Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition and Anticholinesterase Activity of the Essential Oil of B. reticularia
2.2. Production and Characterization of B. reticularia Essential Oil and d-Limonene Nanoemulsions
2.3. Larvicidal Assay
2.4. A. Aegypti Morphology by Scanning Electron Microscopy
3. Discussion
3.1. Chemical Composition and Anticholinesterase Activity of the Essential Oil of B. reticularia
3.2. Production and Characterization of B. reticularia Essential Oil and d-Limonene Nanoemulsions
3.3. Larvicidal Assay
3.4. A. Aegypti Morphology by Scanning Electron Microscopy
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Gas-Chromatographic Conditions and Identification of Chemical Constituents
4.4. Quantitative Determination of B. reticularia Essential Oil Anticholinesterase Activity
4.5. Determination of Required Hydrophile-Lipophile Balance (rHLB) of B. reticularia Essential Oil and Its Major Compound
4.6. Nanoemulsification
4.7. Particle Size Distribution and Zeta Potential Measurements
4.8. Larvicidal Activity
4.9. Morphological Aedes Aegypti Larvae Study
4.10. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yakob, L.; Funk, S.; Camacho, A.; Brady, O.; Edmunds, W.J. Aedes aegypti Control Through Modernized, Integrated Vector Management. PLoS Curr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Dusfour, I.; Zorrilla, P.; Guidez, A.; Issaly, J.; Girod, R.; Guillaumot, L.; Robello, C.; Strode, C. Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide. PLoS Negl. Trop. Dis. 2015, 9, e0004226. [Google Scholar] [CrossRef] [PubMed]
- Baldacchino, F.; Caputo, B.; Chandre, F.; Drago, A.; della Torre, A.; Montarsi, F.; Rizzoli, A. Control methods against invasive Aedes mosquitoes in Europe: A review. Pest Manag. Sci. 2015, 71, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Darriet, F. An anti-mosquito mixture for domestic use, combining a fertiliser and a chemical or biological larvicide. Pest Manag. Sci. 2016, 72, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Heiden, G.; Schneider, A. Asteraceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB55 (accessed on 18 November 2016).
- The Brazil Flora Group (BFG). Growing knowledge: An overview of Seed Plant diversity in Brazil. Rodriguésia 2015, 66, 1085–1113. [Google Scholar] [CrossRef]
- Heiden, G.; Schneider, A. Baccharis, in Flora do Brasil 2020 em Construção, Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB5151 (accessed on 8 November 2016).
- Santos, M.G.; Fevereiro, P.C.A.; Reis, G.L.; Barcelos, J.I. Recursos vegetais da Restinga de Carapebus, Rio de Janeiro, Brasil. Rev. Biol. Neotrop. 2009, 6, 35–54. [Google Scholar] [CrossRef]
- Sales, M.D.C.; Costa, H.B.; Fernandes, P.M.B.; Ventura, J.A.; Meira, D.D. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac. J. Trop. Biomed. 2016, 6, 26–31. [Google Scholar] [CrossRef]
- Gleiser, R.M.; Bonino, M.A.; Zygadlo, J.A. Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2011, 108, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Rather, M.A.; Shah, W.A.; Bhat, B.A. Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food Chem. 2013, 138, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, D.; Sokovic, M.; Glamoclijz, J.; Dzamic, A.; Ciric, A.; Ristic, M.; Grubišic, D. Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem. 2011, 128, 1017–1022. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Arisoy, K.; Tepe, B.; Cakir, A.; Abali, G.; Mete, E. Studies on the antioxidant activity of essential oil and different solvente extracts of Vitex agnus castus L. fruits from Turkey. Food Chem. Toxicol. 2009, 47, 2479–2483. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.C.; Silva, T.K.M.; Silva, F.M.; Filho, J.M.B.; Marques, M.O.M.; Santos, R.L.C.; Cavalcanti, S.C.H.; Sousa, D.P. Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere 2014, 104, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liu, X.C.; Liu, Z.L.; Xu, X. Chemical Composition of Salvia plebeian R.Br. Essential Oil and its Larvicidal Activity against Aedes aegypti L. Trop. J. Pharm. Res. 2015, 14, 831–836. [Google Scholar] [CrossRef]
- Parreira, N.A.; Magalhaes, L.G.; Morais, D.R.; Caixeta, S.C.; Sousa, J.P.B.; Bastos, J.K.; Cunha, W.R.; Silva, M.L.A.; Nanayakkara, N.P.D.; Rodrigues, V.; et al. Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of Baccharis dracunculifolia. Chem. Biodivers. 2010, 7, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.C.; Ponzi, M.; Ardanaz, C.; Tonn, C.E.; Donadel, O.J. Chemical Composition of Baccharis salicifolia (Ruiz & Pavon) Pers. and Antibacterial Activity. J. Chil. Chem. Soc. 2009, 54, 475–476. [Google Scholar] [CrossRef]
- Kurdelas, R.R.; López, S.; Lima, B.; Feresin, G.E.; Zygadlo, J.; Zacchino, S.; López, M.L.; Tapia, A.; Freile, M.L. Chemical composition, anti-insect and antimicrobial activity of Baccharis darwinii essential oil from Argentina, Patagonia. Ind. Crops Prod. 2012, 40, 261–267. [Google Scholar] [CrossRef]
- García, M.; Donadel, O.J.; Ardanaz, C.E.; Tonn, C.E.; Sosa, M.E. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manag. Sci. 2005, 61, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.N.; Rehder, V.L.G.; Oliveira, A.S.S.; Júnior, I.M.; Carvalho, J.E.; Ruiz, A.L.T.G.; Jeraldo, V.L.S.; Linhares, A.X.; Allegretti, S.M. Schistosoma mansoni: In vitro schistosomicidal activity of essential oil of Baccharis trimera (less) DC. Exp. Parasitol. 2012, 132, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016, 194, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.E.; Duarte, J.L.; Amado, J.R.; Cruz, R.A.; Rocha, C.F.; Souto, R.N.; Ferreira, R.M.; Santos, K.; da Conceição, E.C.; de Oliveira, L.A.; et al. Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil. PLoS ONE 2016, 11, e0145835. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.C.R.; Ferreira, A.M.; Vilhena, J.C.E.; Almeida, F.B.; Cruz, R.A.S.; Florentino, A.C.; Souto, R.N.P.; Carvalho, J.C.T.; Fernandes, C.P. Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Rev. Bras. Farmacogn. 2014, 24, 699–705. [Google Scholar] [CrossRef]
- Oliveira, A.E.M.F.M.; Duarte, J.L.; Cruz, R.A.S.; Souto, R.N.P.; Ferreira, R.M.A.; Peniche, T.; Conceição, E.C.; Oliveira, L.A.R.; Faustino, S.M.M.; Florentino, A.C.; et al. Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. J. Nanobiotechnol. 2017, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Montefuscoli, A.R.; Werdin González, J.O.; Palma, S.D.; Ferrero, A.A.; Fernández Band, B. Design and development of aqueous nanoformulations for mosquito control. Parasitol. Res. 2014, 113, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.L.; Amado, J.R.R.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Ferreira, A.M.; Souto, R.N.P.; Falcão, D.Q.; Carvalho, J.C.T.; Fernandes, C.P. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev. Bras. Farmacogn. 2015, 25, 189–192. [Google Scholar] [CrossRef]
- Oliveira, A.E.M.F.M.; Bezerra, D.C.; Duarte, J.L.; Cruz, R.A.S.; Souto, R.N.P.; Ferreira, R.M.A.; Nogueira, J.; Conceição, E.C.; Leitão, S.; Bizzo, H.R.; et al. Essential oil from Pterodon emarginatus as a promising natural raw material for larvicidal nanoemulsions against a tropical disease vector. Sustain. Chem. Pharm. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Optimization of Process Parameters to Formulate Nanoemulsion by Spontaneous Emulsification: Evaluation of Larvicidal Activity Against Culex quinquefasciatus Larva. BioNanoScience 2014, 4, 157–165. [Google Scholar] [CrossRef]
- Trombin-Souza, M.; Amaral, W.; Pascoalino, J.A.L.; Oliveira, R.A.; Bizzo, H.R.; Deschamps, C. Chemical composition of the essential oils of Baccharis species from southern Brazil: A comparative study using multivariate statistical analysis. J. Essent. Oil Res. 2017, 29, 400–406. [Google Scholar] [CrossRef]
- Agostini, F.; Santos, A.C.A.; Rossato, M.; Pansera, M.R.; Zattera, F.; Wasum, R.; Serafini, L.A. Studies on the essential oils from several Baccharis (Asteraceae) from Southern Brazil. Rev. Bras. Farmacogn. 2005, 15, 215–219. [Google Scholar] [CrossRef]
- Valarezo, E.; Rosillo, M.; Cartuche, L.; Malagón, O.; Meneses, M.; Morocho, V. Chemical composition, antifungal and antibacterial activity of the essential oil from Baccharis latifolia (Ruiz & Pav.) Pers. (Asteraceae) from Loja, Ecuador. J. Essent. Oil Res. 2013, 25, 233–238. [Google Scholar] [CrossRef]
- Ramos Campos, F.; Bressan, J.; Godoy Jasinski, V.C.; Zuccolotto, T.; da Silva, L.E.; Bonancio Cerqueira, L. Baccharis (Asteraceae): Chemical Constituents and Biological Activities. Chem. Biodivers. 2016, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Espina, L.; Gelaw, T.K.; Lamo-Castellví, S.; Pagán, R.; García-Gonzalo, D. Mechanism of Bacterial Inactivation by (+)-Limonene and Its Potential Use in Food Preservation Combined Processes. PLoS ONE 2013, 8, e56769. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Kainulainen, P.; Aflatuni, A.; Tiilikkala, K.; Holopainen, J.K. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests. Agric. Food Sci. 2001, 10, 243–259. [Google Scholar]
- Dohi, S.; Terasaki, M.; Makino, M. Acetylcholinesterase Inhibitory Activity and Chemical Composition of Commercial Essential Oils. J. Agric. Food Chem. 2009, 57, 4313–4318. [Google Scholar] [CrossRef] [PubMed]
- Savelev, S.U.; Okello, E.J.; Perry, E.K. Butyryl- and Acetyl-cholinesterase Inhibitory Activities in Essential Oils of Salvia Species and Their Constituents. Phytother. Res. 2004, 18, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E.; Durkin, K.A. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.F.; Byrne, O. Plant-insect coevolution and inhibition of acetyl-cholinesterase. J. Chem. Ecol. 1998, 14, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Blenau, W.; Rademacher, E.; Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets? Apidologie 2012, 43, 334. [Google Scholar] [CrossRef]
- Carpinella, M.C.; Andrione, D.G.; Ruiz, G.; Palacios, S.M. Screening for acetyl-cholinesterase inhibitory activity in plant extracts from Argentina. Phytother. Res. 2010, 24, 259–263. [Google Scholar] [CrossRef] [PubMed]
- San-Martín, A.; Astudillo, L.; Gutiérrez, M.; Chamy, M.C.; Orejarena, S.; Rivera, P.; Vergara, K. 13- Epi-Neoclerodanes from Baccharis marginalis. J. Chil. Chem. Soc. 2010, 55, 118–120. [Google Scholar] [CrossRef]
- Seo, S.; Kim, J.; Kang, J.; Koh, S.; Ahn, Y.; Kang, K.; Park, I. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Kolbe). Pestic. Biochem. Physiol. 2014, 113, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.M.; Jung, C.S.; Kang, J.; Lee, H.R.; Kim, S.W.; Hyun, J.; Park, I.K. Larvicidal and acetylcholinesterase inhibitory activities of Apiaceae plant essential oils and their constituents against aedes albopictus and formulation development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef] [PubMed]
- Menichini, F.; Tundis, R.; Loizzo, M.R.; Bonesi, M.; Marrelli, M.; Statti, G.A.; Menichini, F.; Conforti, F. Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia 2009, 80, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Hostettmann, K.; Borloz, A.; Urbain, A.; Marston, A. Natural Product Inhibitors of Acetylcholinesterase. Curr. Org. Chem. 2006, 10, 825–847. [Google Scholar] [CrossRef]
- Miyazawa, M.; Tougo, H.; Ishihara, M. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi. Nat. Prod. Lett. 2001, 15, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Savelev, S.; Okello, E.; Perry, N.S.L.; Wilkins, R.M.; Perry, E.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 2003, 75, 661–668. [Google Scholar] [CrossRef]
- Chantraine, J.M.; Laurent, D.; Ballivian, C.; Saavedra, G.; Ibañez, R.; Vilaseca, L.A. Insecticidal activity of essential oils on Aedes aegypti larvae. Phytother. Res. 1998, 12, 350–354. [Google Scholar] [CrossRef]
- Zahran, H.E.M.; Abdelgaleil, S.A.M. Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae). J. Asia-Pac. Entomol. 2011, 14, 46–51. [Google Scholar] [CrossRef]
- Kassir, J.T.; Mohsen, Z.H.; Mehdi, N.S. Toxic effects of limonene against Culex quinquefasciatus Say larvae and its interference with oviposition. Anzeiger Schädlingskunde Pflanzenschutz Umweltschutz 1989, 62, 19–21. [Google Scholar] [CrossRef]
- Jesus, F.L.M.; Almeida, F.B.; Duarte, J.L.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Souto, R.N.P.; Ferreira, R.M.A.; Kelmann, R.G.; Carvalho, J.C.T.; Lira-Guedes, A.C.; et al. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae) Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity. Evid.-Based. Complement. Altern. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Lin, C.Y.; Chung, M.J.; Liu, Y.H.; Huang, C.G.; Chang, S.T. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind. Crops Prod. 2013, 47, 310–315. [Google Scholar] [CrossRef]
- Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.A.; Arruda, W.; Oliveira, E.S.F.; Cavasin, G.M.; Silva, H.H.G.; Silva, I.G. Mecanismos da ação larvicida do diflubenzuron sobre Aedes aegypti evidenciados pelas alterações ultraestruturais. Rev. Patol. Trop. 2012, 41, 222–232. [Google Scholar] [CrossRef]
- Alves, S.N.; Serrao, J.E.; Melo, A.L. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 2010, 41, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Van Den Doll, H.; Kratz, D.J. A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–467. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Kemp, R.J.; Wallace, B.K. Molecular Determinants of Species-Selective Inhibition of Brain Acetylcholinesterase. Toxicol. Appl. Pharmacol. 1990, 104, 246–258. [Google Scholar] [CrossRef]
- Ostertag, F.; Weiss, J.; McClements, D.J. Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. J. Colloid Interface Sci. 2012, 388, 95–102. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for Laboratory and Field Testing of Mosquito Larvicides; Communicable Disease Control, Prevention and Eradication, WHO Pesticide Evaluation Scheme; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
Sample Availability: Samples of the essential oil from Baccharis reticularia are available from the authors. |
RI | Compound | % |
---|---|---|
937 | α-Pinene | 7.3 |
976 | Sabinene | 0.9 |
981 | β-Pinene | 8.4 |
991 | β-Myrcene | 8.5 |
1026 | p-Cymene | 0.5 |
1034 | d-limonene | 25.7 |
1177 | Terpin-4-ol | 0.5 |
1389 | β-Elemene | 1.2 |
1418 | (E)-caryophyllene | 24.6 |
1481 | d-Germacrene | 1.7 |
1494 | Bicyclogermacrene | 11.3 |
1518 | δ-Cadinene | 1.1 |
1580 | Spathulenol | 3.2 |
1588 | Globulol | 0.8 |
1596 | Viridiflorol | 0.8 |
2047 | Kaurene | 0.7 |
Total of monoterpenes | 51.8 | |
Total of sesquiterpenes | 44.7 | |
Total of diterpenes | 0.7 | |
Total of identified compounds | 97.2 |
HLB | Size ± SD (nm) | Pdi ± SD | Zeta ± SD (mV) | Size ± SD (nm) | Pdi ± SD | Zeta ± SD (mV) |
---|---|---|---|---|---|---|
15 | 92.9 ± 0.4 | 0.412 ± 0.009 | −20.4 ± 0.6 | 94.5 ± 1.9 | 0.382 ± 0.048 | −21.5 ± 1.4 |
14 | 162.3 ±1.4 | 0.392 ± 0.007 | −26.0 ± 0.5 | 159.1 ± 2.2 | 0.416 ± 0.029 | −26.6 ± 0.6 |
13 | 304.5 ± 134.2 | 0.493 ± 0.027 | −32.5 ± 0.9 | 208.1 ± 11.9 | 0.497 ± 0.030 | −36.7 ± 3.7 |
12 | 814.6 ± 943.0 | 0.714 ± 0.224 | −32.3 ± 0.6 | 371.8 ± 254.7 | 0.581 ± 0.032 | −36.0 ± 1.0 |
11 | 793.3 ± 687.4 | 0.661 ± 0.299 | −34.8 ± 0.6 | 434.8 ± 242.6 | 0.691 ± 0.183 | −39.6 ± 0.5 |
10 | 1224.0 ± 568.9 | 0.846 ± 0.144 | −36.3 ± 0.6 | 1131.0 ± 649.7 | 0.856 ± 0.131 | −42.7 ± 0.3 |
9 | 1157.0 ± 965.5 | 0.802 ± 0.178 | −40.5 ± 1.7 | 1231.0 ± 784.8 | 0.886 ± 0.099 | −45.8 ± 2.9 |
8 | 938.6 ± 553.6 | 0.722 ± 0.132 | −45.1 ± 1.8 | 1208.0 ± 1035.0 | 0.772 ± 0.197 | −50.1 ± 1.2 |
HLB | Size (nm) | Pdi | Zeta (mV) | Size (nm) | Pdi | Zeta (mV) |
---|---|---|---|---|---|---|
15 | 136.0 ± 2.9 | 0.728 ± 0.030 | −15.4 ± 0.4 | 138.0 ± 1.0 | 0.453 ± 0.006 | −18.3 ± 0.3 |
14 | 154 ± 3.0 | 0.516 ± 0.031 | −15.0 ± 0.4 | 172.0 ± 0.6 | 0.528 ± 0.005 | −20.8 ± 0.5 |
13 | 177.5 ± 3.86 | 0.471 ± 0.015 | −24.5 ± 0.6 | 165.8 ± 0.8 | 0.462 ± 0.013 | −24.1 ± 0.6 |
12 | 162 ± 0.902 | 0.627 ± 0.040 | −29.6 ± 0.5 | 198.0 ± 14 | 0.655 ± 0.008 | −28.6 ± 0.7 |
11 | 292 ± 16.91 | 0.690 ± 0.029 | −37.1 ± 1.4 | 193.9 ± 45 | 0.655 ± 0.085 | −36.8 ± 0.5 |
10 | 624.9 ± 80.51 | 0.869 ± 0.043 | −45.4 ± 0.4 | 409.6 ± 71 | 0.762 ± 0.050 | −45.4 ± 0.0 |
Nanoemulsion | 24 h | 48 h | ||
---|---|---|---|---|
LC50 | LC90 | LC50 | LC90 | |
B. reticularia | 221.273 (151.563–979.895) | 457.472 (299.055–3323.08) | 144.685 (84.1297–228.743) | 322.368 (234.914–748.635) |
d-limonene | 91.2534 (74.1662–111.616) | 115.876 (99.85–167.279) | 81.1953 (60.1436–102.036) | 117.08 (97.5348–169.639) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botas, G.D.S.; Cruz, R.A.S.; De Almeida, F.B.; Duarte, J.L.; Araújo, R.S.; Souto, R.N.P.; Ferreira, R.; Carvalho, J.C.T.; Santos, M.G.; Rocha, L.; et al. Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules 2017, 22, 1990. https://doi.org/10.3390/molecules22111990
Botas GDS, Cruz RAS, De Almeida FB, Duarte JL, Araújo RS, Souto RNP, Ferreira R, Carvalho JCT, Santos MG, Rocha L, et al. Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules. 2017; 22(11):1990. https://doi.org/10.3390/molecules22111990
Chicago/Turabian StyleBotas, Gisele Da S., Rodrigo A. S. Cruz, Fernanda B. De Almeida, Jonatas L. Duarte, Raquel S. Araújo, Raimundo Nonato P. Souto, Ricardo Ferreira, José Carlos T. Carvalho, Marcelo G. Santos, Leandro Rocha, and et al. 2017. "Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control" Molecules 22, no. 11: 1990. https://doi.org/10.3390/molecules22111990
APA StyleBotas, G. D. S., Cruz, R. A. S., De Almeida, F. B., Duarte, J. L., Araújo, R. S., Souto, R. N. P., Ferreira, R., Carvalho, J. C. T., Santos, M. G., Rocha, L., Pereira, V. L. P., & Fernandes, C. P. (2017). Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules, 22(11), 1990. https://doi.org/10.3390/molecules22111990