The Electromagnetic Vacuum Field as an Essential Hidden Ingredient of the Quantum-Mechanical Ontology
Abstract
:1. Introduction
2. Structure of This Paper
3. The Missing Principle
4. Quantization of Matter: The Onset of Operators
4.1. The Equation of Motion of Stochastic Electrodynamics
4.2. Evolution of the Dynamics: The Field Takes Over
4.3. Kinematics of the SED System
4.4. Disclosing the Origin of the Quantum Operators
5. Quantization of the Field
5.1. Describing a Field Mode in Interaction with Matter
5.2. Genesis of the Field Operators
5.3. On the Meaning of the Quantum Field Operators
5.4. On the Quantization of the Free Electromagnetic Field
5.5. A Note on the Reality of the Vacuum Field
6. Energy Balance: Atomic Stability and Contact with QED
7. Final Comments and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dirac, P.A.M. The Evolution of the Physicist’s Picture of Nature, reprinted as: The Conceptual Difficulties of Quantum Theory. In The Tests of Time; Dolling, L.M., Gianelli, A.F., Statile, G.N., Eds.; Princeton University Press: Princeton, NJ, USA, 1963. [Google Scholar] [CrossRef]
- Sands, M.; Feynman, R.; Leighton, R.B. The Feynman Lectures on Physics; Basic Books: New York, NY, USA, 1965; Volume 3. [Google Scholar]
- Gell-Mann, M.S. Questions for the Future; Oxford University Press: Oxford, UK, 1981. [Google Scholar]
- Weinberg, S. Lectures on Quantum Mechanics; Id, The Trouble vith Quantum Mechanics. 2013. Available online: quantum.phys.unm.edu/466-17/QuantumMechanicsWeinberg.pdf (accessed on 10 October 2022).
- Cushing, J.T. Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Primas, H. Realism and Quantum Mechanics. In Logic, Methodology and Philosophy in Science; Prawitz, I.D., Skyrms, B., Westerstahl, D., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Interpretations_of_Quantum_Mechanics. About 15 Different Interpretations Are Compared. Available online: https://en.wikipedia.org/wiki/ (accessed on 10 October 2022).
- Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 1925, 33, 879. [Google Scholar] [CrossRef]
- Tonomura, A.; Endo, J.; Matsuda, T.; Kawasaki, T.; Ezawa, H. Available online: https://www.researchgate.net/figure/The-results-of-a-double-slit-experiment-performed-by-Dr-Tonomura (accessed on 23 July 2021).
- Ballentine, L.E. Quantum Mechanics: A Modern Development; World Scientific: Singapore, 1998. [Google Scholar]
- Bohm, D. A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, I and II. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Marshall, T.W. Random electrodynamics. Proc. R. Soc. A 1963, 276, 475. [Google Scholar]
- Santos, E. Quantumlike formulation of stochastic problems. J. Math. Phys. 1974, 15, 1954. [Google Scholar] [CrossRef]
- Boyer, T.H. Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 1975, 11, 790. [Google Scholar] [CrossRef]
- Barut, A.O. (Ed.) A brief survey of stochastic electrodynamics. In Foundations of Radiation Theory and Quantum Electrodynamics; Plenum: New York, NY, USA, 1980. [Google Scholar]
- de la Peña, L.; Cetto, A.M. Derivation of quantum mechanics from stochastic electrodynamics. J. Math. Phys. 1977, 18, 1612. [Google Scholar] [CrossRef]
- Cole, D.C. Reviewing and Extending Some Recent Work on Stochastic Electrodynamics; World Scientific: Singapore, 1993. [Google Scholar]
- de la Peña, L.; Cetto, A.M. The Quantum Dice; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- de la Peña, L.; Cetto, A.M.; Valdés-Hernández, A. The Emerging Quantum; Springer: Berlin, Germany, 2015. [Google Scholar]
- Cetto, A.M.; de la Peña, L.; Valdés-Hernández, A. Atomic radiative corrections without qed: Role of the zero-point field. Rev. Mex. Fis. 2013, 59, 433. [Google Scholar]
- de la Peña, L.; Cetto, A.M.; Valdés-Hernández, A. How fast is a quantum jump? Phys. Lett. A 2020, 384, 126880. [Google Scholar] [CrossRef]
- de la Peña, L.; Valdés-Hernández, A.; Cetto, A.M. Entanglement of particles as a result of their coupling through the common background zero-point radiation field. Physica E 2010, 42, 308. [Google Scholar] [CrossRef]
- Cetto, A.M.; de la Peña, L.; Valdés-Hernández, A. Proposed physical explanation for the electron spin and related antisymmetry. Quantum Stud. Math. Found. 2019, 6, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Planck, M. Über die Begründung des Gesetzes der schwarzen Strahlung. Ann. Phys. 1912, 37, 642. [Google Scholar] [CrossRef]
- Braffort, P.; Tzara, C. Quelques conséquences de la théorie de l’action á distance en électrodynamique classique. Comptes Rendus Acad. Sci. 1954, 239, 1775. [Google Scholar]
- López, A.G. On an electrodynamic origin of quantum fluctuations. Nonlinear Dyn. 2020, 102, 621. [Google Scholar] [CrossRef]
- Nernst, W. Über einen Versuch, von quantentheoretischen Betrachtungen zur Annahme stetiger Energieänderungen zurückzukehren. Verhandlungen Dtsch. Phys. Ges. 1916, 18, 83. [Google Scholar]
- Cetto, A.M.; de la Peña, L. Role of the electromagnetic vacuum in the transition from classical to quantum mechanics. Found. Phys. 2022, 52, 84. [Google Scholar] [CrossRef]
- Cetto, A.M.; de la Peña, L.; Valdés-Hernández, A. On the physical origin of the quantum operator formalism. Quantum Stud. Math. Found. 2021. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Photons and Atoms. Introduction to Quantum Electrodynamics; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Milonni, P.W. The Quantum Vacuum, An Introduction to Quantum Electrodynamics; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Boyer, T.H. Retarded van der Waals forces at all distances derived from classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. A 1973, 7, 1832. [Google Scholar] [CrossRef]
- de la Peña, L.; Jáuregui, A. The Spin of the Electron according to Stochastic Electrodynamics. Found. Phys. 1982, 12, 441. [Google Scholar] [CrossRef]
- Power, E.A. Zero-point Energy and the Lamb Shift. Am. J. Phys. 1966, 34, 516. [Google Scholar] [CrossRef]
- Milonni, P.W.; Smith, A. Van der Waals dispersion forces in electromagnetic fields. Phys. Rev. A 1995, 53, 3484. [Google Scholar] [CrossRef]
- Karimpour, M.R.; Fedorov, D.F.; Tkatchenko, A. Quantum framework for describing retarded and nonretarded molecular interactions in external electric fields. Phys. Rev. Res. 2022, 4, 013011. [Google Scholar] [CrossRef]
- Santos, E. Realistic Interpretation of Quantum Mechanics; Cambridge Scholars Publishing: Cambridge, UK, 2022; Chapter 7. [Google Scholar]
- Cole, D.C.; Zou, Y. Analysis of orbital decay time for the classical hydrogen atom interacting with circularly polarized electromagnetic radiation. Phys. Rev. E 2004, 69, 16601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuizen, T.M. Stochastic Electrodynamics: Renormalized Noise in the Hydrogen Ground-State Problem. Front. Phys. 2020, 8, 335. [Google Scholar] [CrossRef]
- Huang, W.C.-W.; Batelaan, H. Testing Quantum Coherence in Stochastic Electrodynamics with Squeezed Schrödinger Cat States. Atoms 2019, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Bush, J.W.M.; Oza, A.U. Hydrodynamicc quantum analogs. Rep. Prog. Phys. 2020, 84, 017001. [Google Scholar] [CrossRef] [PubMed]
- Goy, P.; Raymond, J.M.; Gross, M.; Haroche, S. Observation of Cavity-Enhanced Single-Atom Spontaneous Emission. Phys. Rev. Lett. 1983, 50, 1903. [Google Scholar] [CrossRef]
- Gabrielse, G.; Dehmelt, H. Observation of inhibited spontaneous emission. Phys. Rev. Lett. 1985, 55, 67. [Google Scholar] [CrossRef]
- Hulet, R.; Hilfer, E.; Kleppner, D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 1985, 55, 2137. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetto, A.M.; de la Peña, L. The Electromagnetic Vacuum Field as an Essential Hidden Ingredient of the Quantum-Mechanical Ontology. Entropy 2022, 24, 1717. https://doi.org/10.3390/e24121717
Cetto AM, de la Peña L. The Electromagnetic Vacuum Field as an Essential Hidden Ingredient of the Quantum-Mechanical Ontology. Entropy. 2022; 24(12):1717. https://doi.org/10.3390/e24121717
Chicago/Turabian StyleCetto, Ana Maria, and Luis de la Peña. 2022. "The Electromagnetic Vacuum Field as an Essential Hidden Ingredient of the Quantum-Mechanical Ontology" Entropy 24, no. 12: 1717. https://doi.org/10.3390/e24121717
APA StyleCetto, A. M., & de la Peña, L. (2022). The Electromagnetic Vacuum Field as an Essential Hidden Ingredient of the Quantum-Mechanical Ontology. Entropy, 24(12), 1717. https://doi.org/10.3390/e24121717