Including the Magnitude Variability of a Signal in the Ordinal Pattern Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Signals: General Notions
2.2. Synthetic Models: Map Iterates
2.3. Animal Model: EEG Recordings
2.4. Grid Model: Frequency Recording
2.5. Method: Encoding Signals into Ordinal Patterns
2.6. Statistical Measures: Permutation Entropy, Rényi Min-Entropy, and Magnitude Variability
3. Results
3.1. Ordinal Pattern Analysis of the Noiseless Map Iterates
3.2. Ordinal Pattern Analysis of the EEG Recordings
3.3. Ordinal Pattern Analysis of Grid Frequency Recordings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OP | Ordinal Patterns |
EEG | Electroencephalogram |
AW | Active Wakefulness |
REM | Rapid-Eye Movement |
NREM | Non-REM |
Appendix A. Additional Figures for the Logistic and Hénon Maps
References
- Zanin, M.; Papo, D.; Sousa, P.A.; Menasalvas, E.; Nicchi, A.; Kubik, E.; Boccaletti, S. Combining complex networks and data mining: Why and how. Phys. Rep. 2016, 635, 1–44. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Amigó, J. Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lamberti, P.; Martin, M.; Plastino, A.; Rosso, O. Intensive entropic non-triviality measure. Phys. A Stat. Mech. Its Appl. 2004, 334, 119–131. [Google Scholar] [CrossRef]
- Keller, K.; Sinn, M. Ordinal analysis of time series. Phys. A Stat. Mech. Its Appl. 2005, 356, 114–120. [Google Scholar] [CrossRef]
- Zunino, L.; Olivares, F.; Ribeiro, H.V.; Rosso, O.A. Permutation Jensen-Shannon distance: A versatile and fast symbolic tool for complex time-series analysis. Phys. Rev. E 2022, 105, 045310. [Google Scholar] [CrossRef]
- Zanin, M.; Zunino, L.; Rosso, O.A.; Papo, D. Permutation entropy and its main biomedical and econophysics applications: A review. Entropy 2012, 14, 1553–1577. [Google Scholar] [CrossRef]
- Leyva, I.; Martínez, J.H.; Masoller, C.; Rosso, O.A.; Zanin, M. 20 years of ordinal patterns: Perspectives and challenges. Europhys. Lett. 2022, 138, 31001. [Google Scholar] [CrossRef]
- Amigó, J.M.; Rosso, O.A. Ordinal methods: Concepts, applications, new developments, and challenges—In memory of Karsten Keller (1961–2022). Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 080401. [Google Scholar] [CrossRef]
- Amigó, J.M.; Zambrano, S.; Sanjuán, M.A. Detecting determinism in time series with ordinal patterns: A comparative study. Int. J. Bifurc. Chaos 2010, 20, 2915–2924. [Google Scholar] [CrossRef]
- Zunino, L.; Soriano, M.C.; Rosso, O.A. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2012, 86, 046210. [Google Scholar] [CrossRef]
- Unakafov, A.M.; Keller, K. Conditional entropy of ordinal patterns. Phys. D Nonlinear Phenom. 2014, 269, 94–102. [Google Scholar] [CrossRef]
- Bandt, C. Small order patterns in big time series: A practical guide. Entropy 2019, 21, 613. [Google Scholar] [CrossRef]
- Sakellariou, K.; Stemler, T.; Small, M. Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis. Phys. Rev. E 2019, 100, 062307. [Google Scholar] [CrossRef] [PubMed]
- Zanin, M.; Olivares, F. Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series. Commun. Phys. 2021, 4, 190. [Google Scholar] [CrossRef]
- Zunino, L.; Soriano, M.C. Quantifying the diversity of multiple time series with an ordinal symbolic approach. Phys. Rev. E 2023, 108, 065302. [Google Scholar] [CrossRef] [PubMed]
- Kottlarz, I.; Parlitz, U. Ordinal pattern-based complexity analysis of high-dimensional chaotic time series. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 053105. [Google Scholar] [CrossRef]
- Quintero-Quiroz, C.; Montesano, L.; Pons, A.J.; Torrent, M.C.; García-Ojalvo, J.; Masoller, C. Differentiating resting brain states using ordinal symbolic analysis. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 106307. [Google Scholar] [CrossRef]
- González, J.; Cavelli, M.; Mondino, A.; Pascovich, C.; Castro-Zaballa, S.; Torterolo, P.; Rubido, N. Decreased electrocortical temporal complexity distinguishes sleep from wakefulness. Sci. Rep. 2019, 9, 18457. [Google Scholar] [CrossRef]
- González, J.; Mateos, D.; Cavelli, M.; Mondino, A.; Pascovich, C.; Torterolo, P.; Rubido, N. Low frequency oscillations drive EEG’s complexity changes during wakefulness and sleep. Neuroscience 2022, 494, 1–11. [Google Scholar] [CrossRef]
- González, J.; Cavelli, M.; Tort, A.B.; Torterolo, P.; Rubido, N. Sleep disrupts complex spiking dynamics in the neocortex and hippocampus. PLoS ONE 2023, 18, e0290146. [Google Scholar] [CrossRef]
- Bandt, C. Statistics and contrasts of order patterns in univariate time series. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 033124. [Google Scholar] [CrossRef]
- Zunino, L. Revisiting the characterization of resting brain dynamics with the permutation Jensen–Shannon distance. Entropy 2024, 26, 432. [Google Scholar] [CrossRef]
- Boaretto, B.R.; Budzinski, R.C.; Rossi, K.L.; Masoller, C.; Macau, E.E. Spatial permutation entropy distinguishes resting brain states. Chaos Solitons Fractals 2023, 171, 113453. [Google Scholar] [CrossRef]
- Gancio, J.; Masoller, C.; Tirabassi, G. Permutation entropy analysis of EEG signals for distinguishing eyes-open and eyes-closed brain states: Comparison of different approaches. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 043130. [Google Scholar] [CrossRef]
- Rubido, N.; Tiana-Alsina, J.; Torrent, M.; Garcia-Ojalvo, J.; Masoller, C. Language organization and temporal correlations in the spiking activity of an excitable laser: Experiments and model comparison. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2011, 84, 026202. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.C.; Zunino, L.; Rosso, O.A.; Fischer, I.; Mirasso, C.R. Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis. IEEE J. Quantum Electron. 2011, 47, 252–261. [Google Scholar] [CrossRef]
- Aragoneses, A.; Rubido, N.; Tiana-Alsina, J.; Torrent, M.; Masoller, C. Distinguishing signatures of determinism and stochasticity in spiking complex systems. Sci. Rep. 2013, 3, 1778. [Google Scholar] [CrossRef]
- Aragoneses, A.; Perrone, S.; Sorrentino, T.; Torrent, M.; Masoller, C. Unveiling the complex organization of recurrent patterns in spiking dynamical systems. Sci. Rep. 2014, 4, 4696. [Google Scholar] [CrossRef]
- Aragoneses, A.; Carpi, L.; Tarasov, N.; Churkin, D.; Torrent, M.; Masoller, C.; Turitsyn, S. Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser. Phys. Rev. Lett. 2016, 116, 033902. [Google Scholar] [CrossRef]
- Tirabassi, G.; Duque-Gijon, M.; Tiana-Alsina, J.; Masoller, C. Permutation entropy-based characterization of speckle patterns generated by semiconductor laser light. APL Photonics 2023, 8, 126112. [Google Scholar] [CrossRef]
- Boaretto, B.R.; Macau, E.E.; Masoller, C. Characterizing the spike timing of a chaotic laser by using ordinal analysis and machine learning. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 043108. [Google Scholar] [CrossRef] [PubMed]
- Zunino, L.; Porte, X.; Soriano, M.C. Identifying ordinal similarities at different temporal scales. Entropy 2024, 26, 1016. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, M.; Marti, A.C.; Masoller, C. Inferring long memory processes in the climate network via ordinal pattern analysis. Chaos Interdiscip. J. Nonlinear Sci. 2011, 21, 013101. [Google Scholar] [CrossRef] [PubMed]
- Deza, J.I.; Barreiro, M.; Masoller, C. Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales. Eur. Phys. J. Spec. Top. 2013, 222, 511–523. [Google Scholar] [CrossRef]
- Tupikina, L.; Rehfeld, K.; Molkenthin, N.; Stolbova, V.; Marwan, N.; Kurths, J. Characterizing the evolution of climate networks. Nonlinear Process. Geophys. 2014, 21, 705–711. [Google Scholar] [CrossRef]
- Deza, J.; Tirabassi, G.; Barreiro, M.; Masoller, C. Large-Scale Atmospheric Phenomena Under the Lens of Ordinal Time-Series Analysis and Information Theory Measures. In Advances in Nonlinear Geosciences; Springer: Cham, Switzerland, 2018; pp. 87–99. [Google Scholar]
- Dijkstra, H.A.; Hernández-García, E.; Masoller, C.; Barreiro, M. Networks in Climate; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Wu, H.; Zou, Y.; Alves, L.M.; Macau, E.E.; Sampaio, G.; Marengo, J.A. Uncovering episodic influence of oceans on extreme drought events in Northeast Brazil by ordinal partition network approaches. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 053104. [Google Scholar] [CrossRef]
- Ruiz-Aguilar, J.J.; Turias, I.; González-Enrique, J.; Urda, D.; Elizondo, D. A permutation entropy-based EMD–ANN forecasting ensemble approach for wind speed prediction. Neural Comput. Appl. 2021, 33, 2369–2391. [Google Scholar] [CrossRef]
- Gancio, J.; Tirabassi, G.; Masoller, C.; Barreiro, M. Analysis of spatio temporal geophysical data using spatial entropy: Application to comparison of SST datasets. Earth Syst. Dyn. Discuss. 2024, 2024, 1–14. [Google Scholar]
- Zanin, M. Forbidden patterns in financial time series. Chaos Interdiscip. J. Nonlinear Sci. 2008, 18, 013119. [Google Scholar] [CrossRef]
- Zunino, L.; Zanin, M.; Tabak, B.M.; Pérez, D.G.; Rosso, O.A. Forbidden patterns, permutation entropy and stock market inefficiency. Phys. A Stat. Mech. Its Appl. 2009, 388, 2854–2864. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, P.; Wang, J. Measuring information interactions on the ordinal pattern of stock time series. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2013, 87, 022805. [Google Scholar] [CrossRef]
- Yin, Y.; Shang, P. Weighted multiscale permutation entropy of financial time series. Nonlinear Dyn. 2014, 78, 2921–2939. [Google Scholar] [CrossRef]
- Stosic, D.; Stosic, D.; Ludermir, T.B.; Stosic, T. Exploring disorder and complexity in the cryptocurrency space. Phys. A Stat. Mech. Its Appl. 2019, 525, 548–556. [Google Scholar] [CrossRef]
- Henry, M.; Judge, G. Permutation entropy and information recovery in nonlinear dynamic economic time series. Econometrics 2019, 7, 10. [Google Scholar] [CrossRef]
- Bandt, C. Order patterns, their variation and change points in financial time series and Brownian motion. Stat. Pap. 2020, 61, 1565–1588. [Google Scholar] [CrossRef]
- Kozak, J.; Kania, K.; Juszczuk, P. Permutation entropy as a measure of information gain/loss in the different symbolic descriptions of financial data. Entropy 2020, 22, 330. [Google Scholar] [CrossRef] [PubMed]
- Bian, C.; Qin, C.; Ma, Q.D.; Shen, Q. Modified permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2012, 85, 021906. [Google Scholar] [CrossRef]
- Fadlallah, B.; Chen, B.; Keil, A.; Príncipe, J. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2013, 87, 022911. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput. Methods Programs Biomed. 2016, 128, 40–51. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Liang, H.; Yu, J. Improved permutation entropy for measuring complexity of time series under noisy condition. Complexity 2019, 2019, 1403829. [Google Scholar] [CrossRef]
- Zanin, M. Continuous ordinal patterns: Creating a bridge between ordinal analysis and deep learning. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 033114. [Google Scholar] [CrossRef]
- Politi, A. Quantifying the dynamical complexity of chaotic time series. Phys. Rev. Lett. 2017, 118, 144101. [Google Scholar] [CrossRef]
- Watt, S.J.; Politi, A. Permutation entropy revisited. Chaos Solitons Fractals 2019, 120, 95–99. [Google Scholar] [CrossRef]
- Rényi, A. On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hung. 1959, 10, 193–215. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Entropy per unit time as a metric invariant of automorphisms. Dokl. Russ. Acad. Sci. 1959, 124, 754–755. [Google Scholar]
- Sinai, Y.G. On the notion of entropy of a dynamical system. Dokl. Russ. Acad. Sci. 1959, 124, 768–771. [Google Scholar]
- Rényi, A. On measures of entropy and information. In Proceedings of the fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Berkeley, CA, USA, 20 June–30 July 1960; University of California Press: Berkeley, CA, USA, 1961; Volume 4, pp. 547–562. [Google Scholar]
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef]
- Kaneko, K. Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Phys. D Nonlinear Phenom. 1990, 41, 137–172. [Google Scholar] [CrossRef]
- L’Her, A.; Amil, P.; Rubido, N.; Marti, A.C.; Cabeza, C. Electronically-implemented coupled logistic maps. Eur. Phys. J. B 2016, 89, 81. [Google Scholar] [CrossRef]
- Hénon, M. A two-dimensional mapping with a strange attractor. In The Theory of Chaotic Attractors; Springer: New York, NY, USA, 2004; pp. 94–102. [Google Scholar]
- National Research Council and Division on Earth and Life Studies and Institute for Laboratory Animal Research and Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Jumar, R.; Maaß, H.; Schäfer, B.; Gorjão, L.R.; Hagenmeyer, V. Database of power grid frequency measurements. arXiv 2020, arXiv:2006.01771. [Google Scholar]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Zhusubaliyev, Z.T.; Rudakov, V.N.; Soukhoterin, E.A.; Mosekilde, E. Bifurcation analysis of the Henon map. Discret. Dyn. Nat. Soc. 2000, 5, 203–221. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980: Proceedings of a Symposium, University of Warwick, Conventry, UK, 1979/80; Springer: Berlin/Heidelberg, Germany, 2006; pp. 366–381. [Google Scholar]
- Machowski, J.; Bialek, J.W.; Bialek, J.; Bumby, J.R. Power System Dynamics and Stability; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Tyloo, M.; Pagnier, L.; Jacquod, P. The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities. Sci. Adv. 2019, 5, eaaw8359. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Keller, G.; Pompe, B. Entropy of interval maps via permutations. Nonlinearity 2002, 15, 1595. [Google Scholar] [CrossRef]
- Amigó, J.M.; Kennel, M.B.; Kocarev, L. The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems. Phys. D Nonlinear Phenom. 2005, 210, 77–95. [Google Scholar] [CrossRef]
- Kargarnovin, S.; Hernandez, C.; Farahani, F.V.; Karwowski, W. Evidence of chaos in electroencephalogram signatures of human performance: A systematic review. Brain Sci. 2023, 13, 813. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyloo, M.; González, J.; Rubido, N. Including the Magnitude Variability of a Signal in the Ordinal Pattern Analysis. Entropy 2025, 27, 840. https://doi.org/10.3390/e27080840
Tyloo M, González J, Rubido N. Including the Magnitude Variability of a Signal in the Ordinal Pattern Analysis. Entropy. 2025; 27(8):840. https://doi.org/10.3390/e27080840
Chicago/Turabian StyleTyloo, Melvyn, Joaquín González, and Nicolás Rubido. 2025. "Including the Magnitude Variability of a Signal in the Ordinal Pattern Analysis" Entropy 27, no. 8: 840. https://doi.org/10.3390/e27080840
APA StyleTyloo, M., González, J., & Rubido, N. (2025). Including the Magnitude Variability of a Signal in the Ordinal Pattern Analysis. Entropy, 27(8), 840. https://doi.org/10.3390/e27080840