Extraction and Separation of Volatile and Fixed Oils from Berries of Laurus nobilis L. by Supercritical CO2
Abstract
:Introduction
Results and Discussion
Volatile oil
Tr | IR | Compound | SFE | HD | Identification |
---|---|---|---|---|---|
5.37 | 933 | α-pinene | 8.0 | 10.3 | MS, IR, Inj |
5.74 | 948 | camphene | 2.6 | 3.8 | MS, IR |
6.37 | 973 | sabinene | 1.8 | 2.6 | MS, IR, Inj |
6.48 | 977 | β-pinene | 4.2 | 5.8 | MS, IR, Inj |
8.12 | 1031 | 1,8-cineole | 8.8 | 8.1 | MS, IR, Inj |
8.69 | 1047 | (Z)-β-ocimene | 2.0 | 3.0 | MS, IR |
8.80 | 1050 | (E)-β-ocimene | 20.9 | 23.7 | MS, IR |
10.56 | 1101 | linalool | 2.2 | 4.2 | MS, IR, Inj |
13.14 | 1166 | para-mentha-1,5-dien-8-ol | 1.5 | 1.5 | MS, IR |
16.87 | 1256 | linalyl acetate | 4.5 | 1.3 | MS, IR |
18.11 | 1286 | bornyl acetate | 2.9 | 2.1 | MS, IR, Inj |
20.78 | 1350 | α-terpinyl acetate | 3.8 | 3.0 | MS, IR, Inj |
22.44 | 1390 | β-cubebene | 2.2 | 1.9 | MS, IR |
22.51 | 1392 | β-longipinene | 7.1 | 6.8 | MS, IR |
23.08 | 1405 | methyl eugenol | 1.4 | 1.0 | MS, IR, Inj |
23.60 | 1418 | (E)-caryophyllene | 2.5 | 1.9 | MS, IR, Inj |
26.07 | 1480 | germacrene D | 2.7 | 1.8 | MS, IR |
26.92 | 1501 | viridiflorene | 1.5 | 1.0 | MS, IR |
27.08 | 1505 | α-bulnesene | 3.5 | 2.7 | MS, IR |
27.39 | 1513 | trans-cadinene | 2.7 | 2.1 | MS, IR |
27.77 | 1523 | δ-cadinene | 4.7 | 3.9 | MS, IR |
29.81 | 1576 | spathulenol | 2.3 | 1.4 | MS, IR |
32.66 | 1652 | α-cadinol | 2.0 | 1.1 | MS, IR |
33.98 | 1688 | 5-isocedranol | 2.1 | 1.1 | MS, IR |
Fixed oil
Fatty acid | value | sd |
---|---|---|
10:0 | 0.4 | 0.01 |
12:0 | 27.7 | 0.60 |
14:0 | 1.0 | 0.03 |
16:0 | 17.1 | 0.47 |
16:1 n-7 | 0.3 | 0.01 |
18:0 | 1.5 | 0.06 |
18:1 n-7 | 0.9 | 0.04 |
18:1 n-9 | 27.2 | 0.38 |
18:2 n-6 | 21.5 | 1.34 |
18:3 n-3 | 1.2 | 0.22 |
20:0 | 0.2 | 0.01 |
20:1 n-9 | 0.7 | 0.08 |
SFA | 47.8 | 1.16 |
MUFA | 29.0 | 0.35 |
PUFA | 22.7 | 1.51 |
UFAs | value | sd |
---|---|---|
16:1 n-7 | 1.9 | 0.01 |
18:1 n-9 | 201.8 | 1.81 |
18:2 n-6 | 127.5 | 1.11 |
18:3 n-3 | 5.5 | 0.24 |
Conclusions
Experimental
Chemicals
Plant material
Hydrodistillation
SFE Apparatus
Essential oil
GC-MS Analysis
Fixed oil
Preparation of fatty acids
HPLC analysis
GC analysis
Acknowledgements
References
- Barla, A.; Topcu, G.; Oksuz, S.; Tumen, G.; Kingston, D.G.I. Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chem. 2007, 104, 1478–1484. [Google Scholar] [CrossRef]
- Kilic, A.; Hafizoglu, H.; Kollmannsberger, H.; Nitz, S. Volatile constituents and key odorants in leaves, buds, flowers, and fruits of Laurus nobilis L. J. Agric. Food Chem. 2004, 52, 1601–1606. [Google Scholar] [CrossRef]
- Bozan, B.; Karakaplan, U. Antioxidants from laurel (Laurus nobilis L.) berries: influences of extraction procedure on yield and antioxidant activity of extracts. Acta Alim. 2007, 36, 321–328. [Google Scholar] [CrossRef]
- Hafizoglu, T.; Reunanen, M. Studies on the components of Laurus nobilis from Turkey with special reference to laurel berry fat. Fat. Sci. Technol. 1993, 95, 304–308. [Google Scholar]
- Reverchon, E. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluids 1997, 10, 1–37. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S. Supercritical extraction of essential oils from natural matrices. Res. Adv. Agric. Food Chem. 2003, 4, 53–62. [Google Scholar]
- Marongiu, B.; Piras, A.; Porcedda, S. Comparative analysis of the oil and supercritical CO2 extract of Eletteria cardamomum With. Et Maton. J. Agric. Food Chem. 2004, 52, 6278–6282. [Google Scholar] [CrossRef]
- Reverchon, R.; De Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Caredda, A.; Marongiu, B.; Porcedda, S.; Soro, C. Supercritical carbon dioxide extraction and characterization of Laurus nobilis essential oil. J. Agric. Food Chem. 2002, 50, 1492–1496. [Google Scholar] [CrossRef]
- Marzouki, H.; Khaldi, A.; Chamli, R.; Bouzid, S.; Piras, A.; Falconieri, D.; Marongiu, B. Biological activity evaluation of the oils from Laurus nobilis of Tunisia and Algeria extracted by supercritical carbon dioxide. Nat. Prod. Res. 2008, in press. [Google Scholar] [PubMed]
- Yalçin, H.; Akin, M.; Şanda, M.A.; Çakir, A. Gas chromatography/Mass spectrometry analysis of Laurus nobilis essential oil composition of Northern Cyprus. J. Med. Food. 2007, 10, 715–719. [Google Scholar] [CrossRef]
- Marzouki, H; Piras, A.; Bel Haj Salah, K.; Medini, H.; Pivetta, T.; Bouzid, S.; Marongiu, B; Falconieri, D. Essential oil composition and variability of Laurus nobilis L. growing in Tunisia, comparison and chemometric investigation of different plant organs. Nat. Prod. Res. 2008, in press. [Google Scholar] [PubMed]
- Castilho, P.C.; Costa, M.C.; Rodrigues, A.; Partidario, A. Characterization of laurel fruit oil from Madeira Island, Portugal. JAOCS 2005, 82, 863–868. [Google Scholar]
- Frega, N.; Conte, L.S.; Lercker, G.; Capella, P. Composition of drupes of Laurus nobilis. Riv. Ital. Sost. Grasse 1982, 59, 329–334. [Google Scholar]
- Beis, S.H.; Dunford, N.T. Supercritical fluid extraction of daphne (Laurus nobilis L.) seed oil. JAOCS 2006, 83, 953–957. [Google Scholar]
- Deiana, M.; Rosa, A.; Falqui Cao, C.; Pirisi, F.M.; Bandino, G.; Dessì, M.A. Novel approach to study oxidative stability of extra virgin olive oils: importance of α-tocopherol concentration. J. Agric. Food Chem. 2002, 50, 4342–4346. [Google Scholar] [CrossRef]
- Dessì, M.A.; Deiana, M.; Day, B.W.; Rosa, A.; Banni, S.; Corongiu, F.P. Oxidative stability of plyunsaturated fatty acids: effect of squalene. Eur. J. Lipid Sci. Technol. 2002, 104, 506–512. [Google Scholar] [CrossRef]
- National Institute of Standard and Technology. NIST/EPA/NIH Mass spectral library; NIST: Gaithersburg, MD, U.S.A., 2002.
- Adams, R.P. Identification of essential oil components by Gas Chromatography/Mass Spectroscopy. Allured Publishing Corporation: Carol Stream, Illinois, U.S.A., 1995. [Google Scholar]
- Rosa, A.; Deiana, M.; Corona, G.; Atzeri, A.; Incani, A.; Appendino, G.; Dessì, M.A. Protective effect of capsinoid on lipid peroxidation in rat tissues induced by Fe-NTA. Free Radic. Res. 2005, 39, 1155–1162. [Google Scholar] [CrossRef]
- Christie, W.W. Preparation of ester derivatives of fatty acids for chromatographic analysis. In Advances in Lipid Methodology – Two; Christie, W.W., Ed.; The Oily Press: Dundee, Scotland, 1993; pp. 69–111. [Google Scholar]
- Sample Availability: Available from the authors.
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Marzouki, H.; Piras, A.; Marongiu, B.; Rosa, A.; Dessì, M.A. Extraction and Separation of Volatile and Fixed Oils from Berries of Laurus nobilis L. by Supercritical CO2. Molecules 2008, 13, 1702-1711. https://doi.org/10.3390/molecules13081702
Marzouki H, Piras A, Marongiu B, Rosa A, Dessì MA. Extraction and Separation of Volatile and Fixed Oils from Berries of Laurus nobilis L. by Supercritical CO2. Molecules. 2008; 13(8):1702-1711. https://doi.org/10.3390/molecules13081702
Chicago/Turabian StyleMarzouki, Hanen, Alessandra Piras, Bruno Marongiu, Antonella Rosa, and M. Assunta Dessì. 2008. "Extraction and Separation of Volatile and Fixed Oils from Berries of Laurus nobilis L. by Supercritical CO2" Molecules 13, no. 8: 1702-1711. https://doi.org/10.3390/molecules13081702
APA StyleMarzouki, H., Piras, A., Marongiu, B., Rosa, A., & Dessì, M. A. (2008). Extraction and Separation of Volatile and Fixed Oils from Berries of Laurus nobilis L. by Supercritical CO2. Molecules, 13(8), 1702-1711. https://doi.org/10.3390/molecules13081702