Echo Chambers and Homophily in the Diffusion of Risk Information on Social Media: The Case of Genetically Modified Organisms (GMOs)
Abstract
1. Introduction
2. Literature Review
2.1. Risk Communication and Social Contagion Theory
2.2. Generative Processes Driving Information Sharing
2.2.1. Endogenous Mechanisms
2.2.2. Homophily Mechanism
3. Research Design
3.1. Data Collection
3.2. Constructing the Sharing Network
3.3. Detecting Users’ GMO Stance
3.4. ERGM Specification and Measurement
3.5. Shannon Entropy-Based Analysis
4. Results
4.1. Entropy in Sharing Network
4.2. Endogenous Mechanisms and Information Sharing
4.3. Positional Homophily and Differential Effects
5. Robustness Check
6. Discussion
6.1. Endogenous Network Structural Mechanisms
6.2. Positional and Differential Homophily: Insights from ERGM and Entropy
6.3. Theoretical and Practical Implications
6.4. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GMO | genetically modified organism |
ERGM | Exponential Random Graph Model |
MTML | Multi-Theoretical Multilevel model |
References
- Kietzmann, J.H.; Hermkens, K.; McCarthy, I.P.; Silvestre, B.S. Social Media? Get Serious! Understanding the Functional Building Blocks of Social Media. Bus. Horiz. 2011, 54, 241–251. [Google Scholar] [CrossRef]
- Kwon, K.H.; Stefanone, M.A.; Barnett, G.A. Social Network Influence on Online Behavioral Choices: Exploring Group Formation on Social Network Sites. Am. Behav. Sci. 2014, 58, 1345–1360. [Google Scholar] [CrossRef]
- González-Bailón, S.; Borge-Holthoefer, J.; Moreno, Y. Broadcasters and Hidden Influentials in Online Protest Diffusion. Am. Behav. Sci. 2013, 57, 943–965. [Google Scholar] [CrossRef]
- Guille, A.; Hacid, H.; Favre, C.; Zighed, D.A. Information Diffusion in Online Social Networks: A Survey. ACM Sigmod Rec. 2013, 42, 17–28. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Shi, J.; Peng, T.-Q. What Makes Cancer Information Viral on Social Media? Comput. Hum. Behav. 2019, 93, 149–156. [Google Scholar] [CrossRef]
- Kim, H.S. Attracting Views and Going Viral: How Message Features and News-Sharing Channels Affect Health News Diffusion: Attracting Views and Going Viral. J. Commun. 2015, 65, 512–534. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, L.; Li, H. Determinants of Information Retweeting in Microblogging. Internet Res. 2012, 22, 443–466. [Google Scholar] [CrossRef]
- Liang, Y. (Jake); Kee, K.F. Developing and Validating the A-B-C Framework of Information Diffusion on Social Media. New Media Soc. 2018, 20, 272–292. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy: Toward a Unifying Theory of Behavioral Change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Tolman, E.C. Cognitive Maps in Rats and Men. Psychol. Rev. 1948, 55, 189–208. [Google Scholar] [CrossRef]
- Braun, J.; Niederdeppe, J. Disruption and Identity Maintenance in Risk Information Seeking and Processing. Commun. Theory 2012, 22, 138–162. [Google Scholar] [CrossRef]
- Wen, N. Understanding the Chinese Public’s Risk Perception and Information-Seeking Behavior Regarding Genetically Modified Foods: The Role of Social Media Social Capital. J. Risk Res. 2020, 23, 1370–1386. [Google Scholar] [CrossRef]
- Komori, M.; Miura, A.; Matsumura, N.; Hiraishi, K.; Maeda, K. Spread of Risk Information through Microblogs: Twitter Users with More Mutual Connections Relay News That Is More Dreadful1. Jpn. Psychol. Res. 2021, 63, 1–12. [Google Scholar] [CrossRef]
- Kim, E.; Hou, J.; Han, J.Y.; Himelboim, I. Predicting Retweeting Behavior on Breast Cancer Social Networks: Network and Content Characteristics. J. Health Commun. 2016, 21, 479–486. [Google Scholar] [CrossRef]
- Johnson, S.L.; Faraj, S.; McGill University; Kudaravalli, S. HEC Paris Emergence of Power Laws in Online Communities: The Role of Social Mechanisms and Preferential Attachment. MIS Q. 2014, 38, 795–808. [Google Scholar] [CrossRef]
- Suk, J.; Abhishek, A.; Zhang, Y.; Ahn, S.Y.; Correa, T.; Garlough, C.; Shah, D.V. #MeToo, Networked Acknowledgment, and Connective Action: How “Empowerment through Empathy” Launched a Social Movement. Soc. Sci. Comput. Rev. 2021, 39, 276–294. [Google Scholar] [CrossRef]
- Bennett, W.L.; Segerberg, A. The Logic of Connective Action: Digital Media and the Personalization of Contentious Politics. Inf. Commun. Soc. 2012, 15, 739–768. [Google Scholar] [CrossRef]
- Heller, C. From Risk to Globalization: Discursive Shifts in the French Debate about GMOs. Med. Anthropol. Q. 2001, 15, 25–28. [Google Scholar] [CrossRef]
- Kato-Nitta, N.; Tachikawa, M.; Inagaki, Y.; Maeda, T. Public Perceptions of Risks and Benefits of Gene-Edited Food Crops: An International Comparative Study between the US, Japan, and Germany. Sci. Technol. Hum. Values 2023, 48, 1360–1392. [Google Scholar] [CrossRef]
- Price, C. The Online Genetically Modified Food Debate: Digital Food Activism, Science and Alternative Knowledges. Digit. Geogr. Soc. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Cheng, X. Networked Framing of GMO Risks and Discussion Fragmentation on Chinese Social Media: A Dynamic Perspective. Humanit. Soc. Sci. Commun. 2024, 11, 42. [Google Scholar] [CrossRef]
- Cheng, X. The Plurality and Shifting of Framing Genetical Modification Risks on Chinese Social Media. Health Risk Soc. 2024, 27, 65–88. [Google Scholar] [CrossRef]
- Hansson, S.O. Risk: Objective or Subjective, Facts or Values. J. Risk Res. 2010, 13, 231–238. [Google Scholar] [CrossRef]
- Rosa, E.A.; Renn, O.; McCright, A.M. The Risk Society Revisited: Social Theory and Governance; Temple University Press: Philadelphia, PA, USA, 2014; ISBN 978-1-4399-0258-5. [Google Scholar]
- Lee, C. Alternatives to Cognition: A New Look at Explaining Human Social Behavior; Erlbaum: Mahwah, NJ, USA, 1998; ISBN 978-0-8058-2654-8. [Google Scholar]
- Scherer, C.W.; Cho, H. A Social Network Contagion Theory of Risk Perception. Risk Anal. 2003, 23, 261–267. [Google Scholar] [CrossRef]
- Liao, W.; Yuan, Y.C.; McComas, K.A. Communal Risk Information Sharing: Motivations behind Voluntary Information Sharing for Reducing Interdependent Risks in a Community. Commun. Res. 2018, 45, 909–933. [Google Scholar] [CrossRef]
- Xia, L. The Impacts of Geographic and Social Influences on Review Helpfulness Perceptions: A Social Contagion Perspective. Tour. Manag. 2023, 95, 104687. [Google Scholar] [CrossRef]
- Aral, S.; Walker, D. Tie Strength, Embeddedness, and Social Influence: A Large-Scale Networked Experiment. Manag. Sci. 2014, 60, 1352–1370. [Google Scholar] [CrossRef]
- Bond, L.; Lusher, D.; Williams, I.; Butler, H. Friends or Foes? Relational Dissonance and Adolescent Psychological Wellbeing. PLoS ONE 2014, 9, e83388. [Google Scholar] [CrossRef]
- Burt, R.S. Social Contagion and Innovation: Cohesion versus Structural Equivalence. Am. J. Sociol. 1987, 92, 1287–1335. [Google Scholar] [CrossRef]
- Polansky, N.; Lippitt, R.; Redl, F. An Investigation of Behavioral Contagion in Groups. Hum. Relat. 1950, 3, 319–348. [Google Scholar] [CrossRef]
- Aral, S.; Nicolaides, C. Exercise Contagion in a Global Social Network. Nat. Commun. 2017, 8, 14753. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, M.; Ajzen, I. Predicting and Changing Behavior: The Reasoned Action Approach; Psychology Press: New York, NY, USA, 2010; ISBN 978-1-136-87473-4. [Google Scholar]
- Yang, Z.J.; Kahlor, L.A.; Griffin, D.J. I Share, Therefore I Am: A U.S.−china Comparison of College Students’ Motivations to Share Information about Climate Change: Information Sharing. Hum. Commun. Res. 2014, 40, 112–135. [Google Scholar] [CrossRef]
- Monge, P.R.; Contractor, N.S. (Eds.) Theories of Communication Networks; Oxford University Press: New York, NY, USA; Oxford, UK, 2003; ISBN 978-0-19-803637-1. [Google Scholar]
- Meng, J. Your Health Buddies Matter: Preferential Selection and Social Influence on Weight Management in an Online Health Social Network. Health Commun. 2016, 31, 1460–1471. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y. How Conversational Ties Are Formed in an Online Community: A Social Network Analysis of a Tweet Chat Group. Inf. Commun. Soc. 2020, 23, 1463–1480. [Google Scholar] [CrossRef]
- Goodreau, S.M.; Kitts, J.A.; Morris, M. Birds of a Feather, or Friend of a Friend? Using Exponential Random Graph Models to Investigate Adolescent Social Networks. Demography 2009, 46, 103–125. [Google Scholar] [CrossRef]
- Peng, T.-Q.; Liu, M.; Wu, Y.; Liu, S. Follower-Followee Network, Communication Networks, and Vote Agreement of the U.S. Members of Congress. Commun. Res. 2016, 43, 996–1024. [Google Scholar] [CrossRef]
- Rivera, M.T.; Soderstrom, S.B.; Uzzi, B. Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms. Annu. Rev. Sociol. 2010, 36, 91–115. [Google Scholar] [CrossRef]
- Schmid-Petri, H.; Adam, S.; Reber, U.; Häussler, T.; Maier, D.; Miltner, P.; Pfetsch, B.; Waldherr, A. Homophily and Prestige: An Assessment of Their Relative Strength to Explain Link Formation in the Online Climate Change Debate. Soc. Netw. 2018, 55, 47–54. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Peng, T.-Q.; Chen, L. Understanding Interactions in Virtual HIV Communities: A Social Network Analysis Approach. AIDS Care 2017, 29, 239–243. [Google Scholar] [CrossRef]
- Kossinets, G.; Watts, D.J. Empirical Analysis of an Evolving Social Network. Science 2006, 311, 88–90. [Google Scholar] [CrossRef]
- Kossinets, G.; Watts, D.J. Origins of Homophily in an Evolving Social Network. Am. J. Sociol. 2009, 115, 405–450. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ho, J.C.F. Exploring the Fragmentation of the Representation of Data-Driven Journalism in the Twittersphere: A Network Analytics Approach. Soc. Sci. Comput. Rev. 2022, 40, 42–60. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Albert, R.; Jeong, H. Scale-Free Characteristics of Random Networks: The Topology of the World-Wide Web. Phys. Stat. Mech. Its Appl. 2000, 281, 69–77. [Google Scholar] [CrossRef]
- Newman, M. Power Laws, Pareto Distributions and Zipf’s Law. Contemp. Phys. 2005, 46, 323–351. [Google Scholar] [CrossRef]
- Heider, F. Psychology of Interpersonal Relations; Wiley: New York, NY, USA, 1958; ISBN 978-0-89859-282-5. [Google Scholar]
- Centola, D. An Experimental Study of Homophily in the Adoption of Health Behavior. Science 2011, 334, 1269–1272. [Google Scholar] [CrossRef]
- McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a Feather: Homophily in Social Networks. Annu. Rev. Sociol. 2001, 27, 415–444. [Google Scholar] [CrossRef]
- McPherson, J.M.; Smith-Lovin, L. Homophily in Voluntary Organizations: Status Distance and the Composition of Face-to-Face Groups. Am. Sociol. Rev. 1987, 52, 370. [Google Scholar] [CrossRef]
- Atouba, Y.C.; Shumate, M. International Nonprofit Collaboration: Examining the Role of Homophily. Nonprofit Volunt. Sect. Q. 2015, 44, 587–608. [Google Scholar] [CrossRef]
- Himelboim, I. Political Television Hosts on Twitter: Examining Patterns of Interconnectivity and Self-Exposure in Twitter Political Talk Networks. J. Broadcast. Electron. Media 2014, 58, 76–96. [Google Scholar] [CrossRef]
- Himelboim, I.; McCreery, S.; Smith, M. Birds of a Feather Tweet Together: Integrating Network and Content Analyses to Examine Cross-Ideology Exposure on Twitter. J. Comput.-Mediat. Commun. 2013, 18, 40–60. [Google Scholar] [CrossRef]
- Ackland, R.; O’Neil, M. Online Collective Identity: The Case of the Environmental Movement. Soc. Netw. 2011, 33, 177–190. [Google Scholar] [CrossRef]
- Elgin, D.J. Utilizing Hyperlink Network Analysis to Examine Climate Change Supporters and Opponents. Rev. Policy Res. 2015, 32, 226–245. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, A. Hashtag Homophily in Twitter Network: Examining a Controversial Cause-Related Marketing Campaign. Comput. Hum. Behav. 2020, 102, 87–96. [Google Scholar] [CrossRef]
- Del Vicario, M.; Vivaldo, G.; Bessi, A.; Zollo, F.; Scala, A.; Caldarelli, G.; Quattrociocchi, W. Echo Chambers: Emotional Contagion and Group Polarization on Facebook. Sci. Rep. 2016, 6, 37825. [Google Scholar] [CrossRef]
- An, J.; Quercia, D.; Cha, M.; Gummadi, K.; Crowcroft, J. Sharing Political News: The Balancing Act of Intimacy and Socialization in Selective Exposure. EPJ Data Sci. 2014, 3, 12. [Google Scholar] [CrossRef]
- Liang, H. Broadcast versus Viral Spreading: The Structure of Diffusion Cascades and Selective Sharing on Social Media. J. Commun. 2018, 68, 525–546. [Google Scholar] [CrossRef]
- Bakshy, E.; Messing, S.; Adamic, L.A. Exposure to Ideologically Diverse News and Opinion on Facebook. Science 2015, 348, 1130–1132. [Google Scholar] [CrossRef]
- Boutyline, A.; Willer, R. The Social Structure of Political Echo Chambers: Variation in Ideological Homophily in Online Networks. Polit. Psychol. 2017, 38, 551–569. [Google Scholar] [CrossRef]
- Matuszewski, P.; Szabó, G. Are Echo Chambers Based on Partisanship? Twitter and Political Polarity in Poland and Hungary. Soc. Media Soc. 2019, 5, 2056305119837671. [Google Scholar] [CrossRef]
- De Francisci Morales, G.; Monti, C.; Starnini, M. No Echo in the Chambers of Political Interactions on Reddit. Sci. Rep. 2021, 11, 2818. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, Y. Viral Misinformation and Echo Chambers: The Diffusion of Rumors about Genetically Modified Organisms on Social Media. Internet Res. 2020, 30, 1547–1564. [Google Scholar] [CrossRef]
- Garimella, K.; Morales, G.D.F.; Gionis, A.; Mathioudakis, M. Quantifying Controversy on Social Media. ACM Trans. Soc. Comput. 2018, 1, 1–27. [Google Scholar] [CrossRef]
- Ramazi, P.; Cao, M.; Weissing, F.J. Evolutionary Dynamics of Homophily and Heterophily. Sci. Rep. 2016, 6, 22766. [Google Scholar] [CrossRef]
- McMillan, C. Tied Together: Adolescent Friendship Networks, Immigrant Status, and Health Outcomes. Demography 2019, 56, 1075–1103. [Google Scholar] [CrossRef]
- Meng, J.; Peng, W.; Tan, P.-N.; Liu, W.; Cheng, Y.; Bae, A. Diffusion Size and Structural Virality: The Effects of Message and Network Features on Spreading Health Information on Twitter. Comput. Hum. Behav. 2018, 89, 111–120. [Google Scholar] [CrossRef]
- Barberá, P. Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter Data. Polit. Anal. 2015, 23, 76–91. [Google Scholar] [CrossRef]
- Barberá, P.; Jost, J.T.; Nagler, J.; Tucker, J.A.; Bonneau, R. Tweeting from Left to Right: Is Online Political Communication More than an Echo Chamber? Psychol. Sci. 2015, 26, 1531–1542. [Google Scholar] [CrossRef]
- Aldayel, A.; Magdy, W. Your Stance Is Exposed! Analysing Possible Factors for Stance Detection on Social Media. Proc. ACM Hum.-Comput. Interact. 2019, 3, 1–20. [Google Scholar] [CrossRef]
- Küçük, D.; Can, F. Stance Detection: A Survey. ACM Comput. Surv. 2021, 53, 1–37. [Google Scholar] [CrossRef]
- Lai, M.; Cignarella, A.T.; Hernández Farías, D.I.; Bosco, C.; Patti, V.; Rosso, P. Multilingual Stance Detection in Social Media Political Debates. Comput. Speech Lang. 2020, 63, 101075. [Google Scholar] [CrossRef]
- Lusher, D.; Robins, G.; Koskinen, J. (Eds.) Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications; Structural analysis in the social sciences; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-0-521-14138-3. [Google Scholar]
- Shumate, M.; Palazzolo, E.T. Exponential Random Graph (P*) Models as a Method for Social Network Analysis in Communication Research. Commun. Methods Meas. 2010, 4, 341–371. [Google Scholar] [CrossRef]
- Jaeger, C. (Ed.) Risk, Uncertainty, and Rational Action; Risk, society, and policy series; Earthscan: London, UK, 2001; ISBN 978-1-85383-762-3. [Google Scholar]
- Kasperson, R.E. The Social Amplification of Risk: Progress in Developing an Integrative Framework. In Social Theories of Risk; Krimsky, S., Golding, D., Eds.; Praeger: Westport, CT, USA, 1992; pp. 153–178. [Google Scholar]
- Rosa, E.A. Metatheoretical Foundations for Post-Normal Risk. J. Risk Res. 1998, 1, 15–44. [Google Scholar] [CrossRef]
- Costa-Font, M.; Gil, J.M.; Traill, W.B. Consumer Acceptance, Valuation of and Attitudes towards Genetically Modified Food: Review and Implications for Food Policy. Food Policy 2008, 33, 99–111. [Google Scholar] [CrossRef]
- Jin, J.; Cheng, X.; Li, Z. Segmentation Disparities in Scientific Experts’ Knowledge of and Attitudes towards GMOs in China. In Science Cultures in a Diverse World: Knowing, Sharing, Caring; Schiele, B., Liu, X., Bauer, M.W., Eds.; Springer Singapore: Singapore, 2021; pp. 209–232. ISBN 978-981-16-5378-0. [Google Scholar]
- Malka, A.; Krosnick, J.A.; Langer, G. The Association of Knowledge with Concern about Global Warming: Trusted Information Sources Shape Public Thinking. Risk Anal. 2009, 29, 633–647. [Google Scholar] [CrossRef]
- Fernbach, P.M.; Light, N.; Scott, S.E.; Inbar, Y.; Rozin, P. Extreme Opponents of Genetically Modified Foods Know the Least but Think They Know the Most. Nat. Hum. Behav. 2019, 3, 251–256. [Google Scholar] [CrossRef]
- Rose, K.M.; Howell, E.L.; Su, L.Y.-F.; Xenos, M.A.; Brossard, D.; Scheufele, D.A. Distinguishing Scientific Knowledge: The Impact of Different Measures of Knowledge on Genetically Modified Food Attitudes. Public Underst. Sci. 2019, 28, 449–467. [Google Scholar] [CrossRef]
- Jang, S.M. Seeking Congruency or Incongruency Online?: Examining Selective Exposure to Four Controversial Science Issues. Sci. Commun. 2014, 36, 143–167. [Google Scholar] [CrossRef]
- Lazer, D.M.J.; Baum, M.A.; Benkler, Y.; Berinsky, A.J.; Greenhill, K.M.; Menczer, F.; Metzger, M.J.; Nyhan, B.; Pennycook, G.; Rothschild, D.; et al. The Science of Fake News. Science 2018, 359, 1094–1096. [Google Scholar] [CrossRef]
- Vosoughi, S.; Roy, D.; Aral, S. The Spread of True and False News Online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef]
- Roozenbeek, J.; Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; Van Der Bles, A.M.; Van Der Linden, S. Susceptibility to Misinformation about COVID-19 around the World. R. Soc. Open Sci. 2020, 7, 201199. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, T. Custodians of the Internet: Platforms, Content Moderation, and the Hidden Decisions That Shape Social Media; Yale University Press: New Haven, CT, USA, 2018; ISBN 978-0-300-17313-0. [Google Scholar]
- King, G.; Pan, J.; Roberts, M.E. How Censorship in China Allows Government Criticism but Silences Collective Expression. Am. Polit. Sci. Rev. 2013, 107, 326–343. [Google Scholar] [CrossRef]
- Rochefort, A. Regulating Social Media Platforms: A Comparative Policy Analysis. Commun. Law Policy 2020, 25, 225–260. [Google Scholar] [CrossRef]
Research Question (RQ) | Key Studies | Core Concepts | Relevance to RQ |
---|---|---|---|
RQ1 | [42,46] | Preferential attachment: new connections favor nodes with higher degrees (“rich get richer”) | Explains how popular and influential users attract more sharing relationships in GMO networks |
[39,40,50] | Reciprocity: humans seek symmetry in relationships Triadic closure: “friends of friends become friends” | Explains mutual sharing behaviors and clustering in GMO information networks | |
RQ2 | [51,52,53] | Homophily: similarity breeds connection | Explains tendency for users with similar GMO attitudes to share information |
[42,60] | Positional homophily: relationship formation based on shared attitudinal positions | Specifically addresses attitude-based connections in GMO risk communication | |
RQ3 | [38,58,70] | Differential homophily: homophily effects vary across different groups | Explains potential differences in sharing patterns between GMO supporters and opponents |
Full Network | Opponent Network | Non-Opponent Network | Full Network -Avoidance | |
---|---|---|---|---|
Edges | −13.68 *** | −11.90 *** | −20.95 *** | −13.03 *** |
Endogenous mechanisms | ||||
Mutual dyads | 6.66 *** | 5.11 *** | 4.93 *** | 4.28 *** |
GWID | 3.71 *** | 1.82 *** | 3.61 *** | 3.04 *** |
GWESP | 2.30 *** | 2.34 *** | 1.41 *** | 0.70 *** |
Endogenous mechanisms-controls | ||||
GWOD | −5.55 *** | −4.81 *** | −4.58 *** | −6.43 *** |
Asymmetric dyads | 0.65 *** | 0.74 *** | ||
Positional homophily mechanism | ||||
Absolute value of the difference in GMO attitudinal scores (absdiff) | −2.07 *** | −2.63 *** | −1.03 *** | −2.68 *** |
Avoidance Mechanism | 0.58 *** | |||
Exogenous nodal attributes | ||||
GMO attitudinal score | 0.38 *** | 1.43 *** | 1.08 *** | 0.44 *** |
Male | −0.04 *** | −0.04 *** | −0.32 *** | −0.01 |
Weibo posts (log) | −0.05 *** | −0.25 *** | 0.62 *** | −0.03 *** |
Followers (log) | 0.77 *** | 0.90 *** | 0.96 *** | 0.61 *** |
Followees (log) | −0.08 *** | −0.09 *** | −0.09 *** | 0.07 *** |
User activity level | −0.01 *** | −0.01 *** | −0.02 *** | −0.00 *** |
Verified account | −0.74 *** | −0.84 *** | −0.23 *** | −0.80 *** |
AIC | 1,743,069.30 | 1,094,668.67 | 225,495.57 | 1,747,697.86 |
BIC | 1,743,347.64 | 1,094,914.96 | 225,728.45 | 1,747,996.09 |
Log Likelihood | −871,520.65 | −547,321.34 | −112,734.79 | −873,833.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Jin, J. Echo Chambers and Homophily in the Diffusion of Risk Information on Social Media: The Case of Genetically Modified Organisms (GMOs). Entropy 2025, 27, 699. https://doi.org/10.3390/e27070699
Cheng X, Jin J. Echo Chambers and Homophily in the Diffusion of Risk Information on Social Media: The Case of Genetically Modified Organisms (GMOs). Entropy. 2025; 27(7):699. https://doi.org/10.3390/e27070699
Chicago/Turabian StyleCheng, Xiaoxiao, and Jianbin Jin. 2025. "Echo Chambers and Homophily in the Diffusion of Risk Information on Social Media: The Case of Genetically Modified Organisms (GMOs)" Entropy 27, no. 7: 699. https://doi.org/10.3390/e27070699
APA StyleCheng, X., & Jin, J. (2025). Echo Chambers and Homophily in the Diffusion of Risk Information on Social Media: The Case of Genetically Modified Organisms (GMOs). Entropy, 27(7), 699. https://doi.org/10.3390/e27070699