Currencies in Resource Theories
Abstract
1. Introduction
1.1. Quantifying Resources
1.2. Currencies
1.3. Previous Approaches
1.4. Contribution of This Work
2. Types of Currencies
2.1. Stage I: A Universal Standard
2.1.1. Ordered Set and Value
2.1.2. Universality
2.1.3. Cost and Yield of Resources
2.1.4. Tight Currencies
2.2. Stage II: Independent Currency
2.2.1. Independence between Currency and Target
2.2.2. Balance of Resource Conversions
2.3. Stage III: Fair Currency
2.3.1. Having Less Does Not Help
2.3.2. Having More Does Not Help
2.3.3. Both Directions
2.4. Pathological Cases
3. Application to Realistic Resources
3.1. Setup for Resource Theories
3.1.1. Realistic Descriptions of Resources
3.1.2. Transformations
3.1.3. Resource Theories
3.2. Insights
3.2.1. Rough Currencies and Single-Shot Statements
3.2.2. Local Resources and Currencies
3.2.3. Independence without Composition
3.3. Example: Unital Maps
3.3.1. Stage I Currency
3.3.2. Stage II Currency
3.3.3. Alternative Currency
3.3.4. Smooth Transformations
4. Discussion
4.1. Related Work
4.2. Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Formalizing Currencies
Appendix A.1. Stage I: Currencies as a Universal ‘Standard’
- 1.
- Order. is ordered (up to equivalences), that is for all , either or , and .
- 2.
- Universality. for all target specifications , there exists an element of the currency such that , and a currency element such that , and .
- 1.
- A minimum value which we set to zero, ,
- 2.
- A saturating value relative to a target ,
- 3.
- The supremum value of a currency (which may be larger than , and in particular may be infinite),
- 1.
- if then , and
- 2.
- Cost and Yield are monotones, that is, if , then
Appendix A.2. Stage II: Independent Currency
- 1.
- All specifications are compatible with all specifications , i.e., , and
- 2.
- If we can transform , then we can do it without disturbing the target, that is,for all .
Appendix A.3. Stage III: Fair Currency
- 1.
- for any with , there exists a such thatand .
- 2.
- for any with , there exists a such thatand .
Appendix A.3.1. Having Less Does Not Help
Appendix A.3.2. Having More Does Not Help
Appendix A.3.3. Both Directions
- General fair currency
- (a)
- Case
- (b)
- Case
- Tight currency
- (a)
- Case
- (b)
- Case
- General fair currency.
- (a)
- CaseIn this case, there exist elements such that andThen, by fairness, there exists another currency resource such that andWe obtain for the balance
- (b)
- CaseLet be an achievable cost value of W with and for arbitrarily small or zero . Then, due to fairness,
- Currency is tight for V and W.Note that in this case, the yield and cost are attainable.
- (a)
- CaseIn this case
- (b)
- CaseIn this case,
Appendix B. Examples
Appendix B.1. Bell Pairs in LOCC
- Order: , either or .This is true since for , , and so trivially by mere forgetting of information on some of the qubitsPhysically, any allowed transformation on the wallet can only degrade the currency resource and result in a loss of available maximally entangled qubits.
- Universality: for all target specifications , there is a such that , and there is a such that .Due to teleportation, any bipartite state on a certain number of qubits can be generated from a corresponding amount of maximally entangled qubits under LOCC [64]. Going to a more general specification containing at least one local state is just a matter of forgetting. Hence, one can achieve any transformation
Appendix B.2. Work in Thermal Operations
- Order: , either or .This is true since for , thermo-majorization guarantees that . Also, trivially for any .
- Universality: for all target specifications , there is a such that , and a such that .It is clear that the pure state on the maximum energy eigenvalue on S thermo-majorizes any other state on S that is block-diagonal in the energy eigenbasis. Hence, starting from the largest energy eigenstate on system W we can simply swap systems W and S and then generate the required state on S, thus achieving any transformation , with and the maximum energy eigenvalue. Also, trivially and .
- Non-disturbance: for , we have that implies we can do so without disturbing the target.Transformations on system W do not affect the states in the target system S since local quantum maps are of the form .
- Compatibility: all can be composed with any target resource.This is true because W and S are different subsystems, and so any state on W is compatible with any state on S (at the very least, we can combine any two states on W and S with the tensor product).
Appendix B.3. Resource Theory of Unital Maps
Appendix B.3.1. Stage I Currency
- Order: the set of the currency is ordered (up to equivalence) by →.This holds because the states in C are ordered by the rank (there is a clear order given by majorization coming from unital maps on C, see e.g., [40]).
- Universality: for all target specifications V (in this case all specifications on the whole d-dimensional system), there exists an element of the currency such that and an element of the currency such that .To see why the first statement holds, note that in order to prepare V, it is enough to prepare any one state , such as the state with the smallest maximum eigenvalue. As majorization tells us (see e.g., [40]), this will always be possible with unital maps from a currency state with small enough rank (in the worst case, from the pure state).To show the second statement, note that , and we can always achieve .
Appendix B.3.2. Stage II Currency
- Order: the set of the currency is ordered (up to equivalence) by →.For the specification , it holds thatSince these states are interchangeable with the respective currencies, we have that if and only if . Finally, for any k, and also , since we can always replace the state in W by a fully mixed state by means of a unital operation.Hence, the currency resources are ordered (up to the equivalence of to ).
- Universality: for all target specifications , there exists an element of the currency such that , and an element such thatTo see why the former holds, note that given , we can always start from the currency resource and apply the unitaryWe now use the idea from the proof of order, namely that Y is interconvertible with the following state,Then we can prepare any state in in system S from the pure state in S by means of a unital map on S (since the pure state majorizes every other state, this is possible), that is, for any ,As a result, one can reach a specificationTo see why the second statement holds, note that and clearly for any .
- Compatibility: all specifications (including ) can be composed with any specification V in the target .This holds since we can trivially compose any state in S with any state in W via the tensor product. Since both V and contain only local information about the systems S and W respectively, at the very least .
- Non-disturbance: for two currency resources , if we can transform , then we can do this without disturbing the target, i.e.,This holds because a unital map on W used in order to convert between the currency states only involves system W and leaves the target space unchanged.
Appendix B.3.3. Alternative Currencies
Appendix B.3.4. Approximations and Probability of Failure
Appendix C. Pathological Cases
Appendix C.1. Main Ideas and Statements
Appendix C.1.1. Fairness in One Direction
Good for the rich
Good for the poor
Appendix C.1.2. Fairness in Both Directions
Appendix C.2. Formal Statements and Proofs
Appendix C.2.1. Having Less Does Not Help (Good for the Rich)
Appendix C.2.2. More Does Not Help, Fairness for the Poor
Appendix C.2.3. Both Directions
Appendix D. A Short Note on Monotones
References
- del Rio, L.; Kraemer, L.; Renner, R. Resource theories of knowledge. arXiv 2015, arXiv:1511.08818. [Google Scholar]
- Lieb, E.H.; Yngvason, J. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 1999, 310, 1–96. [Google Scholar] [CrossRef]
- Lieb, E.H.; Yngvason, J. The mathematical structure of the second law of thermodynamics. In Current Developments in Mathematics; International Press: Cambridge, UK, 2002; pp. 89–129. [Google Scholar]
- Lieb, E.H.; Yngvason, J. The entropy concept for non-equilibrium states. Proc. R. Soc. A Math. Phys. Eng. Sci. 2013, 469, 20130408. [Google Scholar] [CrossRef]
- Lieb, E.H.; Yngvason, J. Entropy meters and the entropy of non-extensive systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140192. [Google Scholar] [CrossRef]
- Gallego, R.; Eisert, J.; Wilming, H. Defining work from operational principles. New J. Phys. 2016, 18, 103017. [Google Scholar] [CrossRef]
- Coecke, B.; Fritz, T.; Spekkens, R.W. A mathematical theory of resources. Inf. Comput. 2016, 250, 59–86. [Google Scholar] [CrossRef]
- Fritz, T. Resource convertibility and ordered commutative monoids. Math. Struct. Comput. Sci. 2017, 27, 850–938. [Google Scholar] [CrossRef]
- Brandão, F.G.S.L.; Gour, G. Reversible Framework for Quantum Resource Theories. Phys. Rev. Lett. 2015, 115, 070503. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, J.; Wootters, W. Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett. 1996, 76, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; Bernstein, H.J.; Popescu, S.; Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 1996, 53, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Popescu, S.; Rohrlich, D. Thermodynamics and the measure of entanglement. Phys. Rev. A 1997, 56, R3319–R3321. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Brandão, F.G.S.L.; Horodecki, M.; Oppenheim, J.; Renes, J.M.; Spekkens, R.W. Resource Theory of Quantum States Out of Thermal Equilibrium. Phys. Rev. Lett. 2013, 111, 12. [Google Scholar] [CrossRef] [PubMed]
- Horodecki, M.; Horodecki, P.; Oppenheim, J. Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 2003, 67, 062104. [Google Scholar] [CrossRef]
- Janzing, D.; Wocjan, P.; Zeier, R.; Geiss, R.; Beth, T. Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer’s Principle and the Second Law. Int. J. Theor. Phys. 2000, 39, 2717–2753. [Google Scholar] [CrossRef]
- Horodecki, M.; Oppenheim, J. Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 2013, 4, 2059. [Google Scholar] [CrossRef]
- Renes, J.M. Work cost of thermal operations in quantum thermodynamics. Eur. Phys. J. Plus 2014, 129, 153. [Google Scholar] [CrossRef]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics—A topical review. J. Phys. A Math. Theor. 2016, 49, 143001. [Google Scholar] [CrossRef]
- Vaccaro, J.A.; Anselmi, F.; Wiseman, H.M. Entanglement of identical particles and reference phase uncertainty. Int. J. Quantum Inf. 2003, 1, 427–441. [Google Scholar] [CrossRef]
- Vaccaro, J.A.; Anselmi, F.; Wiseman, H.M.; Jacobs, K. Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules. Phys. Rev. A 2008, 77, 032114. [Google Scholar] [CrossRef]
- Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 2007, 79, 555–609. [Google Scholar] [CrossRef]
- Gour, G.; Spekkens, R.W. The resource theory of quantum reference frames: Manipulations and monotones. New J. Phys. 2008, 10, 033023. [Google Scholar] [CrossRef]
- Marvian, I.; Spekkens, R.W. Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 2014, 90, 062110. [Google Scholar] [CrossRef]
- Marvian, I.; Spekkens, R.W. Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 2014, 5, 3821. [Google Scholar] [CrossRef] [PubMed]
- Marvian, I.; Spekkens, R.W.; Zanardi, P. Quantum speed limits, coherence and asymmetry. Phys. Rev. 2016, 93, 052331. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [PubMed]
- Lostaglio, M.; Korzekwa, K.; Jennings, D.; Rudolph, T. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics. Phys. Rev. X 2015, 5, 021001. [Google Scholar] [CrossRef]
- Winter, A.; Yang, D. Operational Resource Theory of Coherence. Phys. Rev. Lett. 2016, 116, 120404. [Google Scholar] [CrossRef]
- Lostaglio, M.; Jennings, D.; Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 2015, 6, 6383. [Google Scholar] [CrossRef]
- Korzekwa, K.; Lostaglio, M.; Oppenheim, J.; Jennings, D. The extraction of work from quantum coherence. New J. Phys. 2016, 18, 023045. [Google Scholar] [CrossRef]
- Matera, J.M.; Egloff, D.; Killoran, N.; Plenio, M.B. On the Resource Theory of Control of Quantum Systems. arXiv 2015, arXiv:1512.07486. [Google Scholar] [CrossRef]
- Carathéodory, C. Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 1909, 67, 355–386. [Google Scholar] [CrossRef]
- Giles, R. Mathematical Foundations of Thermodynamics; Pergamon Press Ltd.: Oxford, UK, 1964. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Short, A.J.; Popescu, S. Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 2014, 5, 4185. [Google Scholar] [CrossRef] [PubMed]
- Åberg, J. Catalytic coherence. Phys. Rev. Lett. 2014, 113, 150402. [Google Scholar] [CrossRef]
- Masanes, L.; Oppenheim, J. A derivation (and quantification) of the third law of thermodynamics. Nat. Commun. 2017, 8, 14538. [Google Scholar] [CrossRef]
- Alhambra, Á.M.; Masanes, L.; Oppenheim, J.; Perry, C. The second law of quantum thermodynamics as an equality. Phys. Rev. X 2016, 6, 041017. [Google Scholar] [CrossRef]
- Halpern, N.Y. Beyond heat baths II: Framework for generalized thermodynamic resource theories. J. Phys. A 2018, 51, 094001. [Google Scholar] [CrossRef]
- Weilenmann, M.; Krämer, L.; Faist, P.; Renner, R. Axiomatic relation between thermodynamic and information-theoretic entropies. Phys. Rev. Lett. 2016, 117, 260601. [Google Scholar] [CrossRef]
- Tomamichel, M. Quantum Information Processing with Finite Resources; Springer Briefs in Mathematical Physics; Springer International Publishing: Cham, Switzerland, 2016; Volume 5. [Google Scholar]
- Faist, P.; Dupuis, F.; Oppenheim, J.; Renner, R. The minimal work cost of information processing. Nat. Commun. 2015, 6, 7669. [Google Scholar] [CrossRef]
- Mendl, C.B.; Wolf, M.M. Unital Quantum Channels—Convex Structure and Revivals of Birkhoff’s Theorem. Commun. Math. Phys. 2009, 289, 1057–1086. [Google Scholar] [CrossRef]
- Birkhoff, G. Three Observations on Linear Algebra. Univ. Nac. Tucumán Rev. Ser. A 1946, 5, 147–151. [Google Scholar]
- Gour, G.; Müller, M.P.; Narasimhachar, V.; Spekkens, R.W.; Yunger Halpern, N. The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 2015, 583, 1–58. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952; p. 324. [Google Scholar]
- Uhlmann, A. On the Shannon entropy and related functionals on convex sets. Rep. Math. Phys. 1970, 1, 147–159. [Google Scholar] [CrossRef]
- Ruch, E.; Schoenhofer, A. Theorie der Chiralitaetsfunktionen. Theor. Chim. Acta 1970, 19, 225–287. [Google Scholar] [CrossRef]
- Ruch, E. The diagram lattice as structural principle A. New aspects for representations and group algebra of the symmetric group B. Definition of classification character, mixing character, statistical order, statistical disorder; A general principle for the time. Theor. Chim. Acta 1975, 38, 167–183. [Google Scholar] [CrossRef]
- Ruch, E.; Mead, A. The principle of increasing mixing character and some of its consequences. Theor. Chim. Acta 1976, 41, 95–117. [Google Scholar] [CrossRef]
- Ruch, E.; Schranner, R.; Seligman, T.H. The mixing distance. J. Chem. Phys. 1978, 69, 386–392. [Google Scholar] [CrossRef]
- Ruch, E.; Schranner, R.; Seligman, T.H. Generalization of a theorem by Hardy, Littlewood, and Pólya. J. Math. Anal. Appl. 1980, 76, 222–229. [Google Scholar] [CrossRef]
- Horn, R.; Johnson, C. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Joe, H. Majorization and divergence. J. Math. Anal. Appl. 1990, 148, 287–305. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1997. [Google Scholar]
- Nielsen, M.A.; Vidal, G. Majorization and the interconversion of bipartite states. Quantum Inf. Comput. 2001, 1, 76–93. [Google Scholar]
- Marshall, A.W.; Olkin, I.; Arnold, B.C. Inequalities: Theory of Majorization and Its Applications; Springer Series in Statistics; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Brandão, F.; Horodecki, M.; Ng, N.; Oppenheim, J.; Wehner, S. The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. USA 2015, 112, 3275–3279. [Google Scholar] [CrossRef] [PubMed]
- Renner, R.; Wolf, S. Smooth Rényi Entropy and Applications. In Proceedings of the International Symposium onInformation Theory (ISIT 2004), Chicago, IL, USA, 27 June–2 July 2004; p. 233. [Google Scholar]
- Renner, R. Security of Quantum Key Distribution. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2005. [Google Scholar]
- Datta, N. Min- and Max-Relative Entropies and a New Entanglement Monotone. IEEE Trans. Inf. Theory 2009, 55, 2816–2826. [Google Scholar] [CrossRef]
- Tomamichel, M. A framework for Non-Asymptotic Quantum Information Theory. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2012. [Google Scholar]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Bennett, C.H. The thermodynamics of computation—A review. Int. J. Theor. Phys. 1982, 21, 905–940. [Google Scholar] [CrossRef]
- Alberti, P.; Uhlmann, A. A problem relating to positive linear maps on matrix algebras. Rep. Math. Phys. 1980, 18. [Google Scholar] [CrossRef]
- Chefles, A.; Jozsa, R.; Winter, A. On the existence of physical transformations between sets of quantum states. Int. J. Quantum Inf. 2004, 2, 11–21. [Google Scholar] [CrossRef]
- Heinosaari, T.; Jivulescu, M.A.; Reeb, D.; Wolf, M.M. Extending quantum operations. J. Math. Phys. 2012, 53. [Google Scholar] [CrossRef]
- Huang, Z.; Li, C.K.; Poon, E.; Sze, N.S. Physical transformations between quantum states. J. Math. Phys. 2012, 53. [Google Scholar] [CrossRef]
- Landauer, J.; Redmond, T. A lattice of information. In Proceedings of the Computer Security Foundations Workshop VI, Franconia, NH, USA, 15–17 June 1993; pp. 65–70. [Google Scholar] [CrossRef]
- Morgan, C. A Nondeterministic Lattice of Information. In Mathematics of Program Construction; 2015; Available online: https://ts.data61.csiro.au/publications/nicta_slides/8879.pdf (accessed on 10 June 2021).
- Halpern, N.Y.; Faist, P.; Oppenheim, J.; Winter, A. Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges. Nat. Commun. 2016, 7, 12051. [Google Scholar] [CrossRef] [PubMed]
- Guryanova, Y.; Popescu, S.; Short, A.J.; Silva, R.; Skrzypczyk, P. Thermodynamics of quantum systems with multiple conserved quantities. Nat. Commun. 2016, 7, 12049. [Google Scholar] [CrossRef]
- Lostaglio, M.; Jennings, D.; Rudolph, T. Thermodynamic resource theories, non-commutativity and maximum entropy principles. New J. Phys. 2017, 19, 043008. [Google Scholar] [CrossRef]
- Aberg, J. Truly work-like work extraction via a single-shot analysis. Nat. Commun. 2013, 4, 1925. [Google Scholar] [CrossRef]
- Horodecki, M.; Oppenheim, J. Quantumness in the context of resource theories. Int. J. Mod. Phys. B 2013, 27, 1345019. [Google Scholar] [CrossRef]
- Barvinok, A. A Course in Convexity; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraemer, L.; del Rio, L. Currencies in Resource Theories. Entropy 2021, 23, 755. https://doi.org/10.3390/e23060755
Kraemer L, del Rio L. Currencies in Resource Theories. Entropy. 2021; 23(6):755. https://doi.org/10.3390/e23060755
Chicago/Turabian StyleKraemer, Lea, and Lídia del Rio. 2021. "Currencies in Resource Theories" Entropy 23, no. 6: 755. https://doi.org/10.3390/e23060755
APA StyleKraemer, L., & del Rio, L. (2021). Currencies in Resource Theories. Entropy, 23(6), 755. https://doi.org/10.3390/e23060755