Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth and Development of Tomato Plants
2.2. Changes in Leaf Pigments
2.3. Changes in Enzymatic Activity
2.4. Changes in Antioxidant Capacity
2.5. Mineral Content on Leaves and Fruits
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Chitosan-Polyvinyl Alcohol Hydrogels (Cs–PVA) and Absorption of Cu NPs
3.3. Experimental Development and Growth Conditions
3.4. Tomato Growth Parameters
3.5. Determination of Chlorophyll and Carotenoid Content
3.6. Extraction of Biomolecules
3.7. Proteins
3.8. Catalase (EQ 1.11.1.6)
3.9. Ascorbate Peroxidase (EQ. 1.11.1.1)
3.10. Superoxide Dismutase (EQ 1.15.1.1)
3.11. Glutathione Peroxidase (EQ 1.11.1.9)
3.12. Phenylalanine Ammonium Lyase (EQ 4.3.1.5)
3.13. Reduced Glutathione (GSH)
3.14. ABTS (2,20-Azinobis-3-ethylbenzotiazoline-6-sulphonic Acid)
3.15. DPPH (2,2-Diphenyl-1-picrylhydrazyl)
3.16. Total Phenols
3.17. Lycopene
3.18. Vitamin C
3.19. Mineral Content
3.20. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-ur-Rehman, M.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W.; Hernandez-Viezcas, J.A.; Bonilla-Bird, N.; López-Moreno, M.L.; Komárek, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiol. Biochem. 2017, 110, 236–264. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.V.L.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants? Sci. Total Environ. 2016, 568, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Patra, P.; Mitra, S.; Dey, K.K.; Basu, S.; Chandra, S.; Palit, P.; Goswami, A. Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: A biophysical and biochemical outlook on Vigna radiata. J. Agric. Food Chem. 2015, 63, 2606–2617. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Maldonado, A.; Ortega-Ortíz, H.; Pérez-Labrada, F.; Cadenas-Pliego, G.; Benavides-Mendoza, A. Cu Nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J. Appl. Bot. Food Qual. 2016, 89, 183–189. [Google Scholar] [CrossRef]
- Saharan, V.; Pal, A. Biological Activities of Chitosan-Based Nanomaterials. In Chitosan Based Nanomaterials in Plant Growth and Protection; Springer: New Delhi, India, 2016; pp. 33–41. [Google Scholar]
- Pinedo-Guerrero, Z.H.; Hernández-Fuentes, A.D.; Ortega-Ortiz, H.; Benavides-Mendoza, A.; Cadenas-Pliego, G.; Juárez-Maldonado, A.A. Cu nanoparticles in hydrogels of chitosan–PVA affects the characteristics of post-harvest and bioactive compounds of jalapeño pepper. Molecules 2017, 22, 926. [Google Scholar] [CrossRef] [PubMed]
- Aruna, A.; Namasivayam, S.K.R.; Allen Roy, E. Comparative evaluation of non target toxic effect of free and polymer coated chemogenic metallic nanoparticles against Vigna mungo. Int. J. Pharm. Bio Sci. 2015, 6, B461–B467. [Google Scholar]
- Saharan, V.; Sharma, G.; Yadav, M.; Choudhary, M.K.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P. Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol. 2015, 75, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Sharma, A.K.; Sanghi, R. Poly(acrylamide) functionalized chitosan: An efficient adsorbent for azo dyes from aqueous solutions. J. Hazard. Mater. 2009, 166, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ortiz, H.; Gutiérrez-Rodríguez, B.; Cadenas-Pliego, G.; Jiménez, L.I. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan. Braz. Arch. Biol. Technol. 2010, 53, 623–628. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Alharby, H.F.; Metwali, E.M.R.; Fuller, M.P.; Aldhebiani, A.Y. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi J. Biol. Sci. 2016, 23, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, Z.M. Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. Int. J. Agric. Biol. 2016, 18, 449–457. [Google Scholar] [CrossRef]
- Rossi, L.; Zhang, W.; Lombardini, L.; Ma, X. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ. Pollut. 2016, 219, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, M.; Yotsova, E.; Rashkov, G.; Ivanova, K.; Markovska, Y.; Apostolova, E.L. Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiol. Biochem. 2016, 101, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, Y.; Yu, C.; Wang, Y.; Li, X.; Li, N.; Chen, Q.; Bu, N. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma 2012, 249, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Camejo, D.; Rodríguez, P.; Morales, M.A.; Dell’Amico, J.M.; Torrecillas, A.; Alarcón, J.J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005, 162, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Barrios, A.C.; Rico, C.M.; Trujillo-Reyes, J.; Medina-Velo, I.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci. Total Environ. 2015. [Google Scholar] [CrossRef] [PubMed]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Parisy, V.; Poinssot, B.; Owsianowski, L.; Buchala, A.; Glazebrook, J.; Mauch, F. Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 2007, 49, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Plant Cell 2006, 15, 523–530. [Google Scholar] [CrossRef]
- MariadoSocorrom, R.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-tradicional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.-H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.K.; et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.-N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.; González-Flores, D.; Marchena, A.M.; Prior, E.; García-Parra, J.; Barriga, C.; Rodríguez Moratinos, A.B. A lycopene-enriched virgin olive oil enhances antioxidant status in humans. J. Sci. Food Agric. 2013, 93, 1820–1826. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Zhang, W.; Ma, X. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ. Pollut. 2017, 229, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Steiner, A.A. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef]
- Pocock, T.; Krol, M.; Huner, N.P. The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry. Methods Mol. Biol. 2004, 274, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Porra, R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2002, 73, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). United States Department of Agriculture United States Standards for Grades of Fresh Tomatoes. 1997. Available online: https://www.ams.usda.gov/sites/default/files/media/Tomato_Standard%5B1% 5D.pdf (accessed on 27 August 2017).
- Ramos, S.J.; Faquin, V.; Guilherme, L.R.G.; Castro, E.M.; Ávila, F.W.; Carvalho, G.S.; Bastos, C.E.A.; Oliveira, C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ. 2010, 56, 584–588. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Beers, R.F.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzymol. 1984, 105, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Hartikainen, H.; Piironen, V. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 2001, 237, 55–61. [Google Scholar] [CrossRef]
- Sykłowska-Baranek, K.; Pietrosiuk, A.; Naliwajski, M.R.; Kawiak, A.; Jeziorek, M.; Wyderska, S.; Łojkowska, E.; Chinou, I. Effect of l-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst. In Vitro Cell. Dev. Biol. Plant 2012, 48, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Moo-Huchin, V.M.; Moo-Huchin, M.I.; Estrada-León, R.J.; Cuevas-Glory, L.; Estrada-Mota, I.A.; Ortiz-Vázquez, E.; Betancur-Ancona, D.; Sauri-Duch, E. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem. 2015, 166, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analisys of total phenols and other oxidation sobstrates and antioxidants by means of Folin Ciocalteau reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef]
- Klein, B.P.; Perry, A.K. Ascorbic acid and vitamin a activity in selected vegetables from different geographical areas of the United States. J. Food Sci. 1982, 47, 941–945. [Google Scholar] [CrossRef]
- Jones, J.B. Kjeldahl Method for Nitrogen Determination; ITW: Chicago, IL, USA, 1991; ISBN 1-878148-002. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Stress | Treatment | Plant Height (cm) | Stem Diameter (mm) | NFH | FW Shoot (g) | FW Root (g) | DW Shoot (g) | DW Root (g) | Yield (g) |
---|---|---|---|---|---|---|---|---|---|
Without Stress | T0 | 208 a | 14.4 b | 25.4 b | 2582 a | 74 b | 323 a | 14.6 b | 5607 a |
CsPVA | 200 b | 14.9 ab | 27.1 ab | 2592 a | 128 a | 342 a | 19.6 a | 5438 a | |
NPsCu | 201 b | 15.4 a | 30.5 a | 2551 a | 143 a | 342 a | 20.8 a | 5352 a | |
NaCl | NaCl | 148 ab | 12.5 a | 25.2 a | 1087 a | 111 a | 156 a | 18.2 a | 888 ab |
Cs–NaCl | 151 a | 12.7 a | 24.6 a | 1148 a | 131 a | 153 a | 16.6 a | 879 b | |
NPsCu–NaCl | 144 b | 12.5 a | 25.5 a | 1157 a | 128 a | 165 a | 17.6 a | 973 a |
Stress | Treatment | Chlorophyll a | Chlorophyll b | Total Chlorophyll | Chlorophyll a/b | Total Carotenoids |
---|---|---|---|---|---|---|
Without Stress | T0 | 1.71 a | 0.52 a | 2.23 a | 3.31 a | 0.29 a |
CsPVA | 1.71 a | 0.54 a | 2.25 a | 3.17 ab | 0.28 a | |
NCu | 1.55 a | 0.49 a | 2.05 a | 3.16 b | 0.26 a | |
NaCl | NaCl | 2.38 ab | 0.76 b | 3.14 ab | 3.12 a | 0.45 ab |
Cs–NaCl | 2.74 a | 0.93 a | 3.67 a | 2.94 b | 0.52 a | |
nCu–NaCl | 2.06 b | 0.67 b | 2.74 b | 3.05 ab | 0.38 b |
Organ | Stress | Treatment | APX | CAT | SOD | GPX | PAL |
---|---|---|---|---|---|---|---|
Leaves | Without stress | T0 | 215.31 b | 12.93 b | 13.62 b | 17.40 b | 2.82 b |
CsPVA | 203.74 b | 13.36 b | 19.98 ab | 16.46 b | 2.67 b | ||
NCu | 337.62 a | 27.28 a | 26.13 a | 24.23 a | 4.57 a | ||
NaCl | NaCl | 335.18 a | 19.97 a | 22.51 b | 19.07 a | 3.60 a | |
Cs–NaCl | 354.28 a | 18.77 a | 29.60 a | 21.38 a | 4.20 a | ||
nCu–NaCl | 316.18 a | 13.84 a | 27.04 ab | 20.64 a | 3.58 a | ||
Fruits | Without stress | T0 | 445.65 a | 26.27 b | 12.35 ab | 26.49 b | nd |
CsPVA | 430.50 a | 32.77 b | 7.75 b | 34.98 a | nd | ||
NCu | 476.83 a | 58.38 a | 17.32 a | 33.11 a | nd | ||
NaCl | NaCl | 566.63 a | 98.83 a | 48.98 a | 33.12 a | nd | |
Cs–NaCl | 454.20 a | 42.47 b | 29.17 b | 27.95 a | nd | ||
nCu–NaCl | 485.24 a | 40.59 b | 35.66 ab | 28.55 a | nd |
Stress | Treatment | Antioxidant Capacity Equivalent to Trolox | Antioxidant Capacity Equivalent to Vitamin C | Reduced Glutathione (μmol of GSH per mg of Total Proteins) | Total Phenols (mg of Gallic Acid per g of Fresh Weight) | ||
---|---|---|---|---|---|---|---|
ABTS | DPPH | ABTS | DPPH | ||||
Without stress | T0 | 80.02 a | 47.89 a | 10.10 a | 15.10 a | 282.92 b | 1.72 b |
CsPVA | 58.93 a | 56.19 a | 7.20 a | 17.31 a | 286.95 b | 2.76 a | |
NCu | 89.38 a | 51.97 a | 11.39 a | 16.19 a | 447.58 a | 2.64 a | |
NaCl | NaCl | 91.41 a | 49.51 a | 11.67 a | 15.53 a | 221.30 a | 2.77 a |
Cs–NaCl | 91.74 a | 23.48 b | 11.71 a | 8.62 b | 284.00 a | 4.27 a | |
nCu–NaCl | 99.52 a | 21.16 b | 12.78 a | 8.01 b | 280.61 a | 3.18 a |
Stress | Treatment | Antioxidant Capacity Equivalent to Trolox | Antioxidant Capacity Equivalent to Vitamin C | Reduced Glutathione (μmol of GSH per mg of Total Proteins) | Vitamin C (mg 100 g−1 Fresh Weight) | Lycopene (mg 100 g−1 Fresh Weight) | ||
---|---|---|---|---|---|---|---|---|
DPPH | ABTS | DPPH | ABTS | |||||
Without Stress | T0 | 68.97 ab | 10.96 a | 8.58 ab | 5.30 a | 324.87 b | 8.10 b | 2.85 b |
CsPVA | 54.09 b | 17.65 a | 6.53 b | 7.07 a | 431.13 a | 11.97 a | 3.09 b | |
NCu | 87.12 a | 18.91 a | 11.08 a | 7.41 a | 322.36 b | 11.44 a | 5.05 a | |
NaCl | NaCl | 83.17 ab | 20.24 a | 10.53 ab | 7.77 a | 491.82 a | 10.38 b | 2.87 a |
Cs–NaCl | 99.52 a | 30.77 a | 12.78 a | 8.74 a | 282.81 b | 14.78 a | 2.99 a | |
nCu–NaCl | 67.39 b | 22.78 a | 8.36 b | 8.44 a | 301.00 b | 13.90 a | 4.07 a |
Organ | Stress | Treatment | N (mg g−1 DW) | K (mg g−1 DW) | Ca (mg g−1 DW) | Mg (mg g−1 DW) | Na (mg g−1 DW) | Fe (µg g−1 DW) | Zn (µg g−1 DW) | Cu (µg g−1 DW) |
---|---|---|---|---|---|---|---|---|---|---|
Leaves | Without Stress | T0 | 32.20 a | 10.61 a | 18.50 a | 3.07 a | 6.33 a | 96.8 a | 17.6 a | 100.8 a |
CsPVA | 28.16 a | 9.07 b | 16.99 b | 2.76 a | 6.57 a | 80.8 a | 14.8 a | 93.6 b | ||
NCu | 34.12 a | 11.21 a | 18.92 a | 2.00 a | 4.59 a | 64.6 a | 10.8 a | 93.8 b | ||
NaCl | NaCl | 21.86 b | 6.48 a | 14.20 a | 5.25 a | 104.75 a | 91.2 a | 32.0 a | 123.8 a | |
Cs–NaCl | 23.13 b | 7.14 a | 15.05 a | 3.58 a | 49.82 b | 75.0 b | 23.0 a | 97.0 a | ||
nCu–NaCl | 24.76 a | 7.41 a | 14.78 a | 4.74 a | 64.37 ab | 79.8 b | 21.2 a | 97.0 a | ||
Fruits | Without Stress | T0 | 23.14 b | 9.16 a | 6.34 a | 2.31 a | 0.98 a | 13.8 a | 8.8 a | 93.8 a |
CsPVA | 24.02 ab | 9.42 a | 5.21 a | 2.24 b | 1.88 a | 22.4 a | 8.4 a | 111.8 a | ||
NCu | 26.57 a | 9.38 a | 7.45 a | 2.21 b | 1.08 a | 15.6 a | 7.8 a | 92.8 a | ||
NaCl | NaCl | 21.78 a | 8.31 a | 2.92 a | 2.34 a | 4.30 a | 13.8 a | 11.0 a | 93.2 a | |
Cs–NaCl | 22.39 a | 8.39 a | 2.83 a | 2.32 a | 3.85 a | 13.8 a | 8.8 a | 93.4 a | ||
nCu–NaCl | 23.20 a | 8.89 a | 2.50 a | 2.33 a | 4.42 a | 10.4 a | 10.6 a | 93.0 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Hernández, H.; González-Morales, S.; Benavides-Mendoza, A.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Juárez-Maldonado, A. Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress. Molecules 2018, 23, 178. https://doi.org/10.3390/molecules23010178
Hernández-Hernández H, González-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Juárez-Maldonado A. Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress. Molecules. 2018; 23(1):178. https://doi.org/10.3390/molecules23010178
Chicago/Turabian StyleHernández-Hernández, Hipólito, Susana González-Morales, Adalberto Benavides-Mendoza, Hortensia Ortega-Ortiz, Gregorio Cadenas-Pliego, and Antonio Juárez-Maldonado. 2018. "Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress" Molecules 23, no. 1: 178. https://doi.org/10.3390/molecules23010178
APA StyleHernández-Hernández, H., González-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., & Juárez-Maldonado, A. (2018). Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress. Molecules, 23(1), 178. https://doi.org/10.3390/molecules23010178