Some New Quantum BCH Codes over Finite Fields
Abstract
1. Introduction
2. Preliminaries
- (1)
 - If there exists a classical linearcodesuch that, andcan be enlarged to a classical linearcodewhere, then there exists an stabilizer code;
 - (2)
 - If there exists a classical linearcodesuch that, then there exists anstabilizer code.
 
- (1)
 - A cyclic code of lengthoverwith a defining set Z contains its Euclidean dual code if and only if, where;
 - (2)
 - A cyclic code of length n overwith a defining set Z contains its Hermitian dual code if and only if, where.
 
3. Steane’s Construction
3.1. m Is Even
3.2. m Is Odd
- (1)
 - Ifor, then there exists anquantum BCH code;
 - (2)
 - If, then there exists anquantum BCH code;
 - (3)
 - Ifand, then there exists anquantum BCH code;
 - (4)
 - Ifand, then there exists anquantum BCH code;
 - (5)
 - Ifand, then there exists anquantum BCH code.
 
- (1)
 - Let , where . Let , where ;
 - (2)
 - Let , where . Let , where ;
 - (3)
 - Let , where . Let , where ;
 - (4)
 - Let , where . Let , where ;
 - (5)
 - Let , where . Let , where . □
 
4. Hermitian Construction
- (1)
 - If, then;
 - (2)
 - If, then.
 
4.1. m Is Odd
4.2. m Is Even
5. Comparison and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.; Grover, L.K. Quantum Computation and Quantum Information. Am. J. Phys. 2002, 70, 558–559. [Google Scholar] [CrossRef]
 - Shor, P.W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 1995, 52, R2493–R2496. [Google Scholar] [CrossRef] [PubMed]
 - Steane, A. Multiple-particle interference and quantum error correction. Proc. R. Soc. A Math. Phys. Eng. Sci. 1996, 452, 2551–2577. [Google Scholar] [CrossRef]
 - Calderbank, A.; Rains, E.; Shor, P.; Sloane, N. Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 1998, 44, 1369–1387. [Google Scholar] [CrossRef]
 - Aly, S.A.; Klappenecker, A.; Sarvepalli, P.K. On Quantum and Classical BCH Codes. IEEE Trans. Inf. Theory 2007, 53, 1183–1188. [Google Scholar] [CrossRef]
 - Hamada, M. Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction. IEEE Trans. Inf. Theory 2008, 54, 5689–5704. [Google Scholar] [CrossRef][Green Version]
 - Ketkar, A.; Klappenecker, A.; Kumar, S.; Sarvepalli, P. Nonbinary Stabilizer Codes Over Finite Fields. IEEE Trans. Inf. Theory 2006, 52, 4892–4914. [Google Scholar] [CrossRef]
 - Steane, A. Enlargement of Calderbank-Shor-Steane quantum codes. IEEE Trans. Inf. Theory 1999, 45, 2492–2495. [Google Scholar] [CrossRef]
 - La Guardia, G.G. Quantum Codes Derived from Cyclic Codes. Int. J. Theor. Phys. 2017, 56, 2479–2484. [Google Scholar] [CrossRef][Green Version]
 - Ling, S.; Luo, J.; Xing, C. Generalization of Steane’s Enlargement Construction of Quantum Codes and Applications. IEEE Trans. Inf. Theory 2010, 56, 4080–4084. [Google Scholar] [CrossRef]
 - Hu, Q.; Zhang, G.H.; Chen, B.C. Constructions of New Nonbinary Quantum Codes. Int. J. Theor. Phys. 2015, 54, 92–99. [Google Scholar] [CrossRef]
 - Gao, J.; Wang, Y. Quantum Codes Derived from Negacyclic Codes. Int. J. Theor. Phys. 2017, 57, 682–686. [Google Scholar] [CrossRef]
 - Chen, J.-Z.; Li, J.-P.; Lin, J. New Optimal Asymmetric Quantum Codes Derived from Negacyclic Codes. Int. J. Theor. Phys. 2014, 53, 72–79. [Google Scholar] [CrossRef]
 - Liu, Y.; Li, R.; Lv, L.; Ma, Y. A class of constacyclic BCH codes and new quantum codes. Quantum Inf. Process. 2017, 16. [Google Scholar] [CrossRef]
 - Yuan, J.; Zhu, S.; Kai, X.; Li, P. On the construction of quantum constacyclic codes. Des. Codes Cryptogr. 2017, 85, 179–190. [Google Scholar] [CrossRef]
 - La Guardia, G.G. On the Construction of Nonbinary Quantum BCH Codes. IEEE Trans. Inf. Theory 2014, 60, 1528–1535. [Google Scholar] [CrossRef]
 - Ma, Y.; Liang, F.; Guo, L. Some Hermitian Dual Containing BCH Codes and New Quantum Codes. Appl. Math. Inf. Sci. 2014, 8, 1231–1237. [Google Scholar] [CrossRef][Green Version]
 - Ma, Z.; Lü, X.; Feng, K.; Feng, D. On Non-binary Quantum BCH Codes. In Proceedings of the International Conference on Theory and Applications of Models of Computation, Beijing, China, 15–20 May 2006; pp. 675–683. [Google Scholar]
 - Qian, J.; Zhang, L. Improved Constructions for Nonbinary Quantum BCH Codes. Int. J. Theor. Phys. 2017, 56, 1355–1363. [Google Scholar] [CrossRef]
 - Zhang, M.; Li, Z.; Xing, L.; Tang, N. Some Families of Quantum BCH Codes. Int. J. Theor. Phys. 2018, 58, 615–630. [Google Scholar] [CrossRef]
 - Macwilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; North-Holland Publishing Company: Amsterdam, The Netherlands, 1977. [Google Scholar]
 - Charpin, P. Open Problems on Cyclic Codes in Handbook of Coding Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1998. [Google Scholar]
 - La Guardia, G.G. Constructions of new families of nonbinary quantum codes. Phys. Rev. A 2009, 80, 042331. [Google Scholar] [CrossRef]
 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, L.; Li, Z. Some New Quantum BCH Codes over Finite Fields. Entropy 2021, 23, 712. https://doi.org/10.3390/e23060712
Xing L, Li Z. Some New Quantum BCH Codes over Finite Fields. Entropy. 2021; 23(6):712. https://doi.org/10.3390/e23060712
Chicago/Turabian StyleXing, Lijuan, and Zhuo Li. 2021. "Some New Quantum BCH Codes over Finite Fields" Entropy 23, no. 6: 712. https://doi.org/10.3390/e23060712
APA StyleXing, L., & Li, Z. (2021). Some New Quantum BCH Codes over Finite Fields. Entropy, 23(6), 712. https://doi.org/10.3390/e23060712
        
                                                