Seasonal Variation in Total Phenolic and Flavonoid Contents and DPPH Scavenging Activity of Bellis perennis L. Flowers
Abstract
:1. Introduction
2. Results and Discussion
Locality Month of collection | Total flavonoids (method 1) mg/100 mg dw | Total flavonoids (method 2) mg/100 mg dw | Total phenolics mg/100 mg dw | DPPH scavenging activity (IC50) µg/mL |
---|---|---|---|---|
Ústí nad Labem | ||||
March | 0.35 ± 0.01 | 1.76 ± 0.06 | 3.10 ± 0.04 | 74.83 ± 1.73 |
April | 0.42 ± 0.01 | 1.98 ± 0.03 | 3.17 ± 0.02 | 78.18 ± 0.71 |
May | 0.42 ± 0.01 | 1.70 ± 0.09 | 3.41 ± 0.05 | 71.42 ± 2.43 |
June | 0.39 ± 0.01 | 1.63 ± 0.02 | 3.14 ± 0.05 | 77.49 ± 2.13 |
July | 0.37 ± 0.01 | 1.68 ± 0.02 | 3.25 ± 0.13 | 75.02 ± 2.06 |
August | 0.40 ± 0.02 | 1.47 ± 0.03 | 2.94 ± 0.01 | 83.37 ± 3.44 |
September | 0.31 ± 0.01 | 1.84 ± 0.10 | 3.03 ± 0.02 | 83.12 ± 0.91 |
October | 0.39 ± 0.02 | 1.56 ± 0.05 | 3.01 ± 0.02 | 74.67 ± 4.26 |
Dobré | ||||
March | 0.31 ± 0.01 | 1.69 ± 0.06 | 3.19 ± 0.05 | 78.13 ± 3.53 |
April | 0.43 ± 0.03 | 2.17 ± 0.05 | 3.46 ± 0.05 | 74.67 ± 8.39 |
May | 0.43 ± 0.01 | 1.80 ± 0.04 | 3.44 ± 0.10 | 78.28 ± 0.36 |
June | 0.39 ± 0.01 | 2.20 ± 0.16 | 3.52 ± 0.01 | 66.47 ± 1.57 |
July | 0.39 ± 0.01 | 1.77 ± 0.01 | 3.03 ± 0.01 | 89.27 ± 7.28 |
August | 0.44 ± 0.01 | 2.00 ± 0.01 | 3.30 ± 0.02 | 87.74 ± 1.77 |
September | 0.38 ± 0.01 | 1.92 ± 0.10 | 3.24 ± 0.02 | 76.97 ± 1.11 |
October | 0.43 ± 0.01 | 1.72 ± 0.01 | 3.03 ± 0.04 | 81.71 ± 8.35 |
Hradec Králové | ||||
April | 0.37 ± 0.02 | 1.88 ± 0.05 | 3.53 ± 0.07 | 73.16 ± 1.65 |
May | 0.35 ± 0.02 | 1.90 ± 0.05 | 3.57 ± 0.02 | 66.03 ± 1.05 |
June | 0.35 ± 0.01 | 1.37 ± 0.01 | 3.03 ± 0.11 | 79.20 ± 0.15 |
July | 0.34 ± 0.01 | 1.42 ± 0.05 | 2.92 ± 0.16 | 83.95 ± 0.01 |
August | 0.37 ± 0.01 | 1.46 ± 0.01 | 2.81 ± 0.12 | 82.14 ± 0.62 |
September | 0.37 ± 0.01 | 2.07 ± 0.11 | 3.40 ± 0.13 | 71.77 ± 1.95 |
October | 0.43 ± 0.01 | 1.96 ± 0.08 | 3.12 ± 0.16 | 80.73 ± 0.76 |
Compound | DPPH scavenging activity (IC50) µg/mL |
---|---|
Quercetin | 1.45 ± 0.03 |
Apigenin-7-glucoside | 387.26 ± 2.91 |
Ascorbic acid | 2.62 ± 0.02 |
Trolox® | 3.67 ± 0.02 |
Butylhydroxytoluene | 7.12 ± 0.32 |
Locality, year | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ústí nad Labem, 2000 | Dobré, 2001 | Hradec Králové, 2003 | ||||||||||||||||||||
Ma | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 4 | 5 | 6 | 7 | 8 | 9 | ||
TF 1b | 4 | s | s | |||||||||||||||||||
5 | s | n | s | n | n | |||||||||||||||||
6 | s | s | s | s | n | s | n | n | ||||||||||||||
7 | n | s | s | n | s | n | s | n | n | n | n | |||||||||||
8 | s | n | n | n | n | s | n | n | s | s | n | n | n | s | ||||||||
9 | s | s | s | s | s | s | s | n | s | n | n | s | n | n | n | s | n | |||||
10 | s | n | n | n | n | n | s | s | n | n | s | s | n | s | s | s | s | s | s | s | ||
TF 2c | 4 | s | s | |||||||||||||||||||
5 | n | s | n | s | n | |||||||||||||||||
6 | s | s | n | s | n | s | s | s | ||||||||||||||
7 | n | s | n | s | n | s | n | s | s | s | n | |||||||||||
8 | s | s | s | s | s | s | s | s | n | s | s | n | n | n | ||||||||
9 | n | n | n | n | n | s | s | s | n | n | n | n | n | n | s | s | s | |||||
10 | s | s | n | n | s | n | s | n | s | s | s | s | s | n | n | n | s | s | s | n | ||
TPd | 4 | n | s | |||||||||||||||||||
5 | s | s | s | n | n | |||||||||||||||||
6 | n | n | s | s | n | n | s | s | ||||||||||||||
7 | n | n | n | n | s | s | s | s | s | s | n | |||||||||||
8 | s | s | s | s | n | s | s | n | s | s | s | s | n | n | ||||||||
9 | n | s | s | s | n | s | s | s | n | s | s | s | n | n | s | s | s | |||||
10 | s | s | s | s | n | s | n | s | s | s | s | n | s | s | s | s | n | n | n | n | ||
DSAe | 4 | s | n | |||||||||||||||||||
5 | n | s | n | n | s | |||||||||||||||||
6 | n | n | s | s | n | n | s | s | ||||||||||||||
7 | n | n | n | n | n | n | n | s | s | s | s | |||||||||||
8 | s | n | s | n | s | s | n | s | s | n | s | s | s | s | ||||||||
9 | s | s | s | s | s | n | n | n | n | s | n | s | n | s | s | s | s | |||||
10 | n | n | n | n | n | n | n | n | n | n | n | n | n | n | s | s | n | s | n | s |
3. Experimental
3.1. Chemicals and analytical instruments
3.2. Plant material
Locality, year | |||
---|---|---|---|
Ústí nad Labem, 2000 | Dobré, 2001 | Hradec Králové, 2003 | |
Mean air temperature | 11.1 °C | 7.7 °C | 10.4 °C |
Total precipitation | 574 mm | 872 mm | 581 mm |
Sunshine duration | 1434 h | 1401 h | 1776 h |
3.3. Determination of total flavonoids
3.4. Determination of total phenolics
3.5. DPPH radical scavenging activity
3.6. Statistical analysis
4. Conclusions
Acknowledgements
- Sample Availability: Samples of the compounds of interest are available from the authors.
References
- Slavík, B. Bellis perennis L. – sedmikráska obecná. In Květena České republiky, 1st; Slavík, B., Štěpánková, J., Eds.; Academia: Praha, Czech Republic, 2004; Volume 7. [Google Scholar]
- Mitich, L.W. English daisy (Bellis perennis L.). Weed Technol. 1997, 11, 626–628. [Google Scholar]
- Brouillet, L. Bellis perennis. In Flora of North America North of Mexico; Flora of North America Editorial Committee; Flora of North America Association: New York, NY, USA, 2006; Volume 20, p. 23. [Google Scholar]
- Schöpke, T.; Hiller, K. Bellis perennis L. In Hagers Handbuch der Pharmazeutischen Praxis, 5th; Hänsel, R., Keller, K., Rimpler, H., Schneider, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4, pp. 477–479. [Google Scholar]
- Nazaruk, J.; Gudej, J. Qualitative and quantitative chromatographic investigation of flavonoids in Bellis perennis L. Acta Pol. Pharm. 2001, 58, 401–404. [Google Scholar]
- Pharmacopoeia Commission of the Ministry of Health of the Czech Republic, Bellidis flos. In Codex Pharmaceuticus Bohemicus, 1st; Trávníčková, M.; Novotná, H.; Portych, J. (Eds.) X-EGEM: Praha, Czech Republic, 1993.
- Grabias, B.; Dombrowicz, E.; Kalemba, D.; Świątek, L. Phenolic acids in Flores Bellidis and Herba Tropaeoli. Herba Pol. 1995, 41, 111–114. [Google Scholar]
- Tava, A. GC and GC/MS analyses of volatile components from some forage plants. Herba Pol. 1996, 42, 231–236. [Google Scholar]
- Yoshikawa, M.; Li, X.; Nishida, E.; Nakamura, S.; Matsuda, H.; Muraoka, O.; Morikawa, T. Medicinal flowers. XXI. Structures of perennisaponins A, B, C, D, E, and F, acylated oleanane-type triterpene oligoglycosides, from the flowers of Bellis perennis. Chem. Pharm. Bull. 2008, 56, 559–568. [Google Scholar] [CrossRef]
- Gudej, J.; Nazaruk, J. Apigenin glycosidoesters from flowers of Bellis perennis L. Acta Pol. Pharm. 1997, 54, 233–235. [Google Scholar]
- Gudej, J.; Nazaruk, J. Flavonol glycosides from the flowers of Bellis perennis. Fitoterapia 2001, 72, 839–840. [Google Scholar] [CrossRef]
- Nazaruk, J.; Gudej, J. Apigenin glycosides from the flowers of Bellis perennis L. Acta Pol. Pharm. 2000, 57, 129–130. [Google Scholar]
- Toki, K.; Saito, N.; Honda, T. Three cyanidin 3-glucuronylglucosides from red flowers of Bellis perennis. Phytochemistry 1991, 30, 3769–3771. [Google Scholar] [CrossRef]
- Hegi, G. Illustrierte Flora von Mitteleuropa, 2nd ed; Paul Parey: Berlin/Hamburg, Germany, 1979; Volume VI, pp. 29–35, Part 3. [Google Scholar]
- Glensk, M.; Wray, V.; Nimtz, M.; Schöpke, T. Triterpenoid saponins of Bellis perennis. Sci. Pharm. 2001, 69, 69–73. [Google Scholar]
- Avato, P.; Tava, A. Acetylenes and terpenoids of Bellis perennis. Phytochemistry 1995, 40, 141–147. [Google Scholar]
- Avato, P.; Vitali, C.; Mongelli, P.; Tava, A. Antimicrobial activity of polyacetylenes from Bellis perennis and their synthetic derivatives. Planta Med. 1997, 63, 503–507. [Google Scholar] [CrossRef]
- Siatka, T.; Kašparová, M. Seasonal changes in the hemolytic effects of the head of Bellis perennis L. Čes. Slov. Farm. 2003, 52, 39–41. [Google Scholar]
- Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd ed; Intercept: Hampshire, UK, 1999; pp. 309–345. [Google Scholar]
- Cazarolli, L.H.; Zanatta, L.; Alberton, E.H.; Figueiredo, M.S.R.B.; Folador, P.; Damazio, R.G.; Pizzolatti, M.G.; Silva, F.R.M.B. Flavonoids: Prospective drug candidates. Mini Rev. Med. Chem. 2008, 8, 1429–1440. [Google Scholar] [CrossRef]
- Dillard, C.J.; German, J.B. Phytochemicals: nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Su, L.; Yin, J.-J.; Charles, D.; Zhou, K.; Moore, J.; Yu, L. Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem. 2007, 100, 990–997. [Google Scholar] [CrossRef]
- Pereira, D.M.; Valentão, P.; Pereira, J.A.; Andrade, P.B. Phenolics: From chemistry to biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Stanojević, L.; Stanković, M.; Nikolić, V.; Nikolić, L.; Ristić, D.; Čanadanovic-Brunet, J.; Tumbas, V. Antioxidant activity and aotal phenolic and flavonoid contents of Hieracium pilosella L. extracts. Sensors 2009, 9, 5702–5714. [Google Scholar]
- Christ, B.; Müller, K.H. Determination of the amount of flavonol derivatives in drugs. Arch. Pharm. 1960, 293, 1033–1042. [Google Scholar] [CrossRef]
- European Pharmacopoeia Commission, European Pharmacopoeia, 3rd ed; Council of Europa: Strasbourg, France, 1997; pp. 1098–1099.
- Glasl, H. Photometrische Normierung von Flavonoid-O- und -C-Glykosiden. Fresenius Z. Anal. Chem. 1985, 321, 325–330. [Google Scholar] [CrossRef]
- European Pharmacopoeia Commission, European Pharmacopoeia, 3rd ed; Council of Europa: Strasbourg, France, 1999; pp. 2035–2036. Suppl 2000.
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Kakáč, B.; Vejdělek, Z.J. Handbuch der photometrischen Analyse organischer Verbindungen, 1st ed; Verlag Chemie: Weinheim, Germany, 1974; pp. 110–112, Part 1. [Google Scholar]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Qin, X.-S.; Gan, R.-Y.; Li, H.-B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Barrionuevo-González, A.; Zamora-Ros, R.; Andres-Lacueva, C.; Estruch, R.; Martínez-Gonzáles, M.-A.; Diez-Espino, J.; Lamuela-Raventos, R.M. Rapid Folin-Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal. Chim. Acta 2009, 634, 54–60. [Google Scholar] [CrossRef]
- Roura, E.; Andres-Lacueva, C.; Estruch, R.; Lamuela-Raventos, R.M. Total polyphenol intake estimated by a modified Folin-Ciocalteu assay of urine. Clin. Chem. 2006, 52, 749–752. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.-O. Consideration on equivalent chemicals in total phenolic assay of chlorogenic acid-rich plums. Food Res. Int. 2004, 37, 337–342. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. u.-Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef]
- Bennett, J.O.; Yu, O.; Heatherly, L.G.; Krishnan, H.B. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. J. Agric. Food Chem. 2004, 52, 7574–7579. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, J.-Y.; Kim, K.-N.; Kim, H.-S. Quantitative analysis of two major flavonoid aglycones in acid hydrolyzed samples of Angelica keiskei by HPLC. Food Sci. Biotechnol. 2003, 12, 415–418. [Google Scholar]
- Remorini, D.; Melgar, J.C.; Guidi, L.; Degl’Innocenti, E.; Castelli, S.; Traversi, M.L; Massai, R.; Tattini, M. Interaction effects of root-zone salinity and solar irradiance on the physiology and biochemistry of Olea europaea. Environ. Exp. Bot. 2009, 65, 210–219. [Google Scholar] [CrossRef]
- Tsormpatsidis, E.; Henbest, R.G.C.; Davis, F.J.; Battey, N.H.; Hadley, P.; Wagstaffe, A. UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ. Exp. Bot. 2008, 63, 232–239. [Google Scholar] [CrossRef]
- Cooley, N.M.; Truscott, H.M.F.; Holmes, M.G.; Attridge, T.H. Outdoor ultraviolet polychromatic action spectra for growth responses of Bellis perennis and Cynosurus cristatus. J. Photochem. Photobiol. Biol. 2000, 59, 64–71. [Google Scholar] [CrossRef]
- Cooley, N.M.; Holmes, M.G.; Attridge, T.H. Growth and stomatal responses of temperate meadow species to enhanced levels of UV-A and UV-B + A radiation in the natural environment. J. Photochem. Photobiol. Biol. 2000, 57, 179–185. [Google Scholar] [CrossRef]
- Gunn, S.; Farrar, J.F. Effects of a 4 °C increase in temperature on partitioning of leaf area and dry mass, root respiration and carbohydrates. Funct. Ecol. 1999, 13 (Suppl. 1), 12–20. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.; Rosen, R.T.; Ho, C.-T. 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb. J. Agric. Food Chem. 1999, 47, 2226–2228. [Google Scholar] [CrossRef]
- Masuda, T.; Yonemori, S.; Oyama, Y.; Takeda, Y.; Tanaka, T.; Andoh, T.; Shinohara, A.; Nakata, M. Evaluation of the antioxidant activity of environmental plants: Activity of the leaf extracts from seashore plants. J. Agric. Food Chem. 1999, 47, 1749–1754. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Siatka, T.; Kašparová, M. Seasonal Variation in Total Phenolic and Flavonoid Contents and DPPH Scavenging Activity of Bellis perennis L. Flowers. Molecules 2010, 15, 9450-9461. https://doi.org/10.3390/molecules15129450
Siatka T, Kašparová M. Seasonal Variation in Total Phenolic and Flavonoid Contents and DPPH Scavenging Activity of Bellis perennis L. Flowers. Molecules. 2010; 15(12):9450-9461. https://doi.org/10.3390/molecules15129450
Chicago/Turabian StyleSiatka, Tomáš, and Marie Kašparová. 2010. "Seasonal Variation in Total Phenolic and Flavonoid Contents and DPPH Scavenging Activity of Bellis perennis L. Flowers" Molecules 15, no. 12: 9450-9461. https://doi.org/10.3390/molecules15129450
APA StyleSiatka, T., & Kašparová, M. (2010). Seasonal Variation in Total Phenolic and Flavonoid Contents and DPPH Scavenging Activity of Bellis perennis L. Flowers. Molecules, 15(12), 9450-9461. https://doi.org/10.3390/molecules15129450