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Abstract: Quantum error correcting codes (QECCs) play an important role in preventing quantum
information decoherence. Good quantum stabilizer codes were constructed by classical error correct-
ing codes. In this paper, Bose–Chaudhuri–Hocquenghem (BCH) codes over finite fields are used to
construct quantum codes. First, we try to find such classical BCH codes, which contain their dual
codes, by studying the suitable cyclotomic cosets. Then, we construct nonbinary quantum BCH codes
with given parameter sets. Finally, a new family of quantum BCH codes can be realized by Steane’s
enlargement of nonbinary Calderbank-Shor-Steane (CSS) construction and Hermitian construction.
We have proven that the cyclotomic cosets are good tools to study quantum BCH codes. The defining
sets contain the highest numbers of consecutive integers. Compared with the results in the references,
the new quantum BCH codes have better code parameters without restrictions and better lower
bounds on minimum distances. What is more, the new quantum codes can be constructed over any
finite fields, which enlarges the range of quantum BCH codes.

Keywords: quantum stabilizer codes; BCH codes; cyclotomic cosets; dual codes

1. Introduction

QECCs are important tools to prevent quantum information from decoherence in quan-
tum computations and quantum communications. After the fundamental research for
QECCs [1–3], more and more good results have been proposed to improve the quantum codes.

There were relationships between quantum codes and classical self-orthogonal codes
over finite fields [4–6]. The construction of binary quantum BCH codes was based on
classical additive codes over GF(4) [4]. The conclusions in [4] could be generalized to all
the nonbinary primitive quantum BCH codes over finite fields [7]. Aly et al. extended
Steane’s results [8] to narrow-sense (not necessarily primitive) BCH codes with certain
distances over GF(q) [5]. Nonbinary quantum codes with better code parameters were
obtained by CSS construction [9]. Steane’s enlargement construction was generalized from
binary quantum codes to q-ary quantum codes [10]. Moreover, two families of nonbinary
quantum codes were presented by the Hermitian construction [11]. Some quantum codes
could be constructed by negacyclic codes [12,13] and constacyclic codes [14,15]. Good
nonbinary quantum codes were constructed by corresponding cyclotomic cosets with
given parameters [16]. The designed quantum BCH codes were obtained with given code
lengths [9,16–20].

However, quantum coding theory is aimed at finding codes with given parameter
sets and optimizing the code parameters. The construction of quantum BCH codes is
studied in this paper. First, we try to find such classical BCH codes which contain their
dual codes by studying the suitable cyclotomic cosets. The suitable cyclotomic cosets are
proven to have the highest numbers of consecutive integers in defining sets and compute
the dimensions of quantum BCH codes correctly. Then, we can construct nonbinary
quantum BCH codes with given parameter sets. Finally, a new family of quantum BCH
codes can be realized by Steane’s enlargement of nonbinary Calderbank-Shor-Steane (CSS)
codes and Hermitian construction.

Entropy 2021, 23, 712. https://doi.org/10.3390/e23060712 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23060712
https://doi.org/10.3390/e23060712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060712
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060712?type=check_update&version=2


Entropy 2021, 23, 712 2 of 9

This paper is organized as follows. The basic theory of classical BCH codes is defined
in Section 2. New families of quantum BCH codes by Steane’s enlargement of CSS con-
struction are constructed in Section 3. New families of quantum BCH codes by Hermitian
construction generated by classical BCH codes over Fq2 are shown in Section 4. The results
are compared with corresponding references in Section 5.

2. Preliminaries

The finite field is denoted by Fq with q elements, where q is a prime power. A linear
code of length n over Fq is a subspace of Fn

q .

Definition 1. Given two vectors x,y ∈ Fn
q , the Euclidean inner product over Fq is defined as

follows: 〈x,y〉E = x0y0 + x1y1 + . . . + xn−1yn−1.

Similarly, given two vectors x,y ∈ Fn
q2 , the Hermitian inner product over Fq2 is defined

as follows: 〈x,y〉H = x0yq
0 + x1yq

1 + . . . + xn−1yq
n−1.

We define gcd(n, q) = 1 in this paper. The smallest positive integer m0 in qm0 ≡
1 mod n is called the multiplicative order of q modulo n and is denoted by m0 = ordn(q).
Namely, n|qm0 − 1 holds.

If C is an [n, k, d] code over Fq, the Euclidean dual code of C is defined as follows:

C⊥E =
{

x ∈ Fn
q

∣∣∣〈x,y〉E = 0 for all y ∈ C
}

.
If C is an [n, k, d] code over Fq2 , the Hermitian dual code of C is defined as follows:

C⊥H =
{

x ∈ Fn
q2

∣∣∣〈x,y〉H = 0 for all y ∈ C
}

.
The classic BCH code is a family of well-studied cyclic codes. Many explicit construc-

tions of classical BCH codes [21] and QECCs [5] have been proposed so far. They can all
be characterized by the cyclotomic cosets. Let ϕ[i] = {iqz mod n|z ∈ Z} denote the q-ary
cyclotomic coset of i modulo n.

Definition 2. A BCH code C over Fq with length n and designed distance δ is a cyclic code.

The defining set is denoted by Z =
b+δ−2

U
i=b

ϕ[i]. If n = qm0 − 1, it is called a primitive BCH code. If

b = 1, it is called a narrow-sense BCH code.

The minimal polynomial over Fq of β is the lowest degree monic polynomial M(x),
with coefficients from Fq such that M(β) = 0. If β = αi for a fixed primitive n-th root of unity
α ∈ Fqm0 , then the minimal polynomial of β over Fq is denoted by M(i)(x) = ∏

j∈ϕ[i]
(x− αj).

The dimension of the BCH code is computed as k = n− |Z|. The minimum distance of
the BCH code is at least δ based on the BCH bound [22]. A thorough theory of classic BCH
codes is discussed in [21].

Steane’s enlargements of the CSS construction and Hermitian construction are widely
used in quantum stabilizer codes. To proceed further, let us review some useful results as
follows.

Theorem 1 [5,10].

(1) If there exists a classical linear [n, k1, d1]q code C such that C⊥E ⊆ C, and C can be enlarged
to a classical linear [n, k′1, d′1]q code C′ where k′1 − k1 ≥ 2, then there exists an [[n, k′1 +

k1 − n, d ≥ min
{

d1,
⌈

q+1
q d′1

⌉}
]]q stabilizer code;

(2) If there exists a classical linear [n, k1, d1]q2 code D such that D⊥H ⊆ D, then there exists an
[[n, 2k1 − n, d ≥ d1]]q stabilizer code.

We construct quantum stabilizer codes using classic codes which contain their dual
codes. An important lemma is generalized in [5].
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Lemma 1 [5]. Let q be a prime power and n be an integer such that gcd(n, q) = 1:

(1) A cyclic code of length n over Fq with a defining set Z contains its Euclidean dual code if and
only if Z∩ Z−1 = ∅, where Z−1 = {−z mod n |z ∈ Z};

(2) A cyclic code of length n over Fq2 with a defining set Z contains its Hermitian dual code if and
only if Z∩ Z−q = ∅, where Z−q = {−qz mod n |z ∈ Z}.

3. Steane’s Construction

Suppose n = r(qm − 1) and ordn(q) = 2m. If r = 1, then qm ≡ 1 mod n. We only
consider the case where r > 1.

Lemma 2. If 1 < i < rq
dm

2 e , ϕ[i] has m elements if and only if r|i ; ϕ[i] has 2m elements if r - i .

Proof. If r|i , we obtain r(qm − 1)|i(qm − 1)⇒ i(qm − 1) ≡ 0 mod n⇒ iqm ≡ i mod n .

If m = 1, we obtain iq ≡ i mod n; therefore, ϕ[i] has one element. Now, let us discuss
the case where m > 1. Assume that ϕ[i] has mi elements, where mi|m . If m is even, then 1 <

mi ≤ m
2 ; if m is odd, then 1 < mi ≤ m

3 . We have iqmi ≡ i mod n⇒ n
∣∣∣i(qmi − 1)⇒ r qm−1

qmi−1

∣∣∣i .

Since 1 ≤ i ≤ rqd
m
2 e< r qm−1

qmi−1 , it has a contradiction. Therefore, ϕ[i] has m elements.
Conversely, if ϕ[i] has m elements, we obtain iqm ≡ i mod n⇒ n|i(qm − 1)⇒ r|i . If r -

i , assume that ϕ[i] has mi elements, where mi|m . We have iqmi ≡ i mod n. Since r qm−1
qmi−1

∣∣∣i ,
it has a contradiction. Finally, Lemma 2 follows. �

3.1. m Is Even

Let us consider the case where m is even first. The following theorem contributes to
choosing cyclotomic cosets.

Lemma 3. If i is an integer such that r(q
m
2 − 1)

∣∣∣i , then ϕ[i] = ϕ[−i].

Proof. Supposing that m is even, we have n = r(q
m
2 − 1)(q

m
2 + 1). If r(q

m
2 − 1)

∣∣∣i , we obtain

i(q
m
2 + 1) ≡ 0 mod n⇒ iq

m
2 ≡ −i mod n⇒ ϕ[i] = ϕ[−i] . �

According to Steane’s construction, quantum BCH codes can be generated by Eu-
clidean dual-containing classical BCH codes, with the selected cosets in the range of
ϕ[(k− 1)r(q

m
2 − 1) + 1] ∼ ϕ[kr(q

m
2 − 1)− 1], 1 ≤ k ≤ q

m
2 + 1. However, some cosets are

not disjointed in this range. Therefore, we should choose the cosets carefully.

Theorem 2. Let q ≥ 4 be a prime power, n be an integer such that gcd(n, q) = 1 and
ordn(q) = 2m. Assume that n = r(qm − 1), where 1 < r < q . If m ≥ 4, then there
exists an [[n, n− 2m(2r− 1)(q

m
2 − q

m
2 −1 − 1) + 2m, d ≥ r(q

m
2 − 1)]]q quantum BCH code.

Proof. Since n = r(qm − 1) and ordn(q) = 2m, we have n
∣∣q2m − 1 and r|qm + 1 . If r =

q− 1, we obtain q− 1
∣∣∣∣qm + 1⇒ qm + 1 = (

m−1
∑

i=0
qi)(q− 1) + 2 . Clearly, this is not true for

the case where q ≥ 4. We have 1 < r < q− 1.

Let C =
〈

∏i M(i)(x)
〉

with the defining set Z, where rq
m
2 −1 ≤ i ≤ r(q

m
2 − 1) − 1.

If Z ∩ Z−1 6= ∅, there exist i and j such that iql ≡ −j mod n, where rq
m
2 −1 ≤ i, j ≤

r(q
m
2 − 1)− 1 and 0 ≤ l ≤ 2m− 1. We then obtain the following:

iql + j ≡ 0 mod n (1)
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This congruence equation contradicts the fact that 0 < iql + j ≤ n− (q
m
2 − 1) when

0 ≤ l ≤ m
2 . Let us consider the case where m

2 + 1 ≤ l ≤ m. Thus, 0 ≤ m− l ≤ m
2 − 1,

and it follows that rqmi + rqm−l j ≡ 0 mod n. Since rqm ≡ r mod n, we have i + jqm−l ≡
0 mod (qm − 1). Since m ≥ 4 and 1 < r < q− 1, we obtain 0 < i + qm−l j ≤ r(qm−1 + q

m
2 −

q
m
2 −1− 1)− q

m
2 −1− 1 < qm− qm−1 + q

m
2 +1− 2q

m
2 − q < qm− 1. Therefore, the congruence

equation i + jqm−l ≡ 0 mod(qm − 1) is not satisfied.
When m + 1 ≤ l ≤ 2m− 1, we have 1 ≤ 2m− l ≤ m− 1. From q2m ≡ 1 mod n, we can

infer that
i + jq2m−l ≡ 0 mod n (2)

Obviously, it contradicts the cases where 0 ≤ l ≤ m
2 and m+1

2 ≤ l ≤ m. Therefore,
Z∩ Z−1 = ∅, and C is Euclidean dual-containing.

Suppose ϕ[i] = ϕ[j], where rq
m
2 −1 ≤ i 6= j ≤ r(q

m
2 − 1) − 1. It follows that iql ≡

j mod n, where 1 ≤ l ≤ 2m− 1. We thus obtain the following:

iql − j ≡ 0 mod n (3)

When 1 ≤ l ≤ m
2 , it contradicts the case where r + 1 ≤ iql − j ≤ r(qm − q

m
2 − q

m
2 −1)−

q
m
2 < n.

When m
2 + 1 ≤ l ≤ m, since rqm ≡ r mod n, we have rqm−l j− ri ≡ 0 mod n. Hence,

jqm−l − i ≡ 0 mod (qm − 1), where 0 ≤ m − l ≤ m
2 − 1. If m − l = 0, we have j − i ≡

0 mod (qm − 1), which contradicts the fact that 0 < i 6= j < qm − 1. If 1 ≤ m− l ≤ m
2 − 1,

we have

r + 1 < jqm−l − i < r(qm−1 − 2q
m
2 −1)− q

m
2 −1 < qm + q

m
2 −1 − qm−1 − 2q

m
2 < qm − 1.

Since 1 < r < q− 1 and m ≥ 4, jqm−l − i ≡ 0 mod (qm − 1) is not satisfied.
When m + 1 ≤ l ≤ 2m − 1, we have 1 ≤ 2m − l ≤ m − 1. Since q2m ≡ 1 mod n,

Equation (3) is transformed into jq2m−l − i ≡ 0 mod n. This is similar to the cases where
1 ≤ l ≤ m

2 and m
2 + 1 ≤ l ≤ m. To sum up, all the cosets given above are mutually

disjointed.
From Lemma 2, there are q

m
2 − q

m
2 −1 − 1 cosets with m elements. Since ϕ[1] =

ϕ[q
m
2 ], · · · , ϕ[rq

m
2 −1 − 2] = ϕ[rq

m
2 − 2q] and ϕ[rq

m
2 −1 − 1] = ϕ[rq

m
2 − q], there are r(q

m
2 −

1) − 1 consecutive integers in Z. Therefore, we obtain
C = [n, k1 = n−m(2r− 1)(q

m
2 − q

m
2 −1 − 1), d1 ≥ r(q

m
2 − 1)]q according to the BCH bound.

Let C′ = 〈∏j M(j)(x)〉 and rq
m
2 −1 ≤ j ≤ r(q

m
2 − 1) − 2. Since 1 < r < q − 1, we have

(rq
m
2 −1 − 1)q≤ r(q

m
2 − 1) − 2, and thus ϕ[rq

m
2 −1 − 1] = ϕ[rq

m
2 − q]. We obtain C′ =

[n, k′1 = n − m(2r − 1)(q
m
2 − q

m
2 −1 − 1) + 2m, d′1 ≥ r(q

m
2 − 1) − 1]q. Since k′1 − k1 =

2m > 2, C′ is an enlargement of C. Since r(q
m
2 − 1) ≤

⌈
q+1

q

⌉
(r(q

m
2 − 1) − 1), we have

an [[n, n− 2m(2r− 1)
(

q
m
2 − q

m
2 −1 − 1

)
+ 2m, d ≥ r

(
q

m
2 − 1

)
]]q quantum BCH code. �

It is rather remarkable that q ≥ 4 ensures that C′ contains the highest numbers of
consecutive integers. We choose m ≥ 4 for the reason that there exist cyclotomic cosets
ϕ[i] = ϕ[−j] when m = 2. The q-ary cyclotomic cosets proposed in Theorem 2 not only
easily compute the dimensions of C and C′, but also ensure C is Euclidean dual-containing.
The condition 1 < r < q ensures that the selected cosets are mutually disjointed.

Example 1. If q = 5, m = 4 and r = 2, we have n = 1248 and r(q
m
2 − 1) = 48. It is

easy to compute the following 5-ary cyclotomic cosets: ϕ[10] = {10, 50, 250, 2}, . . . , ϕ[48] =
{48, 240, 1200, 1008}. Obviously, ϕ[48] = −ϕ[48]. Let C =< ∏

i∈Z
M(i)(x) > have the defin-

ing set Z =
47
∪

i=10
ϕ[i] and C′ =< ∏

j∈Z′
M(j)(x) > have the defining set Z′ =

46
∪

j=10
ϕ[j]. C =
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[1248, 1020, d1 ≥ 48]5 is Euclidean dual-containing, and C′ = [1248, 1028, d′1 ≥ 47]5 is an en-
largement of C. Then, we obtain an [[1248, 800, d ≥ 48]]5 quantum BCH code.

3.2. m Is Odd

Next, we consider the case where m is odd. For simplicity, we define Q1 = q
m+1

2 −
q +

⌊ r
2
⌋
. If m = 1, we have n = r(q − 1) and ordn(q) = 2, which were studied in [16].

Therefore, we choose m > 1 when m is odd. A few contributions are presented as follows.

Theorem 3. Let q be a prime power, n be an integer such that gcd(n, q) = 1 and ordn(q) =
2m. Assume that n = r(qm − 1), where

⌊ 3r
2
⌋
< q ≤ 2r. If m > 1, then there exists an

[[n, n− 4m(Q1 − q
m−1

2 ) +m(
⌊

Q1
r

⌋
+
⌊

Q1−1
r

⌋
− 2
⌈

q
m−1

2

r

⌉
), d ≥ Q1 + 1]]q quantum BCH code.

The proof is similar to Theorem 2.

Example 2. If q = 7, m = 3 and n = 1368, we have q
m−1

2 = 7 and Q1 = 44. It is easy to
compute the following 7-ary cyclotomic cosets: ϕ[7] = {7, 49, 343, 1033, 391, 1}, . . . , ϕ[44] =
{44, 308, 788} and ϕ[45] = {45, 315, 837, 1341, 1179}. Obviously, ϕ[45] = ϕ[−27]. Meanwhile,
the cosets which contain ϕ[1], ϕ[2], . . . , ϕ[6] are mutually disjointed. We choose ϕ[7], ϕ[8] ,
. . . , ϕ[44] to generate C = [1368, 1170, d1 ≥ 45]7 and ϕ[7], ϕ[8] , . . . , ϕ[43] to generate C′ =
[1368, 1173, d′1 ≥ 45]7. Finally, we obtain an [[1368, 975, d ≥ 45]]7 quantum BCH code.

Corollary 1. Let q be a prime power, n be an integer such that gcd(n, q) = 1 and ordn(q) = 2m.
Assume that n = r(qm − 1) and m > 1:

(1) If r < q <
⌊ 3r

2
⌋

or q > 2r, then there exists an

[[n, n− 4m(q
m+1

2 − q
m−1

2 − q) + m(

⌊
q

m+1
2 −q−1

r

⌋
+

⌊
q

m+1
2 −q−2

r

⌋
− 2
⌈

q
m−1

2 −1
r

⌉
), d ≥ q

m+1
2 − q]]

q
quantum BCH code;

(2) If q < r ≤ 2q− 4, then there exists an

[[n, n− 4m(rq
m−1

2 − rq
m−3

2 +
⌊ r

2
⌋
) + 2m(q

m−1
2 − q

m−3
2 − 1), d ≥ rq

m−1
2 − q +

⌊ r
2
⌋
+ 1]]q

quantum BCH code;

(3) If 2q− 3 ≤ r ≤ q2+1
2 and m = 3, then there exists an

[[n, n− 12(rq− r− q) + 3(2q−
⌊

q+2
r

⌋
−
⌊

q+1
r

⌋
− 2), d ≥ rq− q]]

q
quantum BCH code;

(4) If 2q− 3 ≤ r ≤ q2 − q + 1 and m = 5, then there exists an

[[n, n− 20(rq2 − rq− q) + 5(2q2 − 2q−
⌊

q+2
r

⌋
−
⌊

q+2
r

⌋
), d ≥ rq2 − q]]

q
quantum BCH

code;
(5) If 2q− 3 ≤ r < q2 and m ≥ 7, then there exists an

[[n, n− 4m(rq
m−1

2 − rq
m−3

2 − q) + m(2q
m−1

2 − 2q
m−3

2 −
⌊

q+1
r

⌋
−
⌊

q+2
r

⌋
), d ≥ rq

m−1
2 − q]]

q
quantum BCH code.

Proof. We only listed the range of q-ary cyclotomic cosets to generate C and C′. The re-
minder proof is similar to Theorem 2.

(1) Let C =
〈

∏ i M(i)(x)
〉

, where q
m−1

2 − 1 ≤ i ≤ q
m+1

2 − q− 1. Let C′ =
〈

∏ j M(j)(x)
〉

,

where q
m−1

2 − 1 ≤ j ≤ q
m+1

2 − q− 2;
(2) Let C =

〈
∏ i M(i)(x)

〉
, where rq

m−3
2 ≤ i ≤ rq

m−1
2 − q +

⌊ r
2
⌋
. Let C′ =

〈
∏ j M(j)(x)

〉
,

where rq
m−3

2 ≤ j ≤ rq
m−1

2 − q +
⌊ r

2
⌋
− 1;
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(3) Let C =
〈

∏ i M(i)(x)
〉

, where r− 1 ≤ i ≤ rq− q− 1. Let C′ =
〈

∏ j M(j)(x)
〉

, where
r− 1 ≤ j ≤ rq− q− 2;

(4) Let C =
〈

∏ i M(i)(x)
〉

, where rq− 1 ≤ i ≤ rq2− q− 1. Let C′ =
〈

∏ j M(j)(x)
〉

, where

rq− 1 ≤ j ≤ rq2 − q− 2;
(5) Let C =

〈
∏ i M(i)(x)

〉
, where rq

m−3
2 − 1 ≤ i ≤ rq

m−1
2 − q− 1. Let C′ =

〈
∏ j M(j)(x)

〉
,

where rq
m−3

2 − 1 ≤ j ≤ rq
m−1

2 − q− 2. �

4. Hermitian Construction

Let us focus on classic BCH codes over Fq2 . Suppose n = r(q2m − 1) and ordn(q2) =

2m. We choose r > 1 for the reason that we have q2m ≡ 1 mod n when r = 1.

Lemma 4. If 1 ≤ i ≤ rqm, ϕ[i] has m elements if and only if r|i , and ϕ[i] has 2m elements if r - i .

The proof is similar to Lemma 2.

Lemma 5. Let mo be the odd factor of m and me be the even factor of m:

(1) If r q2m−1
qmo+1 |i , then ϕ[i] = −qϕ[i];

(2) If r q2m−1
qme+1 |i , then ϕ[i] = −qϕ[qi].

Proof. (1) Since n = r(q2m − 1), we have n = r q2m−1
qmo+1 (q

mo + 1). If r q2m−1
qmo+1 |i , we have

i(qmo + 1) ≡ 0 mod n⇒ i ≡ −qqmo−1i mod n . When mo is odd, we obtain ϕ[i] = −qϕ[i].

(2) Since n = r(q2m − 1), we have n = r q2m−1
qme+1 (q

me + 1). If r q2m−1
qme+1 |i , we have i ≡

−qqme−2 qi mod n. When me is even, we obtain ϕ[i] = −qϕ[qi]. �

4.1. m Is Odd

Corollary 2. Let m be an integer. If r(qm − 1)|i , then ϕ[i] = −qϕ[i].

Theorem 4. Let q be a prime power and n be an integer such that gcd(n, q2) = 1 and ordn(q2)
= 2m. Assume that n = r(q2m − 1), where 1 < r < q. If m > 1, then there exists an
[[n, n− 2m(2r− 1)(qm − qm−2 − 1), d ≥ r(qm − 1)]]q quantum BCH code.

Proof. Let D =
〈

∏ i M(i)(x)
〉

with the defining set Z, where rqm−2 ≤ i ≤ r(qm − 1)− 1.

If Z∩ Z−q 6= ∅, there exist values i and j such that iq2l ≡ −qj mod n, where rqm−2 ≤ i, j ≤
r(qm − 1)− 1 and 0 ≤ 2l ≤ 4m− 2. Thus, we obtain

iq2l + jq ≡ 0 mod n (4)

First, let us consider the case where 2l = 0. Equation (4) transforms into i + qj ≡
0 mod n. This contradicts the fact that 0 < iq2l−1 + j ≤ n− (qm + 1) < n.

When 2 ≤ 2l ≤ m + 1, since gcd(n, q2) = 1, Equation (4) transforms into iq2l−1 + j ≡
0 mod n. This contradicts the fact that 0 < iq2l−1 + j ≤ n− (qm + 1) < n.

When m + 3 ≤ 2l ≤ 2m, since rq2m ≡ r mod n, Equation (4) transforms into

i + jq2m−2l+1 ≡ 0 mod (q2m − 1) (5)

We obtain i+ q2m−2l+1 j ≤ r(q2m−2− qm−2 + qm− 1)− qm−2− 1 < q2m− 1, and the con-
gruence of Equation (5) is not satisfied.

When 2m+ 2 ≤ 2l ≤ 4m− 2, we have 3 ≤ 4m− 2l + 1 ≤ 2m− 1. From q4m ≡ 1 mod n,
it can be inferred that i + jq4m−2l+1 ≡ 0 mod n. Obviously, this contradicts the cases where
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0 ≤ 2l ≤ m + 1 and m + 3 ≤ 2l ≤ 2m. Therefore, Z ∩ Z−q = ∅, and D is Hermitian
dual-containing.

Similar to Theorem 2, the cosets ϕ[rqm−2], . . . , ϕ[r(qm − 1)− 2] and ϕ[r(qm − 1)− 1]
are mutually disjointed. From Lemma 4, there are qm − qm−2 + 1 cosets with m ele-
ments. Since ϕ[1] = ϕ[qm−1], . . . , ϕ[rqm−2 − 2] = ϕ[rqm − 2q2] and ϕ[rqm−2 − 1] =
ϕ[rqm − q2], there are r(qm − 1) − 1 consecutive integers in Z. Therefore, we obtain
D = [n, n−m(2r− 1)(qm − qm−2 − 1), d1 ≥ r(qm − 1)]q2 . Then, an
[[n, n− 2m(2r− 1)(qm − qm−2 − 1), d ≥ r(qm − 1)]]q quantum BCH code can be obtained
by a Hermitian construction. �

It is rather remarkable that the q2–ary cyclotomic cosets proposed in Theorem 4 can
easily compute the dimensions of the BCH codes. The condition 1 < r < q ensures that
the selected cosets are mutually disjointed. Furthermore, the cosets contain the highest
numbers of consecutive integers.

Theorem 5. Let q be a prime power, n be an integer such that gcd(n, q) = 1 and ordn(q2) = 2m,
Assume that n = r(q2m − 1), where q < r < 2q. If m > 1, then there exists an [[n, n− 4m

(qm+1 − qm−1 + r) + 2m(
⌊

qm+1−1
r

⌋
−
⌊

qm−1+1
r

⌋
+ 4), d ≥ qm+1 + r)]]q quantum BCH code.

The proof is similar to Theorem 4.

Example 3. If q = 7, m = 3 and n = 1176480, it is easy to compute the following 49-ary
cosets: ϕ[50] = {50, 2450, 120050}, . . . , ϕ[2410] = {2410, 118090, 1080490}. Let D =<
2410
∏

i=50
M(i)(x) >, where D = [1176480, 1163025, d1 ≥ 2411]49 is Hermitian dual-containing.

Then, we obtain an [[1176480, 1149570, d ≥ 2411]]7 quantum BCH code.

4.2. m Is Even

Now, we consider the case where m is even. A few contributions are presented as
follows.

Corollary 3. When letting λ be an integer such that 0 ≤ λ ≤ r (q
m−1)(q−1)
qm−1+1 , we have ϕ[r(qm −

1) + λqm−1] = ϕ[−q(rq(qm − 1) − λ)]. In particular, when letting i be an integer such that
r(qm − 1)|i , we have ϕ[i] = −qϕ[qi].

Proof. Since rq2m ≡ r mod n, we have

(r(qm − 1) + λqm−1)qm ≡ rq2m − rq3m + λq2m−1 ≡ −q(rq(qm − 1)− λ)q2m−2 mod n

If m is even, clearly, we obtain ϕ[r(qm − 1) + λqm−1] = ϕ[−q(rq(qm − 1)− λ)]. In the
condition of rq(qm − 1)− λ ≥ r(qm − 1) + λqm−1, we obtain 0 ≤ λ ≤ r (q

m−1)(q−1)
qm−1+1 . Accord-

ing to Corollary 3, if r(qm − 1)|i , we have ϕ[i] = −qϕ[qi]. �

Therefore, we should choose the q2-ary cyclotomic cosets properly to ensure the cyclic
code is Hermitian dual-containing.

Theorem 6. Let q be a prime power, n be an integer such that gcd(n, q2) = 1 and ordn(q2) = 2m.
Assume that n = r(q2m − 1), where 1 < r < q. Then, there exists an [[n, n− 2m(2r− 1)(qm −
qm−2), d ≥ rqm + 1]]q quantum BCH code.

The proof is similar to Theorem 4.



Entropy 2021, 23, 712 8 of 9

Example 4. If q = 3, m = 4, r = 2 and n = 13120, we choose ϕ[19] to ϕ[162] as the 9-ary
cyclotomic cosets, which are mutually disjointed, to generate D. Obviously, Z∩ Z−3 = ∅, where Z
is the defining set of D. Then, D = [13120, 12256, d ≥ 163]9 is Hermitian dual-containing. Thus,
we can construct an [[13120, 11392, d ≥ 163]]3 quantum BCH code.

5. Comparison and Conclusions

In this section, we give some comparisons to corresponding references.
Aly et al. constructed quantum BCH codes over Fq with classic non-primitive narrow-

sense BCH codes and Fq2 with classic primitive narrow-sense BCH codes [5]. In this paper,
we designed quantum BCH codes with classic non-primitive, non-narrow-sense BCH
codes. In [5], Aly et al. designed an [[n, n− 4md(δ− 1)(1− 1/q)e, d ≥ δ]]q quantum BCH

code, where 2 ≤ δ ≤ δmax ≤ r qm−1
qm+1 < r. If r qm−1

qm+1 < 2, a quantum BCH code does not exist.
Therefore, we could not obtain quantum codes with r = 2 in [5]. In this paper, we designed
quantum BCH codes without this restriction. For example, if q = 5, m = 4 and r = 2,
we can construct an [[1248, 800, d ≥ 48]]5 quantum BCH code, in which δmax = 1.933 < 2.
Since 2 ≤ δ ≤ δmax < r, we got better lower bounds for the minimum distances than those
in [5]. Meanwhile, [10] presented similar results to [5] with Steane’s construction. Therefore,
our results were better than those in [10], too. Table 1 shows more precise conclusions.

Table 1. Code comparison with length n = r(qm − 1).

New Quantum BCH Codes Quantum BCH Codes in [5,10]

[[315, 195, d ≥ 16]]4 [[315, 279, d ≥ 4]]4

[[1248, 800, d ≥ 48]]5 —

[[1368, 975, d ≥ 45]]7 [[1368, 1344, d ≥ 3]]7

[[1533, 1158, d ≥ 56]]8 [[1533, 1521, d ≥ 2]]8

[[2736, 2142, d ≥ 54]]7 [[2736, 2664, d ≥ 7]]7

[[4599, 3831, d ≥ 69]]8 [[4599, 4515, d ≥ 8]]8

[[4800, 3824, d ≥ 96]]7 —

In [17], by letting n = r(q3 − 1) and m = ordn(q2) = 3, quantum BCH codes were
constructed with classic non-primitive, narrow-sense and non-narrow-sense BCH codes.
However, in [17], quantum BCH codes could only be constructed with a fixed length n for
q = 3l + 2. In this paper, we extended the construction to a larger range of n over any finite
field Fq.

In [23], non-binary primitive quantum BCH codes were constructed when m =
ordn(q) = 2 and m = ordn(q2) = 2. In this paper, we designed nonbinary, non-primitive
quantum BCH codes. Moreover, we extended the results to more general cases where
m > 3.

The earlier work of this paper was conducted in [20]. In [20], we discussed the con-
struction of quantum BCH codes with multiplicative order m = 2 when the code lengths
were n = r(q + 1) over Fq and n = r

(
q2 + 1

)
over Fq2 . We also considered the situation

where m = 3 and when the code lengths were n = r(q− 1) over Fq and n = r(q2 − 1)
over Fq2 . In this paper, we discussed more general cases. We enlarged the multiplicative
order to any even integers. Moreover, we extended the construction to a larger range of
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code lengths with n = r(qm − 1) over Fq and n = r(q2m − 1) over Fq2 where m denotes
the integers.

In this paper, a new family of quantum BCH codes was constructed by Steane’s con-
struction and Hermitian construction. By studying the suitable cyclotomic cosets, we tried
to find such classic BCH codes which contained their dual codes. Then, we constructed
nonbinary quantum BCH codes with given parameter sets. We have proven that the cy-
clotomic cosets are good tools to study quantum BCH codes. The defining sets contained
the highest numbers of consecutive integers. Compared with the results in the references,
the new quantum BCH codes had better code parameters without restrictions and better
lower bounds for the minimum distances. What is more, the new quantum codes can be
constructed over any finite fields, which enlarges the range of quantum BCH codes.
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