On the Complete Description of Entangled Systems Part II: The (Meta)Physical Status and Semantic Aspects
Abstract
:1. What the Einstein-Podolsky-Rosen (EPR) Conundrum (and This Year’s Nobel Prize for Physics) Is Not about
2. What the Einstein-Podolsky-Rosen (EPR) Conundrum (and This Year’s Nobel Prize for Physics) Is about
- (i)
- There may be non-local communication between Alice and Bob, or between their shares, resulting in some form of contextuality. This can be achieved by either communicating the outcome of Bob’s measurement to Alice (or vice versa) [18,23], or by invoking a non-local machine [24], or by communicating the context in the form of the setting of Bob’s measurement to Alice (or vice versa) [15]. The transactional interpretation [25] offers an alternative approach by considering retarded (forward in time) and advanced (backward in time) flows (of waves or information) from interactions.
- (ii)
- (iii)
3. The Role and Locatedness of Randomness in the Einstein-Podolsky-Rosen (EPR) Conundrum
4. Relativity from Quantum as Epiphenomenon
- (i)
- When can two outcomes be considered independent and separated? I guess one could attempt to interpret “spatial separation”—two distinct points in space-time—by decomposability of the quantum state; that is, whether the states of the constituents factorize.
- (ii)
- Can it occur that, for two (or more) of the same constituents, some of their observables factorize (aka separable, not entangled) and are therefore categorized as “spatially separate or apart”, and other observables are inseparable (aka not factorable, entangled)? This results in a notion of “spatial separateness or apartness” that means relative with respect to the observables continued. Consequently, there is no absolute notion of spatial separation unless all observables are disentangled.
- (iii)
- Can it happen that all observables of two quanta are disentangled? My best guess is: for-all-practical-purposes (FAPP [40]) yes, but in principle, no. The situation might be just like for the second law of thermodynamics [41]: if one looks “sufficiently careful”, separability is untenable Because if there has been (in the past and at present) no interaction and, therefore, no entanglement between two outcomes of experiments, there is no connection at all between these events, and they might as well occur in different universes. Consequently, space-time separation appears means relative; and all protocols such as for Poincaré-Einstein synchronization [42,43] are means relative.
- (iv)
- Is it possible to generate emerging space-time categories such as frames or coordinatizations, by purely quantum mechanical means?
5. Breakdown of Relativity Theory from Non-Unitary and Non-Linear Processes
6. Summary
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peres, A. Unperformed experiments have no results. Am. J. Phys. 1978, 46, 745–747. [Google Scholar] [CrossRef]
- Frank, P. Das Kausalgesetz und Seine Grenzen; Springer: Vienna, Austria, 1932. [Google Scholar]
- Frank, P.; Cohen, R.S. (Eds.) The Law of Causality and its Limits (Vienna Circle Collection); Springer: Vienna, Austria, 1997. [Google Scholar] [CrossRef]
- Korotaev, S.M.; Kiktenko, E.O.; Amoroso, R.L.; Rowlands, P.; Jeffers, S. Causal Analysis of the Quantum States. AIP Conf. Proc. 2010, 1316, 295–328. [Google Scholar] [CrossRef]
- Pearl, J. Causality, 2nd ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Specker, E. Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 1960, 14, 239–246, English translation at https://arxiv.org/abs/1103.4537. [Google Scholar] [CrossRef]
- Boole, G. An Investigation of the Laws of Thought; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Boole, G. On the Theory of Probabilities. Philos. Trans. R. Soc. Lond. 1862, 152, 225–252. [Google Scholar] [CrossRef] [Green Version]
- Froissart, M. Constructive generalization of Bell’s inequalities. Nuov. Cim. B 1981, 64, 241–251. [Google Scholar] [CrossRef]
- Pitowsky, I. The range of quantum probability. J. Math. Phys. 1986, 27, 1556–1565. [Google Scholar] [CrossRef]
- Pitowsky, I. From George Boole to John Bell: The origin of Bell’s inequality. In Bell’s Theorem, Quantum Theory and the Conceptions of the Universe; Kafatos, M., Ed.; Fundamental Theories of Physics; Springer: Dordrecht, The Netherlands, 1989; Volume 37, pp. 37–49. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Tsirel’son, B.S. Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 1987, 36, 557–570. [Google Scholar] [CrossRef]
- Filipp, S.; Svozil, K. Generalizing Tsirelson’s Bound on Bell Inequalities Using a Min-Max Principle. Phys. Rev. Lett. 2004, 93, 130407. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. On The Complete Description Of Entangled Systems. Part I: Hidden Variables And The Context Communication Cost of Simulating Quantum Correlations. arXiv 2022, arXiv:2209.09590. [Google Scholar] [CrossRef]
- Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 1994, 24, 358–379. [Google Scholar] [CrossRef]
- Krenn, G.; Svozil, K. Stronger-than-quantum correlations. Found. Phys. 1998, 28, 971–984. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Communication cost of breaking the Bell barrier. Phys. Rev. A 2005, 72, 050302, Erratum in Phys. Rev. A 2007, 75. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S. Nonlocality beyond quantum mechanics. Nat. Phys. 2014, 10, 264–270. [Google Scholar] [CrossRef]
- Einstein, A. Letter to Schrödinger, 1935. Old Lyme, dated 19.6.35, Einstein Archives 22-047 (searchable by document nr. 22-47). Reprinted as letter 206; von Meyenn, K., Ed.; In Eine Entdeckung von Ganz Außerordentlicher Tragweite. Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon; Springer: Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Howard, D. Einstein on locality and separability. Stud. Hist. Philos. Sci. Part A 1985, 16, 171–201. [Google Scholar] [CrossRef]
- Howard, D. “Nicht Sein Kann was Nicht Sein Darf” or the Prehistory of EPR, 1909–1935: Einstein’s Early Worries about the Quantum Mechanics of Composite Systems. In Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics; Miller, A.I., Ed.; Springer: Boston, MA, USA, 1990; pp. 61–111. [Google Scholar] [CrossRef]
- Toner, B.F.; Bacon, D. Communication Cost of Simulating Bell Correlations. Phys. Rev. Lett. 2003, 91, 187904. [Google Scholar] [CrossRef] [Green Version]
- Cerf, N.J.; Gisin, N.; Massar, S.; Popescu, S. Simulating Maximal Quantum Entanglement without Communication. Phys. Rev. Lett. 2005, 94, 2220403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, J.G. The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 1986, 58, 647–687. [Google Scholar] [CrossRef]
- Zierler, N.; Schlessinger, M. Boolean embeddings of orthomodular sets and quantum logic. Duke Math. J. 1965, 32, 251–262, reprinted in The Logico-Algebraic Approach to Quantum Mechanics: Volume I: Historical Evolution; Hooker, C.A., Ed.; Springer: Dordrecht, The Netherlands, 1975; pp. 247–262. [Google Scholar] [CrossRef]
- Kochen, S.; Specker, E.P. Logical Structures arising in quantum theory. In The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley; Addison, J.W., Henkin, L., Tarski, A., Eds.; North Holland: Amsterdam, The Netherlands, 1965; pp. 177–189, reprinted in Selecta; Birkhäuser Verlag: Basel, Switzerland, 1990. [Google Scholar] [CrossRef]
- Pitowsky, I. Infinite and finite Gleason’s theorems and the logic of indeterminacy. J. Math. Phys. 1998, 39, 218–228. [Google Scholar] [CrossRef]
- Hrushovski, E.; Pitowsky, I. Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2004, 35, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.A.; Calude, C.S.; Svozil, K. A variant of the Kochen-Specker theorem localising value indefiniteness. J. Math. Phys. 2015, 56, 102201. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.A. Finite precision measurement nullifies the Kochen-Specker theorem. Phys. Rev. Lett. 1999, 83, 3751–3754. [Google Scholar] [CrossRef] [Green Version]
- Pitowsky, I. Deterministic model of spin and statistics. Phys. Rev. D 1983, 27, 2316–2326. [Google Scholar] [CrossRef]
- Shimony, A. Controllable and uncontrollable non-locality. In Foundations of Quantum Mechanics in the Light of New Technology; Kamefuchi, S., Gakkai, N.B., Eds.; Physical Society of Japan: Tokyo, Japan, 1984; pp. 225–230. [Google Scholar]
- Jarrett, J. Bell’s Theorem, Quantum Mechanics and Local Realism. Ph.D. Thesis, University of Chicago, Chicago, IL, USA, 1983. [Google Scholar]
- Shimony, A. Events and Processes in the Quantum World. In Quantum Concepts in Space and Time; Penrose, R., Isham, C.I., Eds.; Clarendon Press: Oxford, UK, 1986; pp. 182–203. [Google Scholar]
- Jaynes, E.T. Probability Theory: The Logic of Science; Bretthorst, G.L., Ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Zeilinger, A. The message of the quantum. Nature 2005, 438, 743. [Google Scholar] [CrossRef]
- Melamed, Y.Y.; Lin, M. Principle of Sufficient Reason. In The Stanford Encyclopedia of Philosophy, Spring 2020 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Glauber, R.J. Amplifiers, Attenuators, and Schrödinger’s Cat. Ann. N. Y. Acad. Sci. 1986, 480, 336–372, reprinted in Quantum 114 Theory of Optical Coherence; Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim, Germany, 2007; pp. 537–576. [Google Scholar] [CrossRef]
- Bell, J.S. Against ‘measurement’. Phys. World 1990, 3, 33–41. [Google Scholar] [CrossRef]
- Myrvold, W.C. Statistical mechanics and thermodynamics: A Maxwellian view. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2011, 42, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Zur Elektrodynamik bewegter Körper. Ann. der Phys. 1905, 322, 891–921. [Google Scholar] [CrossRef]
- Minguzzi, E. The Poincaré-Einstein synchronization: Historical aspects and new developments. J. Phys. Conf. Ser. 2011, 306, 012059. [Google Scholar] [CrossRef]
- Mermin, D.N. Quantum Computer Science; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Herbert, N. FLASH—A superluminal communicator based upon a new kind of quantum measurement. Found. Phys. 1982, 12, 1171–1179. [Google Scholar] [CrossRef]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Milonni, P.W.; Hardies, M.L. Photons cannot always be replicated. Phys. Lett. A 1982, 92, 321–322. [Google Scholar] [CrossRef]
- Mandel, L. Is a photon amplifier always polarization dependent? Nature 1983, 304, 188. [Google Scholar] [CrossRef]
- Svozil, K. What is wrong with SLASH? arXiv 2001, arXiv:quant-ph/0103166. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics, Vol. III. Quantum Mechanics; Addison-Wesley, Basic Books: Reading, MA, USA, 2011. [Google Scholar]
- Zeilinger, A.; Weihs, G.; Jennewein, T.; Aspelmeyer, M. Happy centenary, photon. Nature 2005, 433, 230–238. [Google Scholar] [CrossRef]
- Gleason, A.M. Measures on the closed subspaces of a Hilbert space. Indiana Univ. Math. J. 1957, 6, 885–893. [Google Scholar] [CrossRef]
- Birkhoff, G.; von Neumann, J. The Logic of Quantum Mechanics. Ann. Math. 1936, 37, 823–843. [Google Scholar] [CrossRef]
Valuation # | A | B | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | ||||||||
2 | 2 | ||||||||
3 | |||||||||
4 | |||||||||
5 | 2 | ||||||||
6 | |||||||||
7 | 2 | ||||||||
8 | |||||||||
9 | |||||||||
10 | 2 | ||||||||
11 | |||||||||
12 | 2 | ||||||||
13 | |||||||||
14 | |||||||||
15 | 2 | ||||||||
16 | 2 |
Trial # | A | B | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 4 | ||||||||
2 | 4 | ||||||||
3 | 4 | ||||||||
4 | 4 | ||||||||
5 | 2 | ||||||||
6 | 4 | ||||||||
7 | 4 | ||||||||
8 | |||||||||
9 | |||||||||
10 | |||||||||
11 | 4 | ||||||||
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svozil, K. On the Complete Description of Entangled Systems Part II: The (Meta)Physical Status and Semantic Aspects. Entropy 2022, 24, 1724. https://doi.org/10.3390/e24121724
Svozil K. On the Complete Description of Entangled Systems Part II: The (Meta)Physical Status and Semantic Aspects. Entropy. 2022; 24(12):1724. https://doi.org/10.3390/e24121724
Chicago/Turabian StyleSvozil, Karl. 2022. "On the Complete Description of Entangled Systems Part II: The (Meta)Physical Status and Semantic Aspects" Entropy 24, no. 12: 1724. https://doi.org/10.3390/e24121724
APA StyleSvozil, K. (2022). On the Complete Description of Entangled Systems Part II: The (Meta)Physical Status and Semantic Aspects. Entropy, 24(12), 1724. https://doi.org/10.3390/e24121724