O.; Maier, L.; Kučera, R.; Perečko, T.; Svobodová, A.; Kubala, L.; Paruch, K.; Švenda, J. A concise synthesis of forskolin. Angew. Chem. 2017, 129, 12760–12763. [Google Scholar] [CrossRef]
  119. Hosseini, A.; Seidel, D.; Miska, A.; Schreiner, P.R. Fluoride-assisted activation of calcium carbide: A simple method for the ethynylation of aldehydes and ketones. Org. Lett. 2015, 17, 2808–2811. [Google Scholar] [CrossRef] [PubMed]
  120. Sum, Y.N.; Yu, D.; Zhang, Y. Synthesis of acetylenic alcohols with calcium carbide as the acetylene source. Green Chem. 2013, 15, 2718–2721. [Google Scholar] [CrossRef]
  121. Clarke, P.A.; Santos, S.; Martin, W.H.C. Combining pot, atom and step economy (pase) in organic synthesis. Synthesis of tetrahydropyran-4-ones. Green Chem. 2007, 9, 438–440. [Google Scholar] [CrossRef] [Green Version]
  122. Diaz Velazquez, H.; Ruiz Garcia, Y.; Vandichel, M.; Madder, A.; Verpoort, F. Water-soluble NHC-cu catalysts: Applications in click chemistry, bioconjugation and mechanistic analysis. Org. Biomol. Chem. 2014, 12, 9350–9356. [Google Scholar] [CrossRef] [PubMed]
  123. Brahma, K.; Achari, B.; Chowdhury, C. Facile synthesis of [1,2,3]-triazole-fused isoindolines, tetrahydroisoquinolines, benzoazepines and benzoazocines by palladium-copper catalysed heterocyclisation. Synthesis 2013, 45, 545–555. [Google Scholar]
  124. Sharma, S.; Saquib, M.; Verma, S.; Mishra, N.N.; Shukla, P.K.; Srivastava, R.; Prabhakar, Y.S.; Shaw, A.K. Synthesis of 2,3,6-trideoxy sugar triazole hybrids as potential new broad spectrum antimicrobial agents. Eur. J. Med. Chem. 2014, 83, 474–489. [Google Scholar] [CrossRef] [PubMed]
  125. Avula Vijay Kumar, R.; Vallela, S.; Anireddy Jaya, S.; Chamarthi Naga, R. Copper-catalyzed synthesis of N-alkylated 2-(4-substituted-1H-1,2,3-triazol-1-yl)-1H-indole-3-carbaldehyde by step-wise and one-pot three-component huisgen’s 1,3-dipolar cycloaddition reaction. J. Heterocycl. Chem. 2017, 54, 3071–3076. [Google Scholar] [CrossRef]
  126. Yu, Y.; Huang, W.; Chen, Y.; Gao, B.; Wu, W.; Jiang, H. Calcium carbide as the acetylide source: Transition-metal-free synthesis of substituted pyrazoles via [1,5]-sigmatropic rearrangements. Green Chem. 2016, 18, 6445–6449. [Google Scholar] [CrossRef]
  127. Albertin, G.; Antoniutti, S.; Bortoluzzi, M.; Botter, A.; Castro, J. Reactivity with alkene and alkyne of pentamethylcyclopentadienyl half-sandwich diazoalkane complexes of ruthenium. J. Organomet. Chem. 2016, 822, 259–268. [Google Scholar] [CrossRef]
  128. Demina, O.V.; Khodonov, A.A.; Sinauridze, E.I.; Shvets, V.I.; Varfolomeev, S.D. 5-substituted pyridylisoxazoles as effective inhibitors of platelet aggregation. Russ. Chem. Bull. 2014, 63, 2092–2113. [Google Scholar] [CrossRef]
  129. Canlas, G.M.R.; Gilbertson, S.R. [4 + 2 + 2] cycloaddition catalyzed by a new cationic rhodium-bisphosphine monooxide complex. Chem. Comm. 2014, 50, 5007–5010. [Google Scholar] [CrossRef] [PubMed]
  130. More, A.A.; Ramana, C.V. Total synthesis of the putative structure of xylarinol B. Chem. Asian J. 2014, 9, 1557–1562. [Google Scholar] [CrossRef] [PubMed]
  131. Arrowsmith, M.; Böhnke, J.; Braunschweig, H.; Celik Mehmet, A.; Claes, C.; Ewing William, C.; Krummenacher, I.; Lubitz, K.; Schneider, C. Neutral diboron analogues of archetypal aromatic species by spontaneous cycloaddition. Angew. Chem. Int. Ed. 2016, 55, 11271–11275. [Google Scholar] [CrossRef] [PubMed]
  132. Schäfer, M.; Schäfer, J.; Dewhurst Rian, D.; Ewing William, C.; Krahfuß, M.; Kuntze-Fechner Maximilian, W.; Wehner, M.; Lambert, C.; Braunschweig, H. Regioselective catalytic and stepwise routes to bulky, functional-group-appended, and luminescent 1,2-azaborinines. Chem. Eur. J. 2016, 22, 8603–8609. [Google Scholar] [CrossRef] [PubMed]
  133. Sugahara, T.; Guo, J.-D.; Sasamori, T.; Karatsu, Y.; Furukawa, Y.; Ferao, A.E.; Nagase, S.; Tokitoh, N. Reaction of a stable digermyne with acetylenes: Synthesis of a 1,2-digermabenzene and a 1,4-digermabarrelene. Bull. Chem. Soc. Jpn. 2016, 89, 1375–1384. [Google Scholar] [CrossRef]
  134. Lee, V.Y.; Gapurenko, O.A.; Minkin, V.I.; Horiguchi, S.; Sekiguchi, A. [2 + 2] cycloaddition of the schrock titanium silylidene and acetylene. Russ. Chem. Bull. 2016, 65, 1139–1141. [Google Scholar] [CrossRef]
  135. Trofimov, B.A. Preparation of pyrroles from ketoximes and acetylenes. In Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Academic Press: Cambridge, MA, USA, 1990; Volume 51, pp. 177–301. [Google Scholar]
  136. Trofimov, B.A.; Korostova, S.E.; Balabanova, L.N.; Mikhaleva, A.l. Pyrroles from ketoximes and acetylene. 7. 3-alkyl(phenyl)-2-phenylpyrroles and their N-Vinyl derivatives. Zh. Org. Khim. 1978, 14, 2182–2184. [Google Scholar]
  137. Petrova, O.V.; Sobenina, L.N.; Mikhaleva, A.I. 3-Alkyl-2-phenyl-1-vinylpyrroles from ketoximes and acetylene: An improved synthesis by the trofimov reaction. Chem. Heterocycl. Compd. 2013, 48, 1628–1633. [Google Scholar] [CrossRef]
  138. Schmidt, E.Y.; Zorina, N.V.; Ivanova, E.V.; Tatarinova, I.V.; Ushakov, I.A.; Mikhaleva, A.I.; Trofimov, B.A. One-pot synthesis of 3-(E)-styrylpyrroles from (E)-styrylmethyl ketoximes and acetylene. Mendeleev Commun. 2013, 23, 340–341. [Google Scholar] [CrossRef]
  139. Sobenina, L.N.; Stepanova, Z.V.; Petrova, O.V.; Ma, J.S.; Yang, G.; Tatarinova, A.A.; Mikhaleva, A.I.; Trofimov, B.A. Synthesis of 3-[5-(biphenyl-4-yl)pyrrol-2-yl]-1-phenylprop-2-yn-1-ones by palladium-free cross-coupling between pyrroles and haloalkynes on aluminum oxide. Russ. Chem. Bull. 2013, 62, 88–92. [Google Scholar] [CrossRef]
  140. Petrova, O.V.; Sobenina, L.N.; Ushakov, I.A.; Budaev, A.B.; Ivanov, A.V.; Samsonov, V.A.; Tikhonov, A.Y.; Trofimov, B.A. Multi-channel annulation of acetylene with 3-methyl-7,8-dihydrocinnolin-5(6H)-one oxime in the KOH/DMSO superbasic system. Mendeleev Commun. 2017, 27, 344–345. [Google Scholar] [CrossRef]
  141. Shabalin, D.A.; Dvorko, M.Y.; Schmidt, E.Y.; Protsuk, N.I.; Trofimov, B.A. Synthesis of 5-hydroxy-δ1-pyrrolines from aryl isoalkyl ketoximes and acetylene in a tuned superbase medium. Tetrahedron Lett. 2016, 57, 3156–3159. [Google Scholar] [CrossRef]
  142. Shabalin, D.A.; Dvorko, M.Y.; Schmidt, E.Y.; Ushakov, I.A.; Trofimov, B.A. Synthesis of 5-hydroxy-δ1-pyrrolines from sec-alkyl aryl ketoximes and acetylene. Tetrahedron 2016, 72, 6661–6667. [Google Scholar] [CrossRef]
  143. Shabalin, D.A.; Glotova, T.E.; Schmidt, E.Y.; Ushakov, I.A.; Mikhaleva, A.b.I.; Trofimov, B.A. Synthesis of 3,3-dimethyl-2-phenyl-3H-pyrrole from isopropyl phenyl ketoxime and acetylene: A side formation of 4,4-dimethyl-5-phenyl-1-vinyl-2-pyrrolidinone as clue to the reaction mechanism. Mendeleev Commun. 2014, 24, 100–101. [Google Scholar] [CrossRef]
  144. Shabalin, D.A.; Glotova, T.E.; Ushakov, I.A.; Dvorko, M.Y.; Vashchenko, A.V.; Smirnov, V.I.; Schmidt, E.Y.; Mikhaleva, A.b.I.; Trofimov, B.A. 2-(2-Ethynyl-1-aziranyl)-3,4-dihydro-2H-pyrrole: A one-pot assembly from isopropyl phenyl ketoxime and acetylene during the synthesis of 3H-pyrrole. Mendeleev Commun. 2014, 24, 368–369. [Google Scholar] [CrossRef]
  145. Schmidt, E.Y.; Bidusenko, I.A.; Cherimichkina, N.A.; Ushakov, I.A.; Trofimov, B.A. Polycyclic bridgehead acetals with enol functionality: One-pot assembly from aliphatic ketones and acetylene in KOH/DMSO suspension. Tetrahedron 2016, 72, 4510–4517. [Google Scholar] [CrossRef]
  146. Trofimov, B.A.; Schmidt, E.Y.; Ushakov, I.A.; Mikhaleva, A.I.; Zorina, N.V.; Protsuk, N.I.; Senotrusova, E.Y.; Skital’tseva, E.V.; Kazheva, O.N.; Alexandrov, G.G.; et al. One-pot assembly of 7-methylene-6,8-dioxabicyclo[3.2.1]octanes, congeners of frontalin, from ketones and acetylene. Eur. J. Org. Chem. 2009, 2009, 5142–5145. [Google Scholar] [CrossRef]
  147. Schmidt, E.Y.; Bidusenko, I.A.; Ushakov, I.A.; Vashchenko, A.V.; Trofimov, B.A. Decorated cyclopentadienes from acetylene and ketones in just two steps. Org. Lett. 2017, 19, 3127–3130. [Google Scholar] [CrossRef] [PubMed]
  148. Schmidt, E.Y.; Bidusenko, I.A.; Protsuk, N.I.; Ushakov, I.A.; Trofimov, B.A. Superbase-promoted selective cascade cyclization reaction of 1,5-diketones with acetylenes to methylene-6,8-dioxabicyclo[3.2.1]octanes. Eur. J. Org. Chem. 2013, 2013, 2453–2460. [Google Scholar] [CrossRef]
  149. Trofimov, B.A.; Schmidt, E.Y.; Bidusenko, I.A.; Cherimichkina, N.A.; Ushakov, I.A. Assemblage of 1-hydroxy-2-cyclopentene and 7-methylene-6,8-dioxabicyclo[3.2.1]octane from acetylene and 4-acetylpyridine molecules in a suspension of KOH-DMSO. Russ. Chem. Bull. 2014, 63, 2402–2404. [Google Scholar] [CrossRef]
  150. Trofimov, B.A.; Schmidt, E.Y.; Bidusenko, I.A.; Ushakov, I.A.; Cherimichkina, N.A.; Protsuk, N.I. Diastereoselective self-organization of acetylene and acetophenone molecules into 1-benzoyl-3-hydroxy-cyclopentene in the presence of potassium hydroxide. Russ. J. Org. Chem. 2014, 50, 1207–1209. [Google Scholar] [CrossRef]
  151. Fu, R.; Li, Z. Direct synthesis of 2-methylbenzofurans from calcium carbide and salicylaldehyde p-tosylhydrazones. Org. Lett. 2018, 20, 2342–2345. [Google Scholar] [CrossRef] [PubMed]
  152. Fakharian, M.; Keivanloo, A.; Nabid Mohammad, R. Using calcium carbide as an acetylene source for cascade synthesis of pyrrolo[2,3-b]quinoxalines via copper-free sonogashira coupling reaction. Helv. Chim. Acta 2018, 101, e1800004. [Google Scholar] [CrossRef]
  153. Shukys, J.G.; Township, C.; County, M. Trifluoroethyl Vinyl Ether Compositions and Methods for Preparing and Using the Same. US Patent 2830007A, 4 August 1958. [Google Scholar]
  154. Townsend, P.W.; Park, F. Method of Preparing 2,2,2-Trifluoroethyl Vinyl Ether. US Patent 2870218A, 20 January 1959. [Google Scholar]
  155. Campbell, K.N.; Campbell, B.K.; Eby, L.T. The preparation of acetylenic carbinols. J. Am. Chem. Soc. 1938, 60, 2882–2884. [Google Scholar] [CrossRef]
  156. Isler, O.; Wiss, O. Chemistry and biochemistry of the K vitamins. In Vitamins & Hormones; Harris, R.S., Marrian, G.F., Thimann, K.V., Eds.; Academic Press: Cambridge, MA, USA, 1959; Volume 17, pp. 53–90. [Google Scholar]
  157. McLamore, W.M.; P’An, S.Y.; Bavley, A. Hypnotics and anticonvulsants. Ii. Halogenated tertiary acetylenic carbinols. J. Org. Chem. 1955, 20, 109–117. [Google Scholar] [CrossRef]
  158. Grimme, W.; Emde, U.-M.; Emde, H. Allophanates of alpha-ethynylcarbinols. US Patent 2822379A, 4 February 1958. [Google Scholar]
  159. Elks, J. The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies; Springer: Berlin, Germany, 2014. [Google Scholar]
  160. Morton, I.K.; Hall, J.M. Concise Dictionary of Pharmacological Agents: Properties and Synonyms; Springer: Berlin, Germany, 2012; p. 342. [Google Scholar]
  161. Moutou, J.-L.; Mouton, F.; Pellegrino, G.; Dillenschneider, J.-M.; Lafay, J. A Process for Introducing a Double Bond into Position 15,16 of a Steroid. WO2011098439 (A2), 18 August 2011. [Google Scholar]
  162. Inhoffen Hans, H.; Logemann, W.; Hohlweg, W.; Serini, A. Untersuchungen in der sexualhormon-reihe. Ber. Dtsch. Chem. Ges. A/B 1971, 71, 1024–1032. [Google Scholar] [CrossRef]
  163. Ercoli, A. 3-Cyclopentyl and Cyclopentenyl Ethers of Estrone and Derivatives there of. US Patent 3159543A, 1 December 1961. [Google Scholar]
  164. Tietze, L.F.; Krimmelbein, I.K. Enantioselective total synthesis of the oral contraceptive desogestrel by a double heck reaction. Chem. Eur. J. 2008, 14, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
  165. Wuts, P.G.M.; Anderson, A.M.; Ashford, S.W.; Goble, M.P.; White, M.J.; Beck, D.; Gilbert, I.; Hrab, R.E. A chemobiological synthesis of eplerenone. Synlett 2008, 2008, 418–422. [Google Scholar] [CrossRef]
  166. Kuhnz, W.; Fritzemeier, K.H.; Hegele-Hartung, C.; Krattenmacher, R. Comparative progestational activity of norgestimate, levonorgestrel-oxime and levonorgestrel in the rat and binding of these compounds to the progesterone receptor. Contraception 1995, 51, 131–139. [Google Scholar] [CrossRef]
  167. Blickenstaff, R.T.; Ghosh, A.C.; Wolf, G.C. Total Synthesis of Steroids; Academic Press: New York, NY, USA; London, UK, 1974; p. 328. [Google Scholar]
  168. Ren, T. Diruthenium σ-alkynyl compounds:  A new class of conjugated organometallics. Organometallics 2005, 24, 4854–4870. [Google Scholar] [CrossRef]
  169. Buschbeck, R.; Low, P.J.; Lang, H. Homoleptic transition metal acetylides. Coord. Chem. Rev. 2011, 255, 241–272. [Google Scholar] [CrossRef]
  170. Long, N.J.; Williams, C.K. Metal alkynyl σ complexes: Synthesis and materials. Angew. Chem. Int. Ed. 2003, 42, 2586–2617. [Google Scholar] [CrossRef] [PubMed]
  171. Berenguer, J.R.; Lalinde, E.; Teresa Moreno, M. An overview of the chemistry of homo and heteropolynuclear platinum complexes containing bridging acetylide (μ-C≡CR) ligands. Coord. Chem. Rev. 2010, 254, 832–875. [Google Scholar] [CrossRef]
  172. Green, K.A.; Cifuentes, M.P.; Samoc, M.; Humphrey, M.G. Metal alkynyl complexes as switchable nlo systems. Coord. Chem. Rev. 2011, 255, 2530–2541. [Google Scholar] [CrossRef]
  173. Grelaud, G.; Cifuentes, M.P.; Paul, F.; Humphrey, M.G. Group 8 metal alkynyl complexes for nonlinear optics. J. Organomet. Chem. 2014, 751, 181–200. [Google Scholar] [CrossRef] [Green Version]
  174. Mei, J.; Ogawa, K.; Kim, Y.-G.; Heston, N.C.; Arenas, D.J.; Nasrollahi, Z.; McCarley, T.D.; Tanner, D.B.; Reynolds, J.R.; Schanze, K.S. Low-band-gap platinum acetylide polymers as active materials for organic solar cells. ACS Appl. Mater. Interfaces 2009, 1, 150–161. [Google Scholar] [CrossRef] [PubMed]
  175. Wong, W.-Y.; Ho, C.-L. Organometallic photovoltaics: A new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc. Chem. Res. 2010, 43, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
  176. Lüning, A.; Schur, J.; Hamel, L.; Ott, I.; Klein, A. Strong cytotoxicity of organometallic platinum complexes with alkynyl ligands. Organometallics 2013, 32, 3662–3672. [Google Scholar] [CrossRef]
  177. Meyer, A.; Bagowski, C.P.; Kokoschka, M.; Stefanopoulou, M.; Alborzinia, H.; Can, S.; Vlecken, D.H.; Sheldrick, W.S.; Wölfl, S.; Ott, I. On the biological properties of alkynyl phosphine gold(I) complexes. Angew. Chem. Int. Ed. 2012, 51, 8895–8899. [Google Scholar] [CrossRef] [PubMed]
  178. Tong, G.S.M.; Law, Y.C.; Kui Steven, C.F.; Zhu, N.; Leung King, H.; Phillips David, L.; Che, C.M. Ligand-to-ligand charge-transfer transitions of platinum(II) complexes with arylacetylide ligands with different chain lengths: Spectroscopic characterization, effect of molecular conformations, and density functional theory calculations. Chem. Eur. J. 2010, 16, 6540–6554. [Google Scholar] [CrossRef] [PubMed]
  179. Wong, K.M.-C.; Yam, V.W.-W. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: Modulation of photophysical properties through aggregation behavior. Acc. Chem. Res. 2011, 44, 424–434. [Google Scholar] [CrossRef] [PubMed]
  180. Bonuccelli, V.; Funaioli, T.; Leoni, P.; Marchetti, F.; Marchetti, L.; Pasquali, M. Synthesis and characterization of non-bridging mono- and bis-σ-η1-alkynyl derivatives of the phosphido-bridged hexaplatinum core [Pt6(μ-PBut2)4(CO)4]2+. Dalton Trans. 2016, 45, 6878–6892. [Google Scholar] [CrossRef] [PubMed]
  181. Benedetti, M.; Lamacchia, V.; Antonucci, D.; Papadia, P.; Pacifico, C.; Natile, G.; Fanizzi, F.P. Insertion of alkynes into Pt-X bonds of square planar [PtX2(N^N)] (X = Cl, Br, I) complexes. Dalton Trans. 2014, 43, 8826–8834. [Google Scholar] [CrossRef] [PubMed]
  182. Mitchenko, S.A.; Khazipov, O.V.; Krasnyakova, T.V. New stereoselective Csp2 - Csp3 coupling: Catalytic iodomethylation of acetylene with methyl iodide into E-1-iodopropene. Kinet. Catal. 2014, 55, 304–310. [Google Scholar] [CrossRef]
  183. Campos, J. Dihydrogen and acetylene activation by a gold(I)/platinum(0) transition metal only frustrated lewis pair. J. Am. Chem. Soc. 2017, 139, 2944–2947. [Google Scholar] [CrossRef] [PubMed]
  184. Hahn, C.; Miranda, M.; Chittineni, N.P.B.; Pinion, T.A.; Perez, R. Mechanistic studies on platinum(II) catalyzed hydroarylation of alkynes. Organometallics 2014, 33, 3040–3050. [Google Scholar] [CrossRef]
  185. Ortega-Moreno, L.; Peloso, R.; López-Serrano, J.; Iglesias-Sigüenza, J.; Maya, C.; Carmona, E. A cationic unsaturated platinum(II) complex that promotes the tautomerization of acetylene to vinylidene. Angew. Chem. Int. Ed. 2017, 56, 2772–2775. [Google Scholar] [CrossRef] [PubMed]
  186. Cristóbal, C.; Hernández Yohar, A.; López-Serrano, J.; Paneque, M.; Petronilho, A.; Poveda Manuel, L.; Salazar, V.; Vattier, F.; Álvarez, E.; Maya, C.; et al. Reactivity studies of iridium pyridylidenes [Tpme2Ir(C6H5)2(C(CH)3C(R)NH] (R=H, Me, Ph). Chem. Eur. J. 2013, 19, 4003–4020. [Google Scholar] [CrossRef] [PubMed]
  187. Esteruelas, M.A.; Oñate, E.; Palacios, A.U. Selective synthesis and photophysical properties of phosphorescent heteroleptic iridium(III) complexes with two different bidentate groups and two different monodentate ligands. Organometallics 2017, 36, 1743–1755. [Google Scholar] [CrossRef]
  188. Espada, M.A.F.; Poveda, M.L.; Carmona, E. Reactivity of a cationic (C5Me5)IrIII-cyclometalated phosphine complex with alkynes. Organometallics 2014, 33, 7164–7175. [Google Scholar] [CrossRef]
  189. Komine, N.; Kuramoto, A.; Nakanishi, K.; Hirano, M.; Komiya, S. Alkene and alkyne insertion into hydrogen-transition metal bonds catalyzed by palladium(0) complex. Top. Catal. 2014, 57, 960–966. [Google Scholar] [CrossRef]
  190. Helmdach, K.; Ludwig, S.; Villinger, A.; Hollmann, D.; Kosters, J.; Seidel, W.W. Synthesis and activation potential of an open shell diphosphine. Chem. Commun. 2017, 53, 5894–5897. [Google Scholar] [CrossRef] [PubMed]
  191. Helmdach, K.; Dork, S.; Villinger, A.; Seidel, W.W. Sterically encumbered metalla-diphosphines: Unlocking alkyne rotation by ptii coordination. Dalton Trans. 2017, 46, 11140–11144. [Google Scholar] [CrossRef] [PubMed]
  192. Ananikov, V.P.; Beletskaya, I.P. Alkyne and alkene insertion into metal–heteroatom and metal–hydrogen bonds: The key stages of hydrofunctionalization process. In Hydrofunctionalization; Ananikov, V.P., Tanaka, M., Eds.; Springer: Berlin, Heidelberg, 2013; pp. 1–19. [Google Scholar]
  193. Musalova, M.V.; Potapov, V.A.; Musalov, M.V.; Amosova, S.V. Stereoselective synthesis of (e)-(2-bromovinyl)tellurium tribromide. Russ. J. Org. Chem. 2013, 49, 1397–1398. [Google Scholar] [CrossRef]
  194. Zeni, G.; Lüdtke, D.S.; Panatieri, R.B.; Braga, A.L. Vinylic tellurides: From preparation to their applicability in organic synthesis. Chem. Rev. 2006, 106, 1032–1076. [Google Scholar] [CrossRef] [PubMed]
  195. Mitchenko, S.A.; Khazipov, O.V.; Krasnyakova, T.V. Platinum-catalyzed addition of iodomethane to acetylene. Russ. Chem. Bull. 2013, 62, 984–988. [Google Scholar] [CrossRef]
  196. Yoshimura, A.; Saga, Y.; Sato, Y.; Ogawa, A.; Chen, T.; Han, L.-B. An efficient base-catalyzed double addition of H-phosphine oxides to alkynes. Tetrahedron Lett. 2016, 57, 3382–3384. [Google Scholar] [CrossRef]
  197. Huang, F.; Zhang, Y.; Yao, Y.; Yang, W.; Tao, Y. Synthesis of (4E,6Z,10Z)-hexadeca-4,6,10-trien-1-ol and (4E,6E,10Z)-hexadeca-4,6,10-trien-1-ol, the pheromone components of cocoa pod borer moth conopomorpha cramerella. RSC Adv. 2017, 7, 35575–35580. [Google Scholar] [CrossRef]
  198. Beevor, P.S.; Cork, A.; Hall, D.R.; Nesbitt, B.F.; Day, R.K.; Mumford, J.D. Components of female sex pheromone of cocoa pod borer moth,conopomorpha cramerella. J. Chem. Ecol. 1986, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
  199. Wang, X.; Lim Yu, N.; Lee, C.; Jang, H.Y.; Lee Bun, Y. 1,5,7-Triazabicyclo[4.4.0]dec-1-ene-mediated acetylene dicarboxylation and alkyne carboxylation using carbon dioxide. Eur. J. Org. Chem. 2013, 2013, 1867–1871. [Google Scholar] [CrossRef]
  200. Yu, D.; Sum Yin, N.; Ean Amanda Chng, C.; Chin Mei, P.; Zhang, Y. Acetylide ion (C22−) as a synthon to link electrophiles and nucleophiles: A simple method for enaminone synthesis. Angew. Chem. Int. Ed. 2013, 52, 5125–5128. [Google Scholar] [CrossRef] [PubMed]
  201. Inagaki, Y.; Nakamoto, M.; Sekiguchi, A. A diels–alder super diene breaking benzene into C2H2 and C4H4 units. Nat. Commun. 2014, 5, 3018. [Google Scholar] [CrossRef] [PubMed]
  202. Khan, A.; Lough, A.J.; Gossage, R.A.; Foucher, D.A. Pd-catalysed reactions of alkynes with model distannanes and poly[di-(n-butyl)]stannane. Dalton Trans. 2013, 42, 2469–2476. [Google Scholar] [CrossRef] [PubMed]
  203. Rossi, R.A.; Martín, S.E. Syntheses and applications of organostannanes bonded to elements of groups XIV, XV, and XVI. Coord. Chem. Rev. 2006, 250, 575–601. [Google Scholar] [CrossRef]
  204. Sachtler, W.M.H. Handbook of Heterogeneous Catalysis; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
  205. Leviness, S.; Nair, V.; Weiss, A.H.; Schay, Z.; Guczi, L. Acetylene hydrogenation selectivity control on PdCu/Al2O3 catalysts. J. Mol. Catal. 1984, 25, 131–140. [Google Scholar] [CrossRef]
  206. Wehrli, J.T.; Thomas, D.J.; Wainwright, M.S.; Trimm, D.L.; Cant, N.W. Selective hydrogenation of propyne over an ion-exchanged copper on silica catalyst. Appl. Catal. 1990, 66, 199–208. [Google Scholar] [CrossRef]
  207. Vilé, G.; Baudouin, D.; Remediakis Ioannis, N.; Copéret, C.; López, N.; Pérez-Ramírez, J. Silver nanoparticles for olefin production: New insights into the mechanistic description of propyne hydrogenation. ChemCatChem 2013, 5, 3750–3759. [Google Scholar] [CrossRef]
  208. Gieshoff, T.N.; Villa, M.; Welther, A.; Plois, M.; Chakraborty, U.; Wolf, R.; Jacobi von Wangelin, A. Iron-catalyzed olefin hydrogenation at 1 bar H2 with a FeCl3-LiAlH4 catalyst. Green Chem. 2015, 17, 1408–1413. [Google Scholar] [CrossRef]
  209. Trimm, D.L.; Cant, N.W.; Liu, I.O.Y. The selective hydrogenation of acetylene in the presence of carbon monoxide over Ni and Ni-Zn supported on MgAl2O4. Catal. Today 2011, 178, 181–186. [Google Scholar] [CrossRef]
  210. Trimm, D.L.; Liu, I.O.Y.; Cant, N.W. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Appl. Catal. A General 2010, 374, 58–64. [Google Scholar] [CrossRef]
  211. Segura, Y.; López, N.; Pérez-Ramírez, J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple-versus double-bond activation. J. Catal. 2007, 247, 383–386. [Google Scholar] [CrossRef]
  212. Nikolaev, S.A.; Smirnov, V.V.; Vasil’kov, A.Y.; Podshibikhin, V.L. Synergism of the catalytic effect of nanosized gold-nickel catalysts in the reaction of selective acetylene hydrogenation to ethylene. Kinet. Catal. 2010, 51, 375–379. [Google Scholar] [CrossRef]
  213. Nikolaev, S.A.; Smirnov, V.V. Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites. Catal. Today 2009, 147, S336–S341. [Google Scholar] [CrossRef]
  214. Liu, X.; Li, Y.; Lee, J.W.; Hong, C.-Y.; Mou, C.-Y.; Jang, B.W.L. Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au–Ag bimetallic catalyst. Appl. Catal. A General 2012, 439, 8–14. [Google Scholar] [CrossRef]
  215. Bridier, B.; López, N.; Pérez-Ramírez, J. Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues. J. Catal. 2010, 269, 80–92. [Google Scholar] [CrossRef]
  216. Bridier, B.; Pérez-Ramírez, J. Cooperative effects in ternary Cu−Ni−Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation. J. Am. Chem. Soc. 2010, 132, 4321–4327. [Google Scholar] [CrossRef] [PubMed]
  217. Vilé, G.; Bridier, B.; Wichert, J.; Pérez-Ramírez, J. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angew. Chem. Int. Ed. 2012, 51, 8620–8623. [Google Scholar] [CrossRef] [PubMed]
  218. Carrasco, J.; Vilé, G.; Fernández-Torre, D.; Pérez, R.; Pérez-Ramírez, J.; Ganduglia-Pirovano, M.V. Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J. Phys. Chem. C 2014, 118, 5352–5360. [Google Scholar] [CrossRef]
  219. Johnson, M.M.; Walker, D.W.; Nowack, G.P. Selective Hydrogenation Catalyst. US Patent 4404124, 13 September 1983. [Google Scholar]
  220. Than, C.N.; Didillion, B.; Sarrazin, P.; Cameron, C. Selective Hydrogenation Catalyst and A Process Using That Catalyst. US Patent 6054409 (A), 24 April 2000. [Google Scholar]
  221. Gabasch, H.; Hayek, K.; Klötzer, B.; Knop-Gericke, A.; Schlögl, R. Carbon incorporation in pd(111) by adsorption and dehydrogenation of ethene. J. Phys. Chem. B 2006, 110, 4947–4952. [Google Scholar] [CrossRef] [PubMed]
  222. García-Mota, M.; Bridier, B.; Pérez-Ramírez, J.; López, N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. J. Catal. 2010, 273, 92–102. [Google Scholar] [CrossRef]
  223. Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S.D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86. [Google Scholar] [CrossRef] [PubMed]
  224. Sá, J.; Arteaga, G.D.; Daley, R.A.; Bernardi, J.; Anderson, J.A. Factors influencing hydride formation in a Pd/TiO2 catalyst. J. Phys. Chem. B 2006, 110, 17090–17095. [Google Scholar] [CrossRef] [PubMed]
  225. Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A.; et al. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. Chem. Catal. Chem. 2012, 4, 1048–1063. [Google Scholar] [CrossRef]
  226. Ludwig, W.; Savara, A.; Dostert, K.-H.; Schauermann, S. Olefin hydrogenation on pd model supported catalysts: New mechanistic insights. J. Catal. 2011, 284, 148–156. [Google Scholar] [CrossRef]
  227. Nikolaev, S.A.; Zanaveskin, L.N.; Smirnov, V.V.; Averyanov, V.A.; Zanaveskin, K.L. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russ. Chem. Rev. 2009, 78, 231. [Google Scholar] [CrossRef]
  228. Kovnir, K.; Armbrüster, M.; Teschner, D.; Venkov, T.V.; Jentoft, F.C.; Knop-Gericke, A.; Grin, Y.; Schlögl, R. A new approach to well-defined, stable and site-isolated catalysts. Sci. Technol. Adv. Mater. 2007, 8, 420–427. [Google Scholar] [CrossRef] [Green Version]
  229. Vilé, G.; Almora-Barrios, N.; Mitchell, S.; López, N.; Pérez-Ramírez, J. From the lindlar catalyst to supported ligand-modified palladium nanoparticles: Selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chem. Eur. J. 2014, 20, 5926–5937. [Google Scholar] [CrossRef] [PubMed]
  230. Witte, P.T.; Berben, P.H.; Boland, S.; Boymans, E.H.; Vogt, D.; Geus, J.W.; Donkervoort, J.G. Basf nanoselect™ technology: Innovative supported Pd- and Pt-based catalysts for selective hydrogenation reactions. Top. Catal. 2012, 55, 505–511. [Google Scholar] [CrossRef]
  231. Mori, A.; Mizusaki, T.; Miyakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron 2006, 62, 11925–11932. [Google Scholar] [CrossRef]
  232. Mori, A.; Mizusaki, T.; Kawase, M.; Maegawa, T.; Monguchi, Y.; Takao, S.; Takagi, Y.; Sajiki, H. Novel palladium-on-carbon/diphenyl sulfide complex for chemoselective hydrogenation: Preparation, characterization, and application. Adv. Synth. Catal. 2008, 350, 406–410. [Google Scholar] [CrossRef]
  233. McKenna, F.M.; Mantarosie, L.; Wells, R.P.K.; Hardacre, C.; Anderson, J.A. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catal. Sci. Technol. 2012, 2, 632–638. [Google Scholar] [CrossRef]
  234. McKenna, F.-M.; Wells, R.P.K.; Anderson, J.A. Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts. Chem. Commun. 2011, 47, 2351–2353. [Google Scholar] [CrossRef] [PubMed]
  235. Kim, W.-J.; Moon, S.H. Modified Pd catalysts for the selective hydrogenation of acetylene. Catal. Today 2012, 185, 2–16. [Google Scholar] [CrossRef]
  236. Tauster, S.J.; Fung, S.C. Strong metal-support interactions: Occurrence among the binary oxides of groups IIA-VB. J. Catal. 1978, 55, 29–35. [Google Scholar] [CrossRef]
  237. Fleisch, T.H.; Hicks, R.F.; Bell, A.T. An xps study of metal-support interactions on PdSiO2 and PdLa2O3. J. Catal. 1984, 87, 398–413. [Google Scholar] [CrossRef]
  238. Sun, S.; Zhang, G.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M.N.; et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775. [Google Scholar] [CrossRef]
  239. Yang, M.; Li, S.; Wang, Y.; Herron, J.A.; Xu, Y.; Allard, L.F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498. [Google Scholar] [CrossRef] [PubMed]
  240. Xie, S.; Lu, N.; Xie, Z.; Wang, J.; Kim Moon, J.; Xia, Y. Synthesis of Pd-Rh core–frame concave nanocubes and their conversion to rh cubic nanoframes by selective etching of the pd cores. Angew. Chem. 2012, 124, 10412–10416. [Google Scholar] [CrossRef]
  241. Shao, M.; He, G.; Peles, A.; Odell, J.H.; Zeng, J.; Su, D.; Tao, J.; Yu, T.; Zhu, Y.; Xia, Y. Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores. Chem. Comm. 2013, 49, 9030–9032. [Google Scholar] [CrossRef] [PubMed]
  242. Xia, X.; Xie, S.; Liu, M.; Peng, H.-C.; Lu, N.; Wang, J.; Kim, M.J.; Xia, Y. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc. Natl. Acad. Sci. USA 2013, 110, 6669. [Google Scholar] [CrossRef] [PubMed]
  243. Xie, S.; Choi, S.-I.; Lu, N.; Roling, L.T.; Herron, J.A.; Zhang, L.; Park, J.; Wang, J.; Kim, M.J.; Xie, Z.; et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576. [Google Scholar] [CrossRef] [PubMed]
  244. Zhang, L.; Roling, L.T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Herron, J.A.; Xie, Z.; et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412. [Google Scholar] [CrossRef] [PubMed]
  245. Baldi, A.; Narayan, T.C.; Koh, A.L.; Dionne, J.A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143. [Google Scholar] [CrossRef] [PubMed]
  246. Collins, G.; Schmidt, M.; McGlacken, G.P.; O’Dwyer, C.; Holmes, J.D. Stability, oxidation, and shape evolution of PVP-capped Pd nanocrystals. J. Phys. Chem. C 2014, 118, 6522–6530. [Google Scholar] [CrossRef]
  247. Wu, J.; Helveg, S.; Ullmann, S.; Peng, Z.; Bell, A.T. Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ tem. J. Catal. 2016, 338, 295–304. [Google Scholar] [CrossRef]
  248. Niu, Y.; Zhang, B.; Luo, J.; Zhang, L.; Chen, C.M.; Su Dang, S. Correlation between microstructure evolution of a well-defined cubic palladium catalyst and selectivity during acetylene hydrogenation. ChemCatChem 2017, 9, 3435–3439. [Google Scholar] [CrossRef]
  249. Kim, S.K.; Kim, C.; Lee, J.H.; Kim, J.; Lee, H.; Moon, S.H. Performance of shape-controlled pd nanoparticles in the selective hydrogenation of acetylene. J. Catal. 2013, 306, 146–154. [Google Scholar] [CrossRef]
  250. He, Y.; Fan, J.; Feng, J.; Luo, C.; Yang, P.; Li, D. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: Effect of support acidic and basic properties. J. Catal. 2015, 331, 118–127. [Google Scholar] [CrossRef]
  251. Chesnokov, V.V.; Podyacheva, O.Y.; Richards, R.M. Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Mater. Res. Bull. 2017, 88, 78–84. [Google Scholar] [CrossRef]
  252. Zhang, H.; Cao, J.; Wu, B.; Dai, W.; Chen, Z.; Ma, M. An alumina-coated, egg-shell Pd/α-Al2O3@SiC catalyst with enhanced ethylene selectivity in the selective hydrogenation of acetylene. RSC Adv. 2016, 6, 57174–57182. [Google Scholar] [CrossRef]
  253. Liu, Z.; Zhu, Q.; Hou, N.; Fu, Y.; Wen, L.; Chen, J. Development of novel monolithic catalyst with porous hollow silica nanoparticles for selective hydrogenation reactions. Catal. Today 2013, 216, 205–210. [Google Scholar] [CrossRef]
  254. Song, H.; Yan, N.; Fei, Z.; Kilpin, K.J.; Scopelliti, R.; Li, X.; Dyson, P.J. Evaluation of ionic liquid soluble imidazolium tetrachloropalladate pre-catalysts in suzuki coupling reactions. Catal. Today 2012, 183, 172–177. [Google Scholar] [CrossRef]
  255. Yuan, X.; Sun, G.; Asakura, H.; Tanaka, T.; Chen, X.; Yuan, Y.; Laurenczy, G.; Kou, Y.; Dyson Paul, J.; Yan, N. Development of palladium surface-enriched heteronuclear Au–Pd nanoparticle dehalogenation catalysts in an ionic liquid. Chem. Eur. J. 2013, 19, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
  256. Dupont, J.; Fonseca, G.S.; Umpierre, A.P.; Fichtner, P.F.P.; Teixeira, S.R. Transition-metal nanoparticles in imidazolium ionic liquids: Recycable catalysts for biphasic hydrogenation reactions. J. Am. Chem. Soc. 2002, 124, 4228–4229. [Google Scholar] [CrossRef] [PubMed]
  257. Huang, J.; Jiang, T.; Han, B.; Gao, H.; Chang, Y.; Zhao, G.; Wu, W. Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. Chem. Commun. 2003, 1654–1655. [Google Scholar] [CrossRef]
  258. Ruta, M.; Laurenczy, G.; Dyson, P.J.; Kiwi-Minsker, L. Pd nanoparticles in a supported ionic liquid phase: Highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J. Phys. Chem. C 2008, 112, 17814–17819. [Google Scholar] [CrossRef]
  259. Zhou, T.; Jang, K.; Jang, B.W.L. Ionic liquid and plasma effects on sio2 supported pd for selective hydrogenation of acetylene. Catal. Today 2013, 211, 147–155. [Google Scholar] [CrossRef]
  260. Xie, Y.B.; Liu, C.J. Stability of ionic liquids under the influence of glow discharge plasmas. Plasma Processes Polym. 2008, 5, 239–245. [Google Scholar] [CrossRef]
  261. Riyapan, S.; Boonyongmaneerat, Y.; Mekasuwandumrong, O.; Praserthdam, P.; Panpranot, J. Effect of surface Ti3+ on the sol-gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2 catalysts. Catal. Today 2015, 245, 134–138. [Google Scholar] [CrossRef]
  262. Riyapan, S.; Boonyongmaneerat, Y.; Mekasuwandumrong, O.; Yoshida, H.; Fujita, S.-I.; Arai, M.; Panpranot, J. Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using h2-treated sol-gel tio2. J. Mol. Catal. A Chem. 2014, 383–384, 182–187. [Google Scholar] [CrossRef]
  263. McCue, A.J.; McKenna, F.-M.; Anderson, J.A. Triphenylphosphine: A ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catal. Sci. Technol. 2015, 5, 2449–2459. [Google Scholar] [CrossRef]
  264. Kim, E.; Shin, E.W.; Bark, C.W.; Chang, I.; Yoon, W.J.; Kim, W.-J. Pd catalyst promoted by two metal oxides with different reducibilities: Properties and performance in the selective hydrogenation of acetylene. Appl. Catal. A General 2014, 471, 80–83. [Google Scholar] [CrossRef]
  265. Hou, R.; Wang, T.; Lan, X. Enhanced selectivity in the hydrogenation of acetylene due to the addition of a liquid phase as a selective solvent. Ind. Eng. Chem. Res. 2013, 52, 13305–13312. [Google Scholar] [CrossRef]
  266. Smirnova, N.S.; Mironenko, O.O.; Shlyapin, D.A.; Kochubey, D.I.; Tsyrulnikov, P.G. Exafs study of model Pd/Ga2O3 catalysts for the liquid-phase hydrogenation of acetylene before and after the reaction. Bull. Russ. Acad. Sci. Phys. 2013, 77, 1151–1153. [Google Scholar] [CrossRef]
  267. Smirnova, N.S.; Shlyapin, D.A.; Shitova, N.B.; Kochubey, D.I.; Tsyrul’nikov, P.G. Exafs study of Pd/Sibunit and Pd-Ga/Sibunit catalysts for liquid-phase hydrogenation of acetylene to ethylene. J. Mol. Catal. A Chem. 2015, 403, 10–14. [Google Scholar] [CrossRef]
  268. Afonasenko, T.N.; Smirnova, N.S.; Temerev, V.L.; Leont’eva, N.N.; Gulyaeva, T.I.; Tsyrul’nikov, P.G. Pd/Ga2O3-AL2O3 catalysts for the selective liquid-phase hydrogenation of acetylene to ethylene. Kinet. Catal. 2016, 57, 490–496. [Google Scholar] [CrossRef]
  269. He, Y.; Liang, L.; Liu, Y.; Feng, J.; Ma, C.; Li, D. Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd-Ga/MgO-AL2O3 catalyst. J. Catal. 2014, 309, 166–173. [Google Scholar] [CrossRef]
  270. Zimmermann René, R.; Hahn, T.; Reschetilowski, W.; Armbrüster, M. Kinetic parameters for the selective hydrogenation of acetylene on GaPd2 and GaPd. Chem. Phys. Chem. 2017, 18, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
  271. Siebert, M.; Zimmermann René, R.; Armbrüster, M.; Dittmeyer, R. Inkjet printing of GaPd2 into micro-channels for the selective hydrogenation of acetylene. Chem. Catal. Chem. 2017, 9, 3733–3742. [Google Scholar] [CrossRef]
  272. Jin, Q.; He, Y.; Miao, M.; Guan, C.; Du, Y.; Feng, J.; Li, D. Highly selective and stable pdni catalyst derived from layered double hydroxides for partial hydrogenation of acetylene. Appl. Catal. A General 2015, 500, 3–11. [Google Scholar] [CrossRef]
  273. Ding, L.; Yi, H.; Zhang, W.; You, R.; Cao, T.; Yang, J.; Lu, J.; Huang, W. Activating edge sites on pd catalysts for selective hydrogenation of acetylene via selective Ga2O3 decoration. ACS Catal. 2016, 6, 3700–3707. [Google Scholar] [CrossRef]
  274. Zhou, H.; Yang, X.; Wang, A.; Miao, S.; Liu, X.; Pan, X.; Su, Y.; Li, L.; Tan, Y.; Zhang, T. Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation. Chin. J. Catal. 2016, 37, 692–699. [Google Scholar] [CrossRef]
  275. Zhou, H.; Yang, X.; Li, L.; Liu, X.; Huang, Y.; Pan, X.; Wang, A.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061. [Google Scholar] [CrossRef]
  276. Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem. Int. Ed. 2015, 54, 10889–10893. [Google Scholar] [CrossRef] [PubMed]
  277. Menezes, W.G.; Altmann, L.; Zielasek, V.; Thiel, K.; Bäumer, M. Bimetallic Co-Pd catalysts: Study of preparation methods and their influence on the selective hydrogenation of acetylene. J. Catal. 2013, 300, 125–135. [Google Scholar] [CrossRef]
  278. Pei, G.X.; Liu, X.Y.; Wang, A.; Li, L.; Huang, Y.; Zhang, T.; Lee, J.W.; Jang, B.W.L.; Mou, C.-Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J. Chem. 2014, 38, 2043–2051. [Google Scholar] [CrossRef]
  279. Pongthawornsakun, B.; Mekasuwandumrong, O.; Santos Aires, F.J.C.; Büchel, R.; Baiker, A.; Pratsinis, S.E.; Panpranot, J. Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au-Pd-TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Appl. Catal. A General 2018, 549, 1–7. [Google Scholar] [CrossRef]
  280. Zhang, Y.; Diao, W.; Williams, C.T.; Monnier, J.R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Appl. Catal. A General 2014, 469, 419–426. [Google Scholar] [CrossRef]
  281. Komeili, S.; Ravanchi, M.T.; Taeb, A. The influence of alumina phases on the performance of the Pd–Ag/Al2O3 catalyst in tail-end selective hydrogenation of acetylene. Appl. Catal. A General 2015, 502, 287–296. [Google Scholar] [CrossRef]
  282. Liu, Y.N.; Feng, J.T.; He, Y.F.; Sun, J.H.; Li, D.Q. Partial hydrogenation of acetylene over a niti-layered double hydroxide supported pdag catalyst. Catal. Sci. Technol. 2015, 5, 1231–1240. [Google Scholar] [CrossRef]
  283. Gao, X.; Zhou, Y.; Jing, F.; Luo, J.; Huang, Q.; Chu, W. Layered double hydroxides derived ZnO-Al2O3 supported Pd-Ag catalysts for selective hydrogenation of acetylene. Chin. J. Chem. 2017, 35, 1009–1015. [Google Scholar] [CrossRef]
  284. Liu, Y.; Zhao, J.; He, Y.; Feng, J.; Wu, T.; Li, D. Highly efficient PdAg catalyst using a reducible Mg-Ti mixed oxide for selective hydrogenation of acetylene: Role of acidic and basic sites. J. Catal. 2017, 348, 135–145. [Google Scholar] [CrossRef]
  285. Pei, G.X.; Liu, X.Y.; Wang, A.; Lee, A.F.; Isaacs, M.A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z.; et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725. [Google Scholar] [CrossRef]
  286. McCue, A.J.; McRitchie, C.J.; Shepherd, A.M.; Anderson, J.A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. J. Catal. 2014, 319, 127–135. [Google Scholar] [CrossRef]
  287. Kruppe, C.M.; Krooswyk, J.D.; Trenary, M. Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(111) single-atom alloy. ACS Catal. 2017, 7, 8042–8049. [Google Scholar] [CrossRef]
  288. Pei, G.X.; Liu, X.Y.; Yang, X.; Zhang, L.; Wang, A.; Li, L.; Wang, H.; Wang, X.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500. [Google Scholar] [CrossRef]
  289. McCue, A.J.; Shepherd, A.M.; Anderson, J.A. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catal. Sci. Technol. 2015, 5, 2880–2890. [Google Scholar] [CrossRef]
  290. Pei, G.; Liu, X.; Chai, M.; Wang, A.; Zhang, T. Isolation of Pd atoms by Cu for semi-hydrogenation of acetylene: Effects of cu loading. Chin. J. Catal. 2017, 38, 1540–1548. [Google Scholar] [CrossRef]
  291. Kuznetsov, D.A.; Bazhenova, T.A.; Fedyanin, I.V.; Martynenko, V.M.; Shestakov, A.F.; Petrova, G.N.; Komarova, N.Y.S. Tri-, tetra-, and hexanuclear mixed-valence molybdenum clusters: Structural diversity and catalysis of acetylene hydrogenation. Dalton Trans. 2016, 45, 16309–16316. [Google Scholar] [CrossRef] [PubMed]
  292. Yan, X.; Wheeler, J.; Jang, B.; Lin, W.-Y.; Zhao, B. Stable Au catalysts for selective hydrogenation of acetylene in ethylene. Appl. Catal. A General 2014, 487, 36–44. [Google Scholar] [CrossRef]
  293. Albani, D.; Capdevila-Cortada, M.; Vilé, G.; Mitchell, S.; Martin, O.; López, N.; Pérez-Ramírez, J. Semihydrogenation of acetylene on indium oxide: Proposed single-ensemble catalysis. Angew. Chem. 2017, 129, 10895–10900. [Google Scholar] [CrossRef]
  294. Spanjers, C.S.; Held, J.T.; Jones, M.J.; Stanley, D.D.; Sim, R.S.; Janik, M.J.; Rioux, R.M. Zinc inclusion to heterogeneous nickel catalysts reduces oligomerization during the semi-hydrogenation of acetylene. J. Catal. 2014, 316, 164–173. [Google Scholar] [CrossRef]
  295. Pickett, C.J. The chatt cycle and the mechanism of enzymic reduction of molecular nitrogen. J. Biol. Inorg. Chem. 1996, 1, 601–606. [Google Scholar] [CrossRef]
  296. Lee, S.C.; Holm, R.H. The clusters of nitrogenase: Synthetic methodology in the construction of weak-field clusters. Chem. Rev. 2004, 104, 1135–1158. [Google Scholar] [CrossRef] [PubMed]
  297. Dos Santos, P.C.; Dean, D.R.; Hu, Y.; Ribbe, M.W. Formation and insertion of the nitrogenase iron−molybdenum cofactor. Chem. Rev. 2004, 104, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
  298. Crossland, J.L.; Tyler, D.R. Iron–dinitrogen coordination chemistry: Dinitrogen activation and reactivity. Coord. Chem. Rev. 2010, 254, 1883–1894. [Google Scholar] [CrossRef]
  299. Burgess, B.K.; Lowe, D.J. Mechanism of molybdenum nitrogenase. Chem. Rev. 1996, 96, 2983–3012. [Google Scholar] [CrossRef] [PubMed]
  300. Jia, H.-P.; Quadrelli, E.A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564. [Google Scholar] [CrossRef] [PubMed]
  301. Barrière, F. Modeling of the molybdenum center in the nitrogenase femo-cofactor. Coord. Chem. Rev. 2003, 236, 71–89. [Google Scholar] [CrossRef]
  302. Yoshimoto, K.; Yatabe, T.; Matsumoto, T.; Tran, V.-H.; Robertson, A.; Nakai, H.; Asazawa, K.; Tanaka, H.; Ogo, S. Inorganic clusters with a [Fe2MoOS3] core - a functional model for acetylene reduction by nitrogenases. Dalton Trans. 2016, 45, 14620–14627. [Google Scholar] [CrossRef] [PubMed]
  303. Tejeda-Serrano, M.; Cabrero-Antonino, J.R.; Mainar-Ruiz, V.; López-Haro, M.; Hernández-Garrido, J.C.; Calvino, J.J.; Leyva-Pérez, A.; Corma, A. Synthesis of supported planar iron oxide nanoparticles and their chemo- and stereoselectivity for hydrogenation of alkynes. ACS Catal. 2017, 7, 3721–3729. [Google Scholar] [CrossRef]
  304. Altmann, L.; Wang, X.; Stöver, J.; Klink, M.; Zielasek, V.; Thiel, K.; Kolny-Olesiak, J.; Al-Shamery, K.; Borchert, H.; Parisi, J.; et al. Impact of organic ligands on the structure and hydrogenation performance of colloidally prepared bimetallic ptsn nanoparticles. ChemCatChem 2013, 5, 1803–1810. [Google Scholar] [CrossRef]
  305. Lee Jonathan, W.; Liu, X.; Mou, C.Y. Selective hydrogenation of acetylene over SBA-15 supported Au-Cu bimetallic catalysts. J. Chin. Chem. Soc. 2013, 60, 907–914. [Google Scholar]
  306. Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nat. Commun. 2014, 5, 5291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  307. Bychko, I.B.; Abakumov, A.A.; Lemesh, N.V.; Strizhak, P.E. Catalytic activity of multiwalled carbon nanotubes in acetylene hydrogenation. Chem. Catal. Chem. 2017, 9, 4470–4474. [Google Scholar] [CrossRef]
  308. Hutchings, G.J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295. [Google Scholar] [CrossRef]
  309. Conte, M.; Carley, A.F.; Hutchings, G.J. Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene. Catal. Lett. 2008, 124, 165–167. [Google Scholar] [CrossRef]
  310. Conte, M.; Davies, C.J.; Morgan, D.J.; Davies, T.E.; Elias, D.J.; Carley, A.F.; Johnston, P.; Hutchings, G.J. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. J. Catal. 2013, 297, 128–136. [Google Scholar] [CrossRef] [Green Version]
  311. Conte, M.; Davies, C.J.; Morgan, D.J.; Davies, T.E.; Carley, A.F.; Johnston, P.; Hutchings, G.J. Modifications of the metal and support during the deactivation and regeneration of au/c catalysts for the hydrochlorination of acetylene. Catal. Sci. Technol. 2013, 3, 128–134. [Google Scholar] [CrossRef]
  312. Conte, M.; Davies, C.J.; Morgan, D.J.; Carley, A.F.; Johnston, P.; Hutchings, G.J. Characterization of Au3+ species in Au/C catalysts for the hydrochlorination reaction of acetylene. Catal. Lett. 2014, 144, 1–8. [Google Scholar] [CrossRef]
  313. Chao, S.; Guan, Q.; Li, W. Study of the active site for acetylene hydrochlorination in AuCl3/C catalysts. J. Catal. 2015, 330, 273–279. [Google Scholar] [CrossRef]
  314. Li, X.; Zhu, M.; Dai, B. AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts. Appl. Catal. B: Environmental 2013, 142–143, 234–240. [Google Scholar] [CrossRef]
  315. li, X.; Pan, X.; Bao, X. Nitrogen Doped Carbon Catalyzing Acetylene Conversion to Vinyl Chloride. J. Energy Chem. 2014, 23, 131–135. [Google Scholar]
  316. Zhou, K.; Si, J.; Jia, J.; Huang, J.; Zhou, J.; Luo, G.; Wei, F. Reactivity enhancement of N-CNTs in green catalysis of C2H2 hydrochlorination by a cu catalyst. RSC Adv. 2014, 4, 7766–7769. [Google Scholar] [CrossRef]
  317. Li, X.; Pan, X.; Yu, L.; Ren, P.; Wu, X.; Sun, L.; Jiao, F.; Bao, X. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nat. Commun. 2014, 5, 3688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  318. Dai, B.; Chen, K.; Wang, Y.; Kang, L.; Zhu, M. Boron and nitrogen doping in graphene for the catalysis of acetylene hydrochlorination. ACS Catal. 2015, 5, 2541–2547. [Google Scholar] [CrossRef]
  319. Li, J.; Hu, J.; Li, G. Au(III)/N-containing ligand complex: A novel and efficient catalyst in carbonylation of alkyl nitrite. Catal. Comm. 2011, 12, 1401–1404. [Google Scholar] [CrossRef]
  320. Huang, C.; Zhu, M.; Kang, L.; Dai, B. A novel high-stability Au(III)/schiff-based catalyst for acetylene hydrochlorination reaction. Catal. Commun. 2014, 54, 61–65. [Google Scholar] [CrossRef]
  321. Zhang, H.; Dai, B.; Wang, X.; Li, W.; Han, Y.; Gu, J.; Zhang, J. Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Co(III)/SAC catalysts for vinyl chloride monomer production. Green Chem. 2013, 15, 829–836. [Google Scholar] [CrossRef]
  322. Zhao, J.; Xu, J.; Xu, J.; Ni, J.; Zhang, T.; Xu, X.; Li, X. Activated-carbon-supported gold-cesium(I) as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride. Chem. Plus. Chem. 2014, 80, 196–201. [Google Scholar] [CrossRef]
  323. Zhao, J.; Zhang, T.; Di, X.; Xu, J.; Xu, J.; Feng, F.; Ni, J.; Li, X. Nitrogen-modified activated carbon supported bimetallic gold-cesium(I) as highly active and stable catalyst for the hydrochlorination of acetylene. RSC Adv. 2015, 5, 6925–6931. [Google Scholar] [CrossRef]
  324. Zhao, J.; Gu, S.; Xu, X.; Zhang, T.; Di, X.; Pan, Z.; Li, X. Promotional effect of copper(II) on an activated carbon supported low content bimetallic gold-cesium(I) catalyst in acetylene hydrochlorination. RSC Adv. 2015, 5, 101427–101436. [Google Scholar] [CrossRef]
  325. Zhang, H.; Dai, B.; Li, W.; Wang, X.; Zhang, J.; Zhu, M.; Gu, J. Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co(III)-Cu(II) catalysts. J. Catal. 2014, 316, 141–148. [Google Scholar] [CrossRef]
  326. Wang, L.; Wang, F.; Wang, J.; Tang, X.; Zhao, Y.; Yang, D.; Jia, F.; Hao, T. Hydrochlorination of acetylene to vinyl chloride over Pd supported on zeolite y. React. Kinet. Mech. Catal. 2013, 110, 187–194. [Google Scholar] [CrossRef]
  327. Wang, L.; Wang, F.; Wang, J. Catalytic properties of Pd/HY catalysts modified with NH4F for acetylene hydrochlorination. Catal. Comm. 2015, 65, 41–45. [Google Scholar] [CrossRef]
  328. Wang, L.; Wang, F.; Wang, J. Non-mercury catalytic acetylene hydrochlorination over a NH4F-urea-modified Pd/HY catalyst for vinyl chloride monomer production. New J. Chem. 2016, 40, 3019–3023. [Google Scholar] [CrossRef]
  329. Zhu, M.; Kang, L.; Su, Y.; Zhang, S.; Dai, B. MClx (M = Hg, Au, Ru; x = 2, 3) catalyzed hydrochlorination of acetylene—A density functional theory study. Can. J. Chem. 2013, 91, 120–125. [Google Scholar] [CrossRef]
  330. Zhang, J.; Sheng, W.; Guo, C.; Li, W. Acetylene hydrochlorination over bimetallic Ru-based catalysts. RSC Adv. 2013, 3, 21062–21068. [Google Scholar] [CrossRef]
  331. Li, G.; Li, W.; Zhang, H.; Pu, Y.; Sun, M.; Zhang, J. Non-mercury catalytic acetylene hydrochlorination over ru catalysts enhanced by carbon nanotubes. RSC Adv. 2015, 5, 9002–9008. [Google Scholar] [CrossRef]
  332. Jin, Y.; Li, G.; Zhang, J.; Pu, Y.; Li, W. Effects of potassium additive on the activity of Ru catalyst for acetylene hydrochlorination. RSC Adv. 2015, 5, 37774–37779. [Google Scholar] [CrossRef]
  333. Xu, J.; Zhao, J.; Zhang, T.; Di, X.; Gu, S.; Ni, J.; Li, X. Ultra-low Ru-promoted CuCl2 as highly active catalyst for the hydrochlorination of acetylene. RSC Adv. 2015, 5, 38159–38163. [Google Scholar] [CrossRef]
  334. Hou, L.; Zhang, J.; Pu, Y.; Li, W. Effects of nitrogen-dopants on Ru-supported catalysts for acetylene hydrochlorination. RSC Adv. 2016, 6, 18026–18032. [Google Scholar] [CrossRef]
  335. Xu, N.; Zhu, M.; Zhang, J.; Zhang, H.; Dai, B. Nitrogen functional groups on an activated carbon surface to effect the ruthenium catalysts in acetylene hydrochlorination. RSC Adv. 2015, 5, 86172–86178. [Google Scholar] [CrossRef]
  336. Li, Y.; Dong, Y.; Li, W.; Han, Y.; Zhang, J. Improvement of imidazolium-based ionic liquids on the activity of ruthenium catalyst for acetylene hydrochlorination. Mo. Catal. 2017, 443, 220–227. [Google Scholar] [CrossRef]
  337. Ananikov, V.P.; Khemchyan, L.L.; Yu, V.I.; Bukhtiyarov, V.I.; Sorokin, A.M.; Prosvirin, I.P.; Vatsadze, S.Z.; Medved’ko, A.V.; Nuriev, V.N.; Dilman, A.D.; et al. Development of new methods in modern selective organic synthesis: Preparation of functionalized molecules with atomic precision. Russ. Chem. Rev. 2014, 83, 885. [Google Scholar] [CrossRef]
  338. Alabugin, I.V.; Gold, B. “Two functional groups in one package”: Using both alkyne π-bonds in cascade transformations. J. Org. Chem. 2013, 78, 7777–7784. [Google Scholar] [CrossRef] [PubMed]
  339. Alabugin, I.V.; Gonzalez-Rodriguez, E. Alkyne origami: Folding oligoalkynes into polyaromatics. Acc. Chem. Res. 2018, 51, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
  340. Byers, P.M.; Alabugin, I.V. Polyaromatic ribbons from oligo-alkynes via selective radical cascade: Stitching aromatic rings with polyacetylene bridges. J. Am. Chem. Soc. 2012, 134, 9609–9614. [Google Scholar] [CrossRef] [PubMed]
  341. Byers, P.M.; Rashid, J.I.; Mohamed, R.K.; Alabugin, I.V. Polyaromatic ribbon/benzofuran fusion via consecutive endo cyclizations of enediynes. Org. Lett. 2012, 14, 6032–6035. [Google Scholar] [CrossRef] [PubMed]
  342. Ravelli, D.; Protti, S.; Fagnoni, M. Carbon–carbon bond forming reactions via photogenerated intermediates. Chem. Rev. 2016, 116, 9850–9913. [Google Scholar] [CrossRef] [PubMed]
  343. Wang, T.; Naredla, R.R.; Thompson, S.K.; Hoye, T.R. The pentadehydro-diels–alder reaction. Nature 2016, 532, 484. [Google Scholar] [CrossRef] [PubMed]
  344. Roland, C.D.; Li, H.; Abboud, K.A.; Wagener, K.B.; Veige, A.S. Cyclic polymers from alkynes. Nat. Chem. 2016, 8, 791. [Google Scholar] [CrossRef] [PubMed]
  345. Garcia Bernal, J.M.; Tirado, M.M.; Freire, J.J.; Garcia de la Torre, J. Monte carlo calculation of hydrodynamic properties of linear and cyclic polymers in good solvents. Macromolecules 1991, 24, 593–598. [Google Scholar] [CrossRef]
  346. Bannister, D.J.; Semlyen, J.A. Studies of cyclic and linear poly(dimethyl siloxanes): 6. Effect of heat. Polymer 1981, 22, 377–381. [Google Scholar] [CrossRef]
  347. Orrah, D.J.; Semlyen, J.A.; Ross-Murphy, S.B. Studies of cyclic and linear poly(dimethylsiloxanes): 28. Viscosities and densities of ring and chain poly(dimethylsiloxane) blends. Polymer 1988, 29, 1455–1458. [Google Scholar] [CrossRef]
  348. Clarson, S.J.; Dodgson, K.; Semlyen, J.A. Studies of cyclic and linear poly(dimethylsiloxanes): 19. Glass transition temperatures and crystallization behaviour. Polymer 1985, 26, 930–934. [Google Scholar] [CrossRef]
  349. Griffiths, P.C.; Stilbs, P.; Yu, G.E.; Booth, C. Role of molecular architecture in polymer diffusion: A PGSE-NMR study of linear and cyclic poly(ethylene oxide). J. Phys. Chem. 1995, 99, 16752–16756. [Google Scholar] [CrossRef]
  350. Patel, A.; Cosgrove, T.; Semlyen, J.A. Studies of cyclic and linear poly(dimethylsiloxanes): 30. Adsorption studies on silica in solution. Polymer 1991, 32, 1313–1317. [Google Scholar] [CrossRef]
  351. Galkin, K.I.; Ananikov, V.P. Alkynes as a versatile platform for construction of chemical molecular complexity and realization of molecular 3D printing. Russ. Chem. Rev. 2016, 85, 226. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors.
Scheme 1. Representative examples in acetylene chemistry.
Scheme 1. Representative examples in acetylene chemistry.
Molecules 23 02442 sch001
Scheme 2. Synthesis of vinyl ethers involving acetylene.
Scheme 2. Synthesis of vinyl ethers involving acetylene.
Molecules 23 02442 sch002
Scheme 3. 3,4,5-Trimethoxybenzyl vinyl ether synthesis.
Scheme 3. 3,4,5-Trimethoxybenzyl vinyl ether synthesis.
Molecules 23 02442 sch003
Scheme 4. Triterpenoid vinylation.
Scheme 4. Triterpenoid vinylation.
Molecules 23 02442 sch004
Scheme 5. Reaction of ferrocene-derived alcohols with acetylene.
Scheme 5. Reaction of ferrocene-derived alcohols with acetylene.
Molecules 23 02442 sch005
Scheme 6. Reaction of calcium carbide with water.
Scheme 6. Reaction of calcium carbide with water.
Molecules 23 02442 sch006
Scheme 7. Vinylation of benzyl alcohols with calcium carbide.
Scheme 7. Vinylation of benzyl alcohols with calcium carbide.
Molecules 23 02442 sch007
Scheme 8. Vinylation of alcohols with calcium carbide.
Scheme 8. Vinylation of alcohols with calcium carbide.
Molecules 23 02442 sch008
Scheme 9. The synthesis of aryl vinyl ethers with calcium carbide.
Scheme 9. The synthesis of aryl vinyl ethers with calcium carbide.
Molecules 23 02442 sch009
Scheme 10. Polyvinyl ethers synthesis with in situ generated acetylene.
Scheme 10. Polyvinyl ethers synthesis with in situ generated acetylene.
Molecules 23 02442 sch010
Scheme 11. Representative scope of alcohols vinylation with CaC2 in KOH-DMSO-KF system.
Scheme 11. Representative scope of alcohols vinylation with CaC2 in KOH-DMSO-KF system.
Molecules 23 02442 sch011
Scheme 12. Addition of thiols to acetylene.
Scheme 12. Addition of thiols to acetylene.
Molecules 23 02442 sch012
Scheme 13. Reactions of carbide-induced acetylene with thiols.
Scheme 13. Reactions of carbide-induced acetylene with thiols.
Molecules 23 02442 sch013
Scheme 14. Phenyl vinyl selenide synthesis with calcium carbide.
Scheme 14. Phenyl vinyl selenide synthesis with calcium carbide.
Molecules 23 02442 sch014
Scheme 15. Vinyl chalcogenide synthesis.
Scheme 15. Vinyl chalcogenide synthesis.
Molecules 23 02442 sch015
Scheme 16. The mechanism of vinyl chalcogenides formation.
Scheme 16. The mechanism of vinyl chalcogenides formation.
Molecules 23 02442 sch016
Scheme 17. Reactions of carbide-induced acetylene with dichalcogenides.
Scheme 17. Reactions of carbide-induced acetylene with dichalcogenides.
Molecules 23 02442 sch017
Scheme 18. N-Vinyl indole synthesis.
Scheme 18. N-Vinyl indole synthesis.
Molecules 23 02442 sch018
Scheme 19. Vinylation of indoles with carbide-induced acetylene.
Scheme 19. Vinylation of indoles with carbide-induced acetylene.
Molecules 23 02442 sch019
Scheme 20. Representative scope of amine core vinylation with CaC2.
Scheme 20. Representative scope of amine core vinylation with CaC2.
Molecules 23 02442 sch020
Scheme 21. Styrenes synthesis with acetylene.
Scheme 21. Styrenes synthesis with acetylene.
Molecules 23 02442 sch021
Scheme 22. Modification of N-benzyl-3-hydroxy-2-oxindole with acetylene.
Scheme 22. Modification of N-benzyl-3-hydroxy-2-oxindole with acetylene.
Molecules 23 02442 sch022
Scheme 23. Catalytic carbonylation of acetylene.
Scheme 23. Catalytic carbonylation of acetylene.
Molecules 23 02442 sch023
Scheme 24. Hydrocarboxylation of acetylene with FA.
Scheme 24. Hydrocarboxylation of acetylene with FA.
Molecules 23 02442 sch024
Figure 1. Effect of reaction temperature on acetylene hydrocarboxylation. Reaction conditions: [Pd2(dba)3]·CHCl3 (2.5 mmol), Xantphos (50 mmol), benzoic anhydride (0.1 mmol), HCO2H (1.5 mmol), acetylene (initial pressure 10 atm, ca.12 mmol), in THF (3 mL) for 12 h (reproduced with permission from [28]. Copyright 2015, WILEY-VCH Verlag GmbH & Co., KGaA).
Figure 1. Effect of reaction temperature on acetylene hydrocarboxylation. Reaction conditions: [Pd2(dba)3]·CHCl3 (2.5 mmol), Xantphos (50 mmol), benzoic anhydride (0.1 mmol), HCO2H (1.5 mmol), acetylene (initial pressure 10 atm, ca.12 mmol), in THF (3 mL) for 12 h (reproduced with permission from [28]. Copyright 2015, WILEY-VCH Verlag GmbH & Co., KGaA).
Molecules 23 02442 g001
Figure 2. Effect of initial pressure on acetylene hydrocarboxylation. Reaction conditions: [Pd2(dba)3]·CHCl3 (2.5 mmol), Xantphos (50 mmol), benzoic anhydride (0.1 mmol), HCO2H (1.5 mmol), in THF (3 mL) at 100 °C for 12 h (reproduced with permission from [28]. Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA).
Figure 2. Effect of initial pressure on acetylene hydrocarboxylation. Reaction conditions: [Pd2(dba)3]·CHCl3 (2.5 mmol), Xantphos (50 mmol), benzoic anhydride (0.1 mmol), HCO2H (1.5 mmol), in THF (3 mL) at 100 °C for 12 h (reproduced with permission from [28]. Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA).
Molecules 23 02442 g002
Figure 3. Effect of FA formic acid concentration on acetylene hydrocarboxylation. Reaction conditions: [Pd2(dba)3]·CHCl3 (2.5 mmol), Xantphos (50 mmol), benzoic anhydride (0.1 mmol), acetylene (initial pressure 15 atm, ca. 18 mmol), in THF (3 mL) at 100 °C for 12 h (reproduced with permission from [28]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA).
Figure 3. Effect of FA formic acid concentration on acetylene hydrocarboxylation. Reaction conditions: [Pd2(dba)3]·CHCl3 (2.5 mmol), Xantphos (50 mmol), benzoic anhydride (0.1 mmol), acetylene (initial pressure 15 atm, ca. 18 mmol), in THF (3 mL) at 100 °C for 12 h (reproduced with permission from [28]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA).
Molecules 23 02442 g003
Figure 4. Effect of reaction time on acetylene hydrocarboxylation. Reaction conditions: [Pd2(dba)3]·CHCl3 (2.5 mmol), Xantphos (50 mmol), benzoic anhydride (0.1 mmol), HCO2H (3 mmol), acetylene (initial pressure 15 atm, ca.18 mmol), in THF (3 mL) at 100 °C (reproduced with permission from [28]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA).
Figure 4. Effect of reaction time on acetylene hydrocarboxylation. Reaction conditions: [Pd2(dba)3]·CHCl3 (2.5 mmol), Xantphos (50 mmol), benzoic anhydride (0.1 mmol), HCO2H (3 mmol), acetylene (initial pressure 15 atm, ca.18 mmol), in THF (3 mL) at 100 °C (reproduced with permission from [28]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA).
Molecules 23 02442 g004
Scheme 25. Palladium-catalyzed hydrocarbonylation of terminal alkynes.
Scheme 25. Palladium-catalyzed hydrocarbonylation of terminal alkynes.
Molecules 23 02442 sch025
Scheme 26. Synthesis of Pd–PyPPh2–SO3H@POPs catalyst. Reagents and conditions: (i) H2O, THF, AIBN, 120 °C; (ii) 1M H2SO4; (iii) Pd(OAc)2, THF.
Scheme 26. Synthesis of Pd–PyPPh2–SO3H@POPs catalyst. Reagents and conditions: (i) H2O, THF, AIBN, 120 °C; (ii) 1M H2SO4; (iii) Pd(OAc)2, THF.
Molecules 23 02442 sch026
Scheme 27. Palladium-catalyzed Sonogashira coupling of acetylene with methyl 4-iodobenzoate.
Scheme 27. Palladium-catalyzed Sonogashira coupling of acetylene with methyl 4-iodobenzoate.
Molecules 23 02442 sch027
Scheme 28. Cross-coupling with CaC2-derived acetylene.
Scheme 28. Cross-coupling with CaC2-derived acetylene.
Molecules 23 02442 sch028
Scheme 29. Catalytic synthesis of diphenylacetylene.
Scheme 29. Catalytic synthesis of diphenylacetylene.
Molecules 23 02442 sch029
Scheme 30. Catalytic synthesis of diarylethynes.
Scheme 30. Catalytic synthesis of diarylethynes.
Molecules 23 02442 sch030
Scheme 31. Sonogashira coupling with aryl iodides in a flow reactor.
Scheme 31. Sonogashira coupling with aryl iodides in a flow reactor.
Molecules 23 02442 sch031
Scheme 32. TBAF-promoted Sonogashira coupling of arylhalides with CaC2-derived acetylene.
Scheme 32. TBAF-promoted Sonogashira coupling of arylhalides with CaC2-derived acetylene.
Molecules 23 02442 sch032
Scheme 33. Three-component aldehyde-alkyne-amine coupling.
Scheme 33. Three-component aldehyde-alkyne-amine coupling.
Molecules 23 02442 sch033
Scheme 34. Copper-catalyzed Sonogashira-type allylation.
Scheme 34. Copper-catalyzed Sonogashira-type allylation.
Molecules 23 02442 sch034
Scheme 35. Gold-catalyzed oxidative homocoupling.
Scheme 35. Gold-catalyzed oxidative homocoupling.
Molecules 23 02442 sch035
Scheme 36. Synthesis of secondary propargyl alcohols from aldehydes.
Scheme 36. Synthesis of secondary propargyl alcohols from aldehydes.
Molecules 23 02442 sch036
Scheme 37. Reaction of alkyl aryl ketones with acetylene.
Scheme 37. Reaction of alkyl aryl ketones with acetylene.
Molecules 23 02442 sch037
Scheme 38. Bu4NOH-mediated alkynylation of carbonyl compounds.
Scheme 38. Bu4NOH-mediated alkynylation of carbonyl compounds.
Molecules 23 02442 sch038
Scheme 39. Synthesis of ferrocene-substituted propargyl alcohols.
Scheme 39. Synthesis of ferrocene-substituted propargyl alcohols.
Molecules 23 02442 sch039
Scheme 40. Favorskii alkynylation with in situ generated ethynylmagnesium bromide.
Scheme 40. Favorskii alkynylation with in situ generated ethynylmagnesium bromide.
Molecules 23 02442 sch040
Scheme 41. Favorskii alkynylation with in situ generated lithium acetylide.
Scheme 41. Favorskii alkynylation with in situ generated lithium acetylide.
Molecules 23 02442 sch041
Scheme 42. Favorskii reaction with in situ generated acetylene.
Scheme 42. Favorskii reaction with in situ generated acetylene.
Molecules 23 02442 sch042
Scheme 43. [3 + 2]-Cycloaddition of azides to acetylene, method 1.
Scheme 43. [3 + 2]-Cycloaddition of azides to acetylene, method 1.
Molecules 23 02442 sch043
Scheme 44. [3 + 2]-Cycloaddition of azides to acetylene, method 2.
Scheme 44. [3 + 2]-Cycloaddition of azides to acetylene, method 2.
Molecules 23 02442 sch044
Scheme 45. Click-reaction of o-iodo-azides with C2H2.
Scheme 45. Click-reaction of o-iodo-azides with C2H2.
Molecules 23 02442 sch045
Scheme 46. Cycloaddition with CaC2.
Scheme 46. Cycloaddition with CaC2.
Molecules 23 02442 sch046
Scheme 47. Synthesis of NH-pyrazoles from N-tosylhydrazones.
Scheme 47. Synthesis of NH-pyrazoles from N-tosylhydrazones.
Molecules 23 02442 sch047
Scheme 48. NH-Pyrazole formation mechanism.
Scheme 48. NH-Pyrazole formation mechanism.
Molecules 23 02442 sch048
Scheme 49. CaC2-mediated synthesis of isoxasoles from aldoximes.
Scheme 49. CaC2-mediated synthesis of isoxasoles from aldoximes.
Molecules 23 02442 sch049
Scheme 50. Obtaining 1,3-disubstituted pyrazoles by [3 + 2]-cycloaddition.
Scheme 50. Obtaining 1,3-disubstituted pyrazoles by [3 + 2]-cycloaddition.
Molecules 23 02442 sch050
Scheme 51. Synthesis of 3H-pyrazole derivatives of diazoalkane dipole complexes.
Scheme 51. Synthesis of 3H-pyrazole derivatives of diazoalkane dipole complexes.
Molecules 23 02442 sch051
Scheme 52. Three-component cycloaddition with acetylene.
Scheme 52. Three-component cycloaddition with acetylene.
Molecules 23 02442 sch052
Scheme 53. Cobalt-catalyzed [2 + 2 + 2]-cycloaddition.
Scheme 53. Cobalt-catalyzed [2 + 2 + 2]-cycloaddition.
Molecules 23 02442 sch053
Scheme 54. Trofimov reaction.
Scheme 54. Trofimov reaction.
Molecules 23 02442 sch054
Scheme 55. A modified procedure for obtaining 3-alkyl-2-phenyl-1-vinylpyrroles.
Scheme 55. A modified procedure for obtaining 3-alkyl-2-phenyl-1-vinylpyrroles.
Molecules 23 02442 sch055
Scheme 56. Synthesis of 3-(E)-styrylpyrroles from (E)-styrylmethyl ketoximes.
Scheme 56. Synthesis of 3-(E)-styrylpyrroles from (E)-styrylmethyl ketoximes.
Molecules 23 02442 sch056
Scheme 57. Trofimov heterocyclization of bifenyl-derived oximes.
Scheme 57. Trofimov heterocyclization of bifenyl-derived oximes.
Molecules 23 02442 sch057
Scheme 58. Synthesis of 2-arylpyrroles with calcium carbide and water.
Scheme 58. Synthesis of 2-arylpyrroles with calcium carbide and water.
Molecules 23 02442 sch058
Scheme 59. Reaction of acetylene with ketoximes.
Scheme 59. Reaction of acetylene with ketoximes.
Molecules 23 02442 sch059
Scheme 60. Reaction of acetylene and ketones.
Scheme 60. Reaction of acetylene and ketones.
Molecules 23 02442 sch060
Scheme 61. Plausible mechanism of acetylene and ketones reaction.
Scheme 61. Plausible mechanism of acetylene and ketones reaction.
Molecules 23 02442 sch061
Scheme 62. Cascade cyclization of ketones with acetylene under superbase conditions.
Scheme 62. Cascade cyclization of ketones with acetylene under superbase conditions.
Molecules 23 02442 sch062
Scheme 63. Calcium carbide-based synthesis of benzofuran derivatives.
Scheme 63. Calcium carbide-based synthesis of benzofuran derivatives.
Molecules 23 02442 sch063
Scheme 64. Mechanism of benzofuran formation.
Scheme 64. Mechanism of benzofuran formation.
Molecules 23 02442 sch064
Scheme 65. Pd-catalyzed amine/aldehyde/acetylene reaction.
Scheme 65. Pd-catalyzed amine/aldehyde/acetylene reaction.
Molecules 23 02442 sch065
Scheme 66. Proposed mechanism of three component coupling.
Scheme 66. Proposed mechanism of three component coupling.
Molecules 23 02442 sch066
Scheme 67. Synthesis of fluoroxene by trifluoroethanol vinylation.
Scheme 67. Synthesis of fluoroxene by trifluoroethanol vinylation.
Molecules 23 02442 sch067
Scheme 68. Two-step fluoroxene synthesis.
Scheme 68. Two-step fluoroxene synthesis.
Molecules 23 02442 sch068
Scheme 69. The Favorskii reaction general scheme.
Scheme 69. The Favorskii reaction general scheme.
Molecules 23 02442 sch069
Scheme 70. Ethchlorvynol synthesis.
Scheme 70. Ethchlorvynol synthesis.
Molecules 23 02442 sch070
Scheme 71. Terpene synthesis with acetylene.
Scheme 71. Terpene synthesis with acetylene.
Molecules 23 02442 sch071
Scheme 72. Synthesis of 17-ethynylestradiol and quinestrol.
Scheme 72. Synthesis of 17-ethynylestradiol and quinestrol.
Molecules 23 02442 sch072
Scheme 73. Synthesis of mestranol by Favorskii reaction.
Scheme 73. Synthesis of mestranol by Favorskii reaction.
Molecules 23 02442 sch073
Scheme 74. Synthesis of desogestrel.
Scheme 74. Synthesis of desogestrel.
Molecules 23 02442 sch074
Scheme 75. Eplerenone precursor synthesis by Favorskii reaction.
Scheme 75. Eplerenone precursor synthesis by Favorskii reaction.
Molecules 23 02442 sch075
Scheme 76. Synthesis and 3D representations of symmetrical bis-alkynyl derivative 141. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 30% probability. ’ = 1 − x, 1 − y, z; ’’ = y, 1 − x, −z; ’’’ = 1 − y, x, −z. (Reproduced with permission from ref. [180]. Copyright 2016 the Royal Society of Chemistry.).
Scheme 76. Synthesis and 3D representations of symmetrical bis-alkynyl derivative 141. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 30% probability. ’ = 1 − x, 1 − y, z; ’’ = y, 1 − x, −z; ’’’ = 1 − y, x, −z. (Reproduced with permission from ref. [180]. Copyright 2016 the Royal Society of Chemistry.).
Molecules 23 02442 sch076
Scheme 77. A mechanism proposed for the formation of acetylene-alkenyl complexes.
Scheme 77. A mechanism proposed for the formation of acetylene-alkenyl complexes.
Molecules 23 02442 sch077
Scheme 78. Reaction of Au and Pt complexes with acetylene.
Scheme 78. Reaction of Au and Pt complexes with acetylene.
Molecules 23 02442 sch078
Scheme 79. Pt-catalyzed selective hydroarylation.
Scheme 79. Pt-catalyzed selective hydroarylation.
Molecules 23 02442 sch079
Scheme 80. Preparation of Ir-based vinyl and styryl compounds.
Scheme 80. Preparation of Ir-based vinyl and styryl compounds.
Molecules 23 02442 sch080
Scheme 81. Synthesis of [(η5-C5Me5)Ir(C^P)]+ acetylene adduct and its thermal transformation.
Scheme 81. Synthesis of [(η5-C5Me5)Ir(C^P)]+ acetylene adduct and its thermal transformation.
Molecules 23 02442 sch081
Scheme 82. Acetylene insertion into deuterated tungsten complex.
Scheme 82. Acetylene insertion into deuterated tungsten complex.
Molecules 23 02442 sch082
Scheme 83. Synthesis of (E)-2-bromovinyltellurium tribromide.
Scheme 83. Synthesis of (E)-2-bromovinyltellurium tribromide.
Molecules 23 02442 sch083
Scheme 84. Pt(IV)-catalyzed addition of iodomethane to acetylene.
Scheme 84. Pt(IV)-catalyzed addition of iodomethane to acetylene.
Molecules 23 02442 sch084
Scheme 85. A mechanism proposed for the formation of dppe oxide.
Scheme 85. A mechanism proposed for the formation of dppe oxide.
Molecules 23 02442 sch085
Scheme 86. Pt(II)-catalyzed addition of acrolein to acetylene in the presence of LiBr.
Scheme 86. Pt(II)-catalyzed addition of acrolein to acetylene in the presence of LiBr.
Molecules 23 02442 sch086
Scheme 87. Synthesis of (4E,6Z,10Z)-hexadeca-4,6,10-trien-1-ol 161 and (4E,6E,10Z)-hexadeca-4,6,10-trien-1-ol 162.
Scheme 87. Synthesis of (4E,6Z,10Z)-hexadeca-4,6,10-trien-1-ol 161 and (4E,6E,10Z)-hexadeca-4,6,10-trien-1-ol 162.
Molecules 23 02442 sch087
Scheme 88. Acetylene carboxylation in the presence of TBD.
Scheme 88. Acetylene carboxylation in the presence of TBD.
Molecules 23 02442 sch088
Scheme 89. A mechanism proposed for the TBD-promoted formation of acetylene dicarboxylic acid derivatives.
Scheme 89. A mechanism proposed for the TBD-promoted formation of acetylene dicarboxylic acid derivatives.
Molecules 23 02442 sch089
Scheme 90. Three component synthesis of enaminones.
Scheme 90. Three component synthesis of enaminones.
Molecules 23 02442 sch090
Scheme 91. [2 + 2]-Cycloaddition of acetylene to pentafluorophenyltris(trimethylsilyl)cyclobutadiene.
Scheme 91. [2 + 2]-Cycloaddition of acetylene to pentafluorophenyltris(trimethylsilyl)cyclobutadiene.
Molecules 23 02442 sch091
Scheme 92. Synthesis of polystannanes with –CH=CH– link.
Scheme 92. Synthesis of polystannanes with –CH=CH– link.
Molecules 23 02442 sch092
Scheme 93. Reaction possibilities of acetylene hydrogenation.
Scheme 93. Reaction possibilities of acetylene hydrogenation.
Molecules 23 02442 sch093
Figure 5. HR TEM images of palladium NPs after 2 h (a) and 55 h (b) of the reaction. White arrows indicate the sunken regions with steps and terraces. (Reproduced with permission from ref. [248]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.).
Figure 5. HR TEM images of palladium NPs after 2 h (a) and 55 h (b) of the reaction. White arrows indicate the sunken regions with steps and terraces. (Reproduced with permission from ref. [248]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.).
Molecules 23 02442 g005
Figure 6. Ethylene selectivity as a function of acetylene conversion. Pd(I)-catalysts without defined morphology prepared by using the incipient wetness impregnation; Pd(S)-catalyst with spherical particles; Pd(C)-catalyst with cubic particles. Negative ethylene selectivity indicates net loss of ethylene due to over-hydrogenation and ethane production (reproduced with permission from [249]. Copyright 2013, Elsevier Inc.).
Figure 6. Ethylene selectivity as a function of acetylene conversion. Pd(I)-catalysts without defined morphology prepared by using the incipient wetness impregnation; Pd(S)-catalyst with spherical particles; Pd(C)-catalyst with cubic particles. Negative ethylene selectivity indicates net loss of ethylene due to over-hydrogenation and ethane production (reproduced with permission from [249]. Copyright 2013, Elsevier Inc.).
Molecules 23 02442 g006
Figure 7. Plots of acetylene conversion and ethylene selectivity for Pd on different supports. (reproduced with permission from [250], Copyright 2015, Elsevier Inc.).
Figure 7. Plots of acetylene conversion and ethylene selectivity for Pd on different supports. (reproduced with permission from [250], Copyright 2015, Elsevier Inc.).
Molecules 23 02442 g007
Figure 8. (a) SEM image of Pd/α-Al2O3@SiC catalyst, (b) TEM image of Pd particles on Al2O3 layer of Pd/α-Al2O3@SiC catalyst (reproduced with permission from [252]. Copyright 2016, the Royal Society of Chemistry).
Figure 8. (a) SEM image of Pd/α-Al2O3@SiC catalyst, (b) TEM image of Pd particles on Al2O3 layer of Pd/α-Al2O3@SiC catalyst (reproduced with permission from [252]. Copyright 2016, the Royal Society of Chemistry).
Molecules 23 02442 g008
Figure 9. Porous hollow silica NPs (A) and monolithic cordierite (B) (reproduced with permission from [253]. Copyright 2013, Elsevier Inc.).
Figure 9. Porous hollow silica NPs (A) and monolithic cordierite (B) (reproduced with permission from [253]. Copyright 2013, Elsevier Inc.).
Molecules 23 02442 g009
Figure 10. Hydrogenation rates of acetylene (black) and ethylene (shaded green): 1—Pd/TiO2, 2—Pd/TiO2 with 3‰ CO in feed, 3—PPh3 2.5 Pd/TiO2 (reproduced with permission from [263]. Copyright 2015, the Royal Society of Chemistry).
Figure 10. Hydrogenation rates of acetylene (black) and ethylene (shaded green): 1—Pd/TiO2, 2—Pd/TiO2 with 3‰ CO in feed, 3—PPh3 2.5 Pd/TiO2 (reproduced with permission from [263]. Copyright 2015, the Royal Society of Chemistry).
Molecules 23 02442 g010
Figure 11. Performance of various Ti-modified Pd–La catalysts in acetylene hydrogenation. (H2/Acetylene = 2, reaction temperature = 60 °C). (a) Pd/300, (b) Pd–1La/300, (c) Pd–1La/500, (d) Pd–1La–0.1Ti/300, (e) Pd–1La–0.2Ti/300, (f) Pd–1La–0.4Ti/300, (g) Pd–0.2Ti/300 (reproduced with permission from [264]. Copyright 2014, Elsevier Inc.).
Figure 11. Performance of various Ti-modified Pd–La catalysts in acetylene hydrogenation. (H2/Acetylene = 2, reaction temperature = 60 °C). (a) Pd/300, (b) Pd–1La/300, (c) Pd–1La/500, (d) Pd–1La–0.1Ti/300, (e) Pd–1La–0.2Ti/300, (f) Pd–1La–0.4Ti/300, (g) Pd–0.2Ti/300 (reproduced with permission from [264]. Copyright 2014, Elsevier Inc.).
Molecules 23 02442 g011
Figure 12. Solubility of acetylene and ethylene in NMP and decane. The catalyst is Pd/low surface area silica gel (reproduced with permission from [265]. Copyright 2013, American Chemical Society.).
Figure 12. Solubility of acetylene and ethylene in NMP and decane. The catalyst is Pd/low surface area silica gel (reproduced with permission from [265]. Copyright 2013, American Chemical Society.).
Molecules 23 02442 g012
Figure 13. SEM images of the of the bimetallic Pd/Ga catalyst precursor from the surface (a) and in the cross section (b) (reproduced with permission from [269]. Copyright 2014, Elsevier Inc.).
Figure 13. SEM images of the of the bimetallic Pd/Ga catalyst precursor from the surface (a) and in the cross section (b) (reproduced with permission from [269]. Copyright 2014, Elsevier Inc.).
Molecules 23 02442 g013
Figure 14. Schematic drawing of supported Pd particles in Pd/Al2O3- and Ga2O3-coated Pd particles in 1c-Ga2O3−Pd/Al2O3 and 3c-Ga2O3−Pd/Al2O3. The red, blue, green, orange, and yellow spheres represent terrace atoms of Pd (111) facets, facets other than Pd(111), corner and edge atoms of Pd(111) facets, Al2O3, and Ga2O3, respectively (reproduced with permission from [273]. Copyright 2016, American Chemical Society).
Figure 14. Schematic drawing of supported Pd particles in Pd/Al2O3- and Ga2O3-coated Pd particles in 1c-Ga2O3−Pd/Al2O3 and 3c-Ga2O3−Pd/Al2O3. The red, blue, green, orange, and yellow spheres represent terrace atoms of Pd (111) facets, facets other than Pd(111), corner and edge atoms of Pd(111) facets, Al2O3, and Ga2O3, respectively (reproduced with permission from [273]. Copyright 2016, American Chemical Society).
Molecules 23 02442 g014
Figure 15. TEM images and particle size distributions of the catalysts: a—1%-Pd/ZnO; b—0.1%-Pd/ZnO; c—0.01%-Pd/ZnO reduced at 100 °C (reproduced with permission from [274]. Copyright 2016, Elsevier Inc.).
Figure 15. TEM images and particle size distributions of the catalysts: a—1%-Pd/ZnO; b—0.1%-Pd/ZnO; c—0.01%-Pd/ZnO reduced at 100 °C (reproduced with permission from [274]. Copyright 2016, Elsevier Inc.).
Molecules 23 02442 g015
Figure 16. TEM pattern (a), HAADF-STEM image (b), and EDX mapping (c) of Pd@H-Zn/Co-ZIF. TEM pattern (d), HAADF-STEM image (e), and EDX mapping (f) of Pd@S-Zn/Co-ZIF. Acetylene conversion (g) and ethylene selectivity (h) as functions of temperature (reproduced with permission from [276]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA).
Figure 16. TEM pattern (a), HAADF-STEM image (b), and EDX mapping (c) of Pd@H-Zn/Co-ZIF. TEM pattern (d), HAADF-STEM image (e), and EDX mapping (f) of Pd@S-Zn/Co-ZIF. Acetylene conversion (g) and ethylene selectivity (h) as functions of temperature (reproduced with permission from [276]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA).
Molecules 23 02442 g016
Figure 17. Representative TEM images of the Co, Pd and CoPd nanoparticles and structures formed after refluxing for 1 h at 195 °C in EG or at 280 °C in TEG. EG—ethylene glycol, TEG —tri-ethylene glycol (reproduced with permission from [277]. Copyright 2013, Elsevier Inc.).
Figure 17. Representative TEM images of the Co, Pd and CoPd nanoparticles and structures formed after refluxing for 1 h at 195 °C in EG or at 280 °C in TEG. EG—ethylene glycol, TEG —tri-ethylene glycol (reproduced with permission from [277]. Copyright 2013, Elsevier Inc.).
Molecules 23 02442 g017
Figure 18. Acetylene conversion (a), ethylene selectivity (b), and C4 selectivity (c) as functions of temperature. Acetylene conversion is given by the difference of the inlet and outlet concentrations in vol %. Ethane formation is given by vol% of ethane in the reactor off-gas. (Conditions: 0.5 vol % C2H2, 1 vol % H2, and 70 vol % C2H4 in N2, flow velocity 50 mL/min.) (reproduced with permission from [277]. Copyright 2013, Elsevier Inc.).
Figure 18. Acetylene conversion (a), ethylene selectivity (b), and C4 selectivity (c) as functions of temperature. Acetylene conversion is given by the difference of the inlet and outlet concentrations in vol %. Ethane formation is given by vol% of ethane in the reactor off-gas. (Conditions: 0.5 vol % C2H2, 1 vol % H2, and 70 vol % C2H4 in N2, flow velocity 50 mL/min.) (reproduced with permission from [277]. Copyright 2013, Elsevier Inc.).
Molecules 23 02442 g018aMolecules 23 02442 g018b
Figure 19. Conversion (A) and (B) selectivity as functions of temperature for acetylene semi-hydrogenation over Au/SiO2, AuPd0.01/SiO2, AuPd0.025/SiO2 and AuPd0.1/SiO2 catalysts (reproduced with permission from [278]. Copyright 2014, the Royal Society of Chemistry.).
Figure 19. Conversion (A) and (B) selectivity as functions of temperature for acetylene semi-hydrogenation over Au/SiO2, AuPd0.01/SiO2, AuPd0.025/SiO2 and AuPd0.1/SiO2 catalysts (reproduced with permission from [278]. Copyright 2014, the Royal Society of Chemistry.).
Molecules 23 02442 g019
Figure 20. Product selectivities (a) and C2H4 yields (b) for PdAg/ZnAl catalysts, 180 min at 90 °C (reproduced with permission from [283]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA).
Figure 20. Product selectivities (a) and C2H4 yields (b) for PdAg/ZnAl catalysts, 180 min at 90 °C (reproduced with permission from [283]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA).
Molecules 23 02442 g020aMolecules 23 02442 g020b
Figure 21. Proposed mechanism of acetylene hydrogenation over a Pd/Cu catalyst with deposited carbonaceous layer (reproduced with permission from r [287]. Copyright 2017, American Chemical Society.).
Figure 21. Proposed mechanism of acetylene hydrogenation over a Pd/Cu catalyst with deposited carbonaceous layer (reproduced with permission from r [287]. Copyright 2017, American Chemical Society.).
Molecules 23 02442 g021
Figure 22. Proposed mechanism of acetylene hydrogenation over a silica-supported Pd/Cu single atom catalyst: a—dissociation of H2 and spillover of H atoms, b—adsorption and hydrogenation of acetylene, c—desorption of ethylene (reproduced with permission from [288]. Copyright 2017 American Chemical Society.).
Figure 22. Proposed mechanism of acetylene hydrogenation over a silica-supported Pd/Cu single atom catalyst: a—dissociation of H2 and spillover of H atoms, b—adsorption and hydrogenation of acetylene, c—desorption of ethylene (reproduced with permission from [288]. Copyright 2017 American Chemical Society.).
Molecules 23 02442 g022
Figure 23. (a) Experimental kinetic curves of C2H4 and C2H6 accumulation in the reaction of C2H2 reduction by Na or Eu amalgam in the presence of Mo-complex. (b) The effect of PBu3 addition (C(PBu3) = 5 × 10−3 M) on the C2H4 accumulation rate in C2H2 reduction by Na amalgam in the presence of Mo-complex. (Conditions: C(Mo) = 2 × 10−5 M; 0.5 mL Eu/Hg (0.9 M) or 0.5 mL Na/Hg (3.5 M); 8 ml CH3OH; P(C2H2) = 0.13 atm, C(NaOCH3) = 0.09 M, C(H2O) = 0.02 M, C(PC) = 3 × 10−4 M, 21 °C) (reproduced with permission from [291]. Copyright 2016 the Royal Society of Chemistry.).
Figure 23. (a) Experimental kinetic curves of C2H4 and C2H6 accumulation in the reaction of C2H2 reduction by Na or Eu amalgam in the presence of Mo-complex. (b) The effect of PBu3 addition (C(PBu3) = 5 × 10−3 M) on the C2H4 accumulation rate in C2H2 reduction by Na amalgam in the presence of Mo-complex. (Conditions: C(Mo) = 2 × 10−5 M; 0.5 mL Eu/Hg (0.9 M) or 0.5 mL Na/Hg (3.5 M); 8 ml CH3OH; P(C2H2) = 0.13 atm, C(NaOCH3) = 0.09 M, C(H2O) = 0.02 M, C(PC) = 3 × 10−4 M, 21 °C) (reproduced with permission from [291]. Copyright 2016 the Royal Society of Chemistry.).
Molecules 23 02442 g023
Figure 24. Transition states for vinyl hydrogenation and C–C bond formation on Ni(111) (A and B) and NiZn(101) (C and D), respectively. Ni atoms are light pink and Zn atoms are dark blue (reproduced with permission from [294]. Copyright 2014 Elsevier Inc.).
Figure 24. Transition states for vinyl hydrogenation and C–C bond formation on Ni(111) (A and B) and NiZn(101) (C and D), respectively. Ni atoms are light pink and Zn atoms are dark blue (reproduced with permission from [294]. Copyright 2014 Elsevier Inc.).
Molecules 23 02442 g024
Figure 25. Proposed mechanism of reductive elimination (RE) of H2 from the dihydride Fe/Mo species 2 and C2H4 from the vinyl monohydride Fe/Mo species 3. The scale of horizontal axis represents oxidation states 0 to –4, with the initial oxidation state of 1 corresponding to 0. Accordingly, the two and four electron-deprived species correspond to –2 and –4 oxidation states, respectively (reproduced with permission from [302]. Copyright 2016 the Royal Society of Chemistry.).
Figure 25. Proposed mechanism of reductive elimination (RE) of H2 from the dihydride Fe/Mo species 2 and C2H4 from the vinyl monohydride Fe/Mo species 3. The scale of horizontal axis represents oxidation states 0 to –4, with the initial oxidation state of 1 corresponding to 0. Accordingly, the two and four electron-deprived species correspond to –2 and –4 oxidation states, respectively (reproduced with permission from [302]. Copyright 2016 the Royal Society of Chemistry.).
Molecules 23 02442 g025
Figure 26. Acetylene conversion X (black symbols, left axis) and ethane time yield Y (gray symbols, right axis) as functions of temperature for: Left monometallic Pt/SiO2 (circles) and DDA-Pt/SiO2 (stars) catalysts. Right Pt/SiO2 (filled symbols), Pt/Sn(1:1)/SiO2 as prepared (half-filled symbols), and PtSn(1:1)/SiO2 prereduced (empty symbols) catalysts. Acetylene conversion is given by the difference in the reactor inlet and outlet concentrations in vol %. Ethane yield is given by vol % of ethane in the reactor off-gas. Reaction conditions: 0.5 vol % C2H2; 1 vol % H2; 70 vol % C2H4; rest N2; flow velocity 50 mLmin−1 (reproduced with permission from [304]. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA).
Figure 26. Acetylene conversion X (black symbols, left axis) and ethane time yield Y (gray symbols, right axis) as functions of temperature for: Left monometallic Pt/SiO2 (circles) and DDA-Pt/SiO2 (stars) catalysts. Right Pt/SiO2 (filled symbols), Pt/Sn(1:1)/SiO2 as prepared (half-filled symbols), and PtSn(1:1)/SiO2 prereduced (empty symbols) catalysts. Acetylene conversion is given by the difference in the reactor inlet and outlet concentrations in vol %. Ethane yield is given by vol % of ethane in the reactor off-gas. Reaction conditions: 0.5 vol % C2H2; 1 vol % H2; 70 vol % C2H4; rest N2; flow velocity 50 mLmin−1 (reproduced with permission from [304]. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA).
Molecules 23 02442 g026
Figure 27. Reaction rate and ethylene selectivity over the SBA-15 supported Cu (a), Cu10Au1 (b), Cu3Au1 (c), Cu1Au3 (d), and Au (e) catalysts. C2H2/H2/He = 1.5/15/83.5, GHSV = 40,000 mL g−1 cat h−1 (reproduced with permission from [305]. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA).
Figure 27. Reaction rate and ethylene selectivity over the SBA-15 supported Cu (a), Cu10Au1 (b), Cu3Au1 (c), Cu1Au3 (d), and Au (e) catalysts. C2H2/H2/He = 1.5/15/83.5, GHSV = 40,000 mL g−1 cat h−1 (reproduced with permission from [305]. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA).
Molecules 23 02442 g027aMolecules 23 02442 g027b
Figure 28. TEM and SEM images (on left and right, respectively) of the MWCNT and MWCNT-400 samples (top and bottom panels, respectively) (reproduced with permission from [307]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA).
Figure 28. TEM and SEM images (on left and right, respectively) of the MWCNT and MWCNT-400 samples (top and bottom panels, respectively) (reproduced with permission from [307]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA).
Molecules 23 02442 g028
Scheme 94. Acetylene hydrochlorination.
Scheme 94. Acetylene hydrochlorination.
Molecules 23 02442 sch094
Figure 29. Acetylene conversion by AuCl3/C catalysts: temperature activation (up) and acid treatment (down). Reaction conditions: temperature = 180 °C, C2H2 GHSV = 360 h−1, feed volume ratio between HCl and C2H2 = 1.1 (reproduced with permission from [313]. Copyright 2015 Elsevier Inc.).
Figure 29. Acetylene conversion by AuCl3/C catalysts: temperature activation (up) and acid treatment (down). Reaction conditions: temperature = 180 °C, C2H2 GHSV = 360 h−1, feed volume ratio between HCl and C2H2 = 1.1 (reproduced with permission from [313]. Copyright 2015 Elsevier Inc.).
Molecules 23 02442 g029
Figure 30. Acetylene conversion (a) and VCM selectivity (b) over monometallic Ru, Cu, and Co catalysts (reproduced with permission from [330]. Copyright 2013 the Royal Society of Chemistry.).
Figure 30. Acetylene conversion (a) and VCM selectivity (b) over monometallic Ru, Cu, and Co catalysts (reproduced with permission from [330]. Copyright 2013 the Royal Society of Chemistry.).
Molecules 23 02442 g030
Figure 31. Acetylene conversion (a) and VCM selectivity (b) over 1%Ru, 1%Ru1Cu1, and 1%Ru1Co3 catalysts (reproduced with permission from [330]. Copyright 2013 the Royal Society of Chemistry.).
Figure 31. Acetylene conversion (a) and VCM selectivity (b) over 1%Ru, 1%Ru1Cu1, and 1%Ru1Co3 catalysts (reproduced with permission from [330]. Copyright 2013 the Royal Society of Chemistry.).
Molecules 23 02442 g031
Figure 32. Calculated TOF values for Cu400Ru/MWCNTs in comparison with a variety of reported catalysts. The calculated TOF values for the different catalyst materials reported in literature and the Cu400Ru/MWCNTs catalyst material. (Reproduced with permission from ref. [333]. Copyright 2015 the Royal Society of Chemistry.).
Figure 32. Calculated TOF values for Cu400Ru/MWCNTs in comparison with a variety of reported catalysts. The calculated TOF values for the different catalyst materials reported in literature and the Cu400Ru/MWCNTs catalyst material. (Reproduced with permission from ref. [333]. Copyright 2015 the Royal Society of Chemistry.).
Molecules 23 02442 g032
Figure 33. Using both alkyne π-bonds as “two functional groups in one package”. (Reproduced with permission from ref. [338]. Copyright 2013 American Chemical Society.).
Figure 33. Using both alkyne π-bonds as “two functional groups in one package”. (Reproduced with permission from ref. [338]. Copyright 2013 American Chemical Society.).
Molecules 23 02442 g033
Figure 34. Comparison of alkene and alkyne reactivities in terms of kinetics and thermodynamics (reproduced with permission from [339]. Copyright 2018 American Chemical Society).
Figure 34. Comparison of alkene and alkyne reactivities in terms of kinetics and thermodynamics (reproduced with permission from [339]. Copyright 2018 American Chemical Society).
Molecules 23 02442 g034
Figure 35. Examples of polyaromatic self-assembling based on the cascade oligocyclization of alkynes (reproduced with permission from [341]. Copyright 2012 American Chemical Society).
Figure 35. Examples of polyaromatic self-assembling based on the cascade oligocyclization of alkynes (reproduced with permission from [341]. Copyright 2012 American Chemical Society).
Molecules 23 02442 g035
Scheme 95. Phenylacetylene polymerization.
Scheme 95. Phenylacetylene polymerization.
Molecules 23 02442 sch095
Table 1. Byproducts formed at 120 min of on-stream hydrogenation (323 K, 1 bar) for acetylene only, ethylene only, and acetylene/ethylene mixture.
Table 1. Byproducts formed at 120 min of on-stream hydrogenation (323 K, 1 bar) for acetylene only, ethylene only, and acetylene/ethylene mixture.
Oligomers/FID SignalMethane/FID Signal
Acetylene only
Pd/TiO2 248,17361,404
Pd/TiO2 + 3‰ CO296,540103,000
PPh3 2.5 Pd/TiO2315,656-
Ethylene only
Pd/TiO21703445
Pd/TiO2 + 3‰ CO7993392
PPh3 2.5 Pd/TiO22903100
Mixed acetylene/ethylene reaction
Pd/TiO252,41514,763
Pd/TiO2 + 3‰ CO174,911-
PPh3 2.5 Pd/TiO249699393
PPh3 10 Pd/TiO243326262
Table 2. Acetylene conversion and ethylene/ethane/oligomer selectivities over 10% Cu/Al2O3 and 1.67% Pd/Al2O3.
Table 2. Acetylene conversion and ethylene/ethane/oligomer selectivities over 10% Cu/Al2O3 and 1.67% Pd/Al2O3.
CatalystTemperature (K)Acetylene Conversion (%)Ethylene Selectivity (%)Ethane Selectivity (%)Oligomer Selectivity (%)
10% Cu/Al2O33239.5953.29.937.0
37360.7160.58.630.8
42399.2071.58.020.5
1.67% Pd/Al2O332385.170.093.16.9
Table 3. Catalytic performances of graphene-based catalysts.
Table 3. Catalytic performances of graphene-based catalysts.
CatalystConversion (%)Product Distribution (%)
C2H2C2H4C2H4C2H2C2H6C4C4+
Gr81.014.092.23.21.13.5
Gr *99.021.091.60.91.26.3
GO22.5048.15.00.346.6
rGO87.54.755.11.21.342.4
(N)Gr26.76.762.57.20.711.525.2
(P)Gr14.62.772.78.80.717.70.1
(S)Gr24.76.454.16.30.40.039.1
GO, graphene oxide; Gr, graphene; rGO, reduced GO. Results of selective catalytic acetylene hydrogenation in the presence of ninefold excess of ethylene. Reaction conditions: 10% C2H2 in 90% C2H4; (C2H2+C2H4):H2 = 1:3, 110 °C, 7 mg of catalyst, gas hourly space velocity (GHSV) of 14.600 mLh−1 g−1. * 10% C2H2 in 90% C2H4; (C2H2 + C2H4):H2 = 1:3, 120 °C, 7 mg of catalyst, GHSV of 7.800 mLh−1 g−1.
Table 4. Potential chemical building blocks for a molecular 3D printer [351].
Table 4. Potential chemical building blocks for a molecular 3D printer [351].
Building Block MoleculeNumber of Low-Reactive Substituents at the C AtomNumber of Activated Substituents at the C AtomNumber of Atom-Economical Steps
Molecules 23 02442 i002400
Molecules 23 02442 i003201
Molecules 23 02442 i004012

Share and Cite

MDPI and ACS Style

Voronin, V.V.; Ledovskaya, M.S.; Bogachenkov, A.S.; Rodygin, K.S.; Ananikov, V.P. Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules 2018, 23, 2442. https://doi.org/10.3390/molecules23102442

AMA Style

Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules. 2018; 23(10):2442. https://doi.org/10.3390/molecules23102442

Chicago/Turabian Style

Voronin, Vladimir V., Maria S. Ledovskaya, Alexander S. Bogachenkov, Konstantin S. Rodygin, and Valentine P. Ananikov. 2018. "Acetylene in Organic Synthesis: Recent Progress and New Uses" Molecules 23, no. 10: 2442. https://doi.org/10.3390/molecules23102442

Article Metrics