# Coupling between Blood Pressure and Subarachnoid Space Width Oscillations during Slow Breathing

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{11}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Results

## 3. Discussion

## 4. Materials and Methods

#### 4.1. Subjects

#### 4.2. Experimental Design

#### 4.3. Measurements

#### 4.4. Mathematical Analysis

#### 4.4.1. Wavelet Analysis

#### 4.4.2. Decomposition and Preprocessing

#### 4.4.3. Modelling of Coupling Functions

#### 4.4.4. Statistical Analysis and Surrogates

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Ludwig, C. Beiträge zur Kenntniss des Einflusses der Respirationsbewegungen auf den Blutlauf im Aortensysteme. Arch. Anat. Physiol.
**1847**, 13, 242–302. [Google Scholar] - Hirsch, J.A.; Bishop, B. Respiratory sinus arrhythmia in humans: How breathing patterns modulate heart rate. J. Physiol.
**1981**, 241, H620–H629. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Angelone, A.; Coulter, N.A. Respiratory sinus arrhythmia: A frequency dependent phenomenon. J. Appl. Physiol.
**1964**, 19, 479–482. [Google Scholar] [CrossRef] [PubMed] - Vaschillo, E.G.; Vaschillo, B.; Lehrer, P.M. Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl. Psychophysiol. Biofeedback
**2006**, 31, 129–142. [Google Scholar] [CrossRef] [PubMed] - Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front. Hum. Neurosci.
**2018**, 12, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gruszecki, M.; Nuckowska, M.K.; Szarmach, A.; Radkowski, M.; Szalewska, D.; Waskow, M.; Szurowska, E.; Frydrychowski, A.F.; Demkow, U.; Winklewski, P.J. Oscillations of subarachnoid space width as a potential marker of cerebrospinal fluid pulsatility. Adv. Exp. Med. Biol.
**2018**, 1070, 37–47. [Google Scholar] - Winklewski, P.J.; Wolf, J.; Gruszecki, M.; Wszedybyl-Winklewska, M.; Narkiewicz, K. Current understanding of the effects of inspiratory resistance on the interactions between systemic blood pressure, cerebral perfusion, intracranial pressure, and cerebrospinal fluid dynamics. J. Appl. Physiol.
**2019**, 127, 1206–1214. [Google Scholar] [CrossRef] - Plucinski, J.; Frydrychowski, A.F.; Kaczmarek, J.; Juzwa, W. Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space. J. Biomed. Opt.
**2000**, 5, 291–299. [Google Scholar] [CrossRef] - Frydrychowski, A.F.; Guminski, W.; Rojewski, M.; Kaczmarek, J.; Juzwa, W. Technical foundations for noninvasive assessment of changes in the width of the subarachnoid space with near-infrared transillumination-backscattering sounding (NIR-TBSS). IEEE Trans. Biomed. Eng.
**2002**, 49, 887–904. [Google Scholar] [CrossRef] - Plucinski, J.; Frydrychowski, A.F. New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination/backscattering sounding, part 1: Monte Carlo numerical modeling. J. Biomed. Opt.
**2007**, 12, 044015. [Google Scholar] [CrossRef] - Frydrychowski, A.F.; Plucinski, J. New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination/backscattering sounding, part 2: Clinical verification in the patient. J. Biomed. Opt.
**2007**, 12, 044016. [Google Scholar] [CrossRef] [PubMed] - Frydrychowski, A.F.; Szarmach, A.; Czaplewski, B.; Winklewski, P.J. Subarachnoid space: New tricks by an old dog. PLoS ONE
**2012**, 7, e37529. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nuckowska, M.K.; Gruszecki, M.; Kot, J.; Wolf, J.; Guminski, W.; Frydrychowski, A.F.; Wtorek, J.; Narkiewicz, K.; Winklewski, P.J. Impact of slow breathing on the blood pressure and subarachnoid space width oscillations in humans. Sci. Rep.
**2019**, 9, 6232. [Google Scholar] [CrossRef] [PubMed] - Stankovski, T.; Pereira, T.; McClintock, P.V.E.; Stefanovska, A. Coupling functions: Universal insights into dynamical interaction mechanisms. Rev. Mod. Phys.
**2017**, 89, 045001. [Google Scholar] [CrossRef] [Green Version] - Stankovski, T.; Pereira, T.; McClintock, P.V.E.; Stefanovska, A. Coupling Functions: Dynamical Interaction Mechanisms in the Physical, Biological and Social Sciences. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
**2019**, 377, 20190039. [Google Scholar] [CrossRef] [PubMed] - Kralemann, B.; Frühwirth, M.; Pikovsky, A.; Rosenblum, M.; Kenner, T.; Schaefer, J.; Moser, M. In vivo cardiac phase response curve elucidates human respiratory heart rate variability. Nat. Commun.
**2013**, 4, 2418. [Google Scholar] [CrossRef] [Green Version] - Kiss, I.Z.; Zhai, Y.; Hudson, J.L. Predicting Mutual Entrainment of Oscillators with Experiment-Based Phase Models. Phys. Rev. Lett.
**2005**, 94, 248301. [Google Scholar] [CrossRef] [Green Version] - Tokuda, I.T.; Jain, S.; Kiss, I.Z.; Hudson, J.L. Inferring Phase Equations from Multivariate Time Series. Phys. Rev. Lett.
**2007**, 99, 064101. [Google Scholar] [CrossRef] [Green Version] - Levnajić, Z.; Pikovsky, A. Network Reconstruction from Random Phase Resetting. Phys. Rev. Lett.
**2011**, 107, 034101. [Google Scholar] [CrossRef] [Green Version] - Stankovski, T.; Duggento, A.; McClintock, P.V.E.; Stefanovska, A. Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise. Phys. Rev. Lett.
**2012**, 109, 024101. [Google Scholar] [CrossRef] [Green Version] - Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. Neuroimage
**2003**, 19, 1273. [Google Scholar] [CrossRef] - Kiss, I.Z.; Rusin, C.G.; Kori, H.; Hudson, J.L. Engineering complex dynamical structures: Sequential patterns and desynchronization. Science
**2007**, 316, 1886. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Moon, W.; Wettlaufer, J.S. Coupling functions in climate. Philos. Trans. R. Soc. A
**2019**, 377, 20190006. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Stankovski, T.; McClintock, P.V.E.; Stefanovska, A. Coupling functions enable secure communications. Phys. Rev. X
**2014**, 4, 011026. [Google Scholar] [CrossRef] [Green Version] - Kralemann, B.; Cimponeriu, L.; Rosenblum, M.; Pikovsky, A.; Mrowka, R. Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E
**2008**, 77, 066205. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ranganathan, S.; Spaiser, V.; Mann, R.P.; Sumpter, D.J.T. Bayesian Dynamical Systems Modelling in the Social Sciences. PLoS ONE
**2014**, 9, e86468. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Iatsenko, D.; Bernjak, A.; Stankovski, T.; Shiogai, Y.; Owen-Lynch, P.J.; Clarkson, P.B.M.; McClintock, P.V.E.; Stefanovska, A. Evolution of cardiorespiratory interactions with age. Phil. Trans. R. Soc. Lond. A
**2013**, 371, 20110622. [Google Scholar] [CrossRef] [Green Version] - Ticcinelli, V.; Stankovski, T.; Iatsenko, D.; Bernjak, A.; Bradbury, A.; Gallagher, A.; Clarkson, P.B.M.; McClintock, P.V.E.; Stefanovska, A. Coherence and coupling functions reveal microvascular impairment in treated hypertension. Front. Physiol.
**2017**, 8, 749. [Google Scholar] [CrossRef] - Lukarski, D.; Ginovska, M.; Spasevska, H.; Stankovski, T. Time Window Determination for Inference of Time-Varying Dynamics: Application to Cardiorespiratory Interaction. Front. Physiol.
**2020**, in press. [Google Scholar] [CrossRef] - Stankovski, T.; Petkoski, S.; Raeder, J.; Smith, A.F.; McClintock, P.V.E.; Stefanovska, A. Alterations in the coupling functions between cortical and cardio–respiratory oscillations due to anæsthesia with propofol and sevoflurane. Phil. Trans. R. Soc. A
**2016**, 374, 20150186. [Google Scholar] [CrossRef] [Green Version] - Stankovski, T.; Ticcinelli, V.; McClintock, P.V.E.; Stefanovska, A. Neural Cross-Frequency Coupling Functions. Front. Syst. Neurosci.
**2017**, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Onojima, T.; Goto, T.; Mizuhara, H.; Aoyagi, T. A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data. PLoS Comput. Biol.
**2018**, 14, e1005928. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Suzuki, K.; Aoyagi, T.; Kitano, K. Bayesian Estimation of Phase Dynamics Based on Partially Sampled Spikes Generated by Realistic Model Neurons. Front. Comput. Neurosci.
**2018**, 11, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Su, H.; Huo, C.; Wang, B.; Li, W.; Xu, G.; Liu, Q.; Li, Z. Alterations in the coupling functions between cerebral oxyhaemoglobin and arterial blood pressure signals in post-stroke subjects. PLoS ONE
**2018**, 13, e0195936. [Google Scholar] [CrossRef] [Green Version] - Stankovski, T.; Cooke, W.; Rudas, L.; Stefanovska, A.; Eckberg, D. Time-frequency methods and voluntary ramped-frequency breathing: A powerful combination for exploration of human neurophysiological mechanisms. J. Appl. Physiol.
**2013**, 115, 1806–1821. [Google Scholar] [CrossRef] [Green Version] - Bateman, G.A. Pulse-wave encephalopathy: A comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology
**2002**, 44, 740–748. [Google Scholar] [CrossRef] - Wszedybyl-Winklewska, M.; Wolf, J.; Szarmach, A.; Winklewski, P.J.; Szurowska, E.; Narkiewicz, K. Central sympathetic nervous system reinforcement in obstructive sleep apnoea. Sleep Med. Rev.
**2018**, 39, 143–154. [Google Scholar] [CrossRef] - Avolio, A.; Kim, M.O.; Adji, A.; Gangoda, S.; Avadhanam, B.; Tan, I.; Butlin, M. Cerebral haemodynamics: Effects of systemic arterial pulsatile function and hypertension. Curr. Hypertens. Rep.
**2018**, 20, 20. [Google Scholar] [CrossRef] - Bedussi, B.; Almasian, M.; de Vos, J.; VanBavel, E.; Bakker, E.N. Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow. J. Cereb. Blood Flow Metab.
**2018**, 38, 719–726. [Google Scholar] [CrossRef] [Green Version] - Mestre, H.; Tithof, J.; Du, W.; Song, T.; Peng, W.; Sweeney, A.M.; Olveda, G.; Thomas, J.H.; Nedergaard, M.; Kelley, D.H. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun.
**2018**, 9, 4878. [Google Scholar] [CrossRef] - Dreha-Kulaczewski, S.; Joseph, A.A.; Merboldt, K.D.; Ludwig, H.C.; Gartner, J.; Frahm, J. Identification of the Upward Movement of Human CSF In Vivo and its Relation to the Brain Venous System. J. Neurosci.
**2017**, 37, 2395–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wardlaw, J.M.; Benveniste, H.; Nedergaard, M.; Zlokovic, B.V.; Mestre, H.; Lee, H.; Doubal, F.N.; Brown, R.; Ramirez, J.; MacIntosh, B.J.; et al. Perivascular spaces in the brain: Anatomy, physiology and pathology. Nat. Rev. Neurol.
**2020**, 16, 137–153. [Google Scholar] [CrossRef] [PubMed] - Tyler, W.J. The mechanobiology of brain function. Nat. Rev. Neurosci.
**2012**, 13, 867–878. [Google Scholar] [CrossRef] [PubMed] - Roesmann, K.; Dellert, T.; Junghoefer, M.; Kissler, J.; Zwitserlood, P.; Zwanzger, P.; Dobel, C. The causal role of prefrontal hemispheric asymmetry in valence processing of words—Insights from a combined cTBS-MEG study. Neuroimage
**2019**, 191, 367–379. [Google Scholar] [CrossRef] - Kiviniemi, V.; Wang, X.; Korhonen, V.; Keinanen, T.; Tuovinen, T.; Autio, J.; LeVan, P.; Keilholz, S.; Zang, Y.F.; Hennig, J.; et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. J. Cereb. Blood Flow Metab.
**2016**, 36, 1033–1045. [Google Scholar] [CrossRef] - Schaller, B. Physiology of cerebral venous blood flow: From experimental data in animals to normal function in humans. Brain Res. Rev.
**2004**, 46, 243–260. [Google Scholar] [CrossRef] - Guild, S.J.; Saxena, U.A.; McBryde, F.D.; Malpas, S.C.; Ramchandra, R. Intracranial pressure influences the level of sympathetic tone. Am. J. Physiol. Regul. Integr. Comp. Physiol.
**2018**, 315, R1049–R1053. [Google Scholar] [CrossRef] - Schmidt, E.A.; Despas, F.; Pavy-Le Traon, A.; Czosnyka, Z.; Pickard, J.D.; Rahmouni, K.; Pathak, A.; Senard, J.M. Intracranial Pressure Is a Determinant of Sympathetic Activity. Front. Physiol.
**2018**, 9, 11. [Google Scholar] [CrossRef] [Green Version] - Wang, H.; Zhang, H.; Song, G.; Poon, C.S. Modulation of Hering-Breuer reflex by ventrolateral pons. Adv. Exp. Med. Biol.
**2008**, 605, 387–392. [Google Scholar] - St Croix, C.M.; Morgan, B.J.; Wetter, T.J.; Dempsey, J.A. Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. J. Physiol.
**2000**, 529, 493–504. [Google Scholar] [CrossRef] - Winklewski, P.J.; Tkachenko, Y.; Mazur, K.; Kot, J.; Gruszecki, M.; Guminski, W.; Czuszynski, K.; Wtorek, J.; Frydrychowski, A.F.; Drvis, I.; et al. Effect of maximal apnoea easy-going and struggle phases on subarachnoid width and pial artery pulsation in elite breath-hold divers. PLoS ONE
**2015**, 10, e0135751. [Google Scholar] [CrossRef] [PubMed] - Rickards, C.A.; Ryan, K.L.; Cooke, W.H.; Lurie, K.G.; Convertino, V.A. Inspiratory resistance delays the reporting of symptoms with central hypovolemia: Association with cerebral blood flow. Am. J. Physiol. Regul. Integr. Comp. Physiol.
**2007**, 293, R243–R250. [Google Scholar] [CrossRef] [Green Version] - Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe
**2012**, 13, 298–309. [Google Scholar] [CrossRef] [PubMed] - Radaelli, A.; Raco, R.; Perfetti, P.; Viola, A.; Azzellino, A.; Signorini, M.G.; Ferrari, A.U. Effects of slow, controlled breathing on baroreceptor control of heart rate and blood pressure in healthy men. J. Hypertens.
**2004**, 22, 1361–1370. [Google Scholar] [CrossRef] [PubMed] - Joseph, C.N.; Porta, C.; Casucci, G.; Casiraghi, N.; Maffeis, M.; Rossi, M.; Bernardi, L. Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension
**2005**, 46, 714–718. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bernardi, L.; Bandinelli, G.; Wdowczyc-Szulc, J. Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: Comparative study. BMJ
**2001**, 323, 1446. [Google Scholar] [CrossRef] [Green Version] - Rosengård-Bärlund, M.; Bernardi, L.; Holmqvist, J.; Debarbieri, G.; Mäntysaari, M.; Af Björkesten, C.G. Deep breathing improves blunted baroreflex sensitivity even after 30 years of type 1 diabetes. Diabetologia
**2011**, 54, 1862. [Google Scholar] - Lachowska, K.; Bellwon, J.; Narkiewicz, K.; Gruchała, M.; Hering, D. Long-term effects of device-guided slow breathing in stable heart failure patients with reduced ejection fraction. Clin. Res. Cardiol.
**2019**, 108, 48–60. [Google Scholar] [CrossRef] [Green Version] - Mestre, H.; Du, T.; Sweeney, A.M.; Liu, G.; Samson, A.J.; Peng, W.; Mortensen, K.N.; Stæger, F.F.; Bork, P.A.R.; Bashford, L.; et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science
**2020**, 13, 367. [Google Scholar] [CrossRef] - Smelyanskiy, V.N.; Luchinsky, D.G.; Stefanovska, A.; McClintock, P.V.E. Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction. Phys. Rev. Lett.
**2005**, 94, 098101. [Google Scholar] [CrossRef] [Green Version] - Bernjak, A.; Stefanovska, A.; McClintock, P.V.E.; Owen-Lynch, P.J.; Clarkson, P.B.M. Coherence between fluctuations in blood flow and oxygen saturation. Fluct. Noise Lett.
**2012**, 11, 1240013. [Google Scholar] [CrossRef] [Green Version] - Stefanovska, A.; Bračič, M.; Kvernmo, H.D. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Biomed. Eng.
**1999**, 46, 1230–1239. [Google Scholar] [CrossRef] [PubMed] - Selesnick, I.W.; Burrus, C.S. Generalized digital Butterworth filter design. IEEE Trans. Signal Process.
**1998**, 46, 1688–1694. [Google Scholar] [CrossRef] [Green Version] - Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Duggento, A.; Luchinsky, D.G.; Smelyanskiy, V.N.; Khovanov, I.; McClintock, P.V.E. Inferential framework for nonstationary dynamics. I. Theory. Phys. Rev. E
**2008**, 77, 061106. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wilting, J.; Lehnertz, K. Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: Capabilities and limitations. Eur. Phys. J. B
**2015**, 88, 193. [Google Scholar] [CrossRef] - Bahraminasab, A.; Ghasemi, F.; Stefanovska, A.; McClintock, P.V.E.; Kantz, H. Direction of Coupling from Phases of Interacting Oscillators: A Permutation Information Approach. Phys. Rev. Lett.
**2008**, 100, 084101. [Google Scholar] [CrossRef] [Green Version] - Jamšek, J.; Paluš, M.; Stefanovska, A. Detecting couplings between interacting oscillators with time-varying basic frequencies: Instantaneous wavelet bispectrum and information theoretic approach. Phys. Rev. E
**2010**, 81, 036207. [Google Scholar] [CrossRef] [Green Version] - Jirsa, V.; Müller, V. Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci.
**2013**, 7, 78. [Google Scholar] [CrossRef] [Green Version] - Paluš, M.; Stefanovska, A. Direction of coupling from phases of interacting oscillators: An information-theoretic approach. Phys. Rev. E
**2003**, 67, 055201. [Google Scholar] [CrossRef] - Rosenblum, M.G.; Pikovsky, A.S. Detecting direction of coupling in interacting oscillators. Phys. Rev. E
**2001**, 64, 045202. [Google Scholar] [CrossRef] [Green Version] - Varela, F.; Lachaux, J.P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nat. Rev. Neurosci.
**2001**, 2, 045202. [Google Scholar] [CrossRef] [PubMed] - Von Toussaint, U. Bayesian inference in physics. Rev. Mod. Phys.
**2011**, 83, 943. [Google Scholar] [CrossRef] [Green Version] - Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization—A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Duggento, A.; Stankovski, T.; McClintock, P.V.E.; Stefanovska, A. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators. Phys. Rev. E
**2012**, 86, 061126. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kralemann, B.; Pikovsky, A.; Rosenblum, M. Reconstructing phase dynamics of oscillator networks. Chaos
**2011**, 21, 025104. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Stankovski, T.; Duggento, A.; McClintock, P.V.E.; Stefanovska, A. A tutorial on time-evolving dynamical Bayesian inference. Eur. Phys. J. Spec. Top.
**2014**, 223, 2685. [Google Scholar] [CrossRef] [Green Version] - Stankovski, T.; Ticcinelli, V.; McClintock, P.V.E.; Stefanovska, A. Coupling functions in networks of oscillators. New J. Phys.
**2015**, 17, 035002. [Google Scholar] [CrossRef] - Lancaster, G.; Iatsenko, D.; Pidde, A.; Ticcinelli, V.; Stefanovska, A. Surrogate data for hypothesis testing of physical systems. Phys. Rep.
**2018**, 748, 1–60. [Google Scholar] [CrossRef]

**Figure 1.**Time evolution of (

**a**) BP and (

**c**) ${\mathrm{SAS}}_{\mathrm{LEFT}}$ width (left hemisphere) signals. The four letters (A–D) correspond to stages of experimental protocol: (A) baseline, ventilation with normal respiration rate; (B) 6 breaths/min ventilation; (C) 6 breaths/min ventilation with resistance; and (D) recovery, ventilation with normal respiration rate. (

**b**,

**d**) The amplitude of wavelet transforms for (

**b**) BP and (

**d**) ${\mathrm{SAS}}_{\mathrm{LEFT}}$ width signal estimated for whole recording (40 min). The signals were measured for one subject.

**Figure 2.**Time evolution of group-averaged a directionality index $D\left(t\right)$ estimated for the phases of the respiratory and cardiac signals components for BP, SAS${}_{\mathrm{LEFT}}$ and SAS${}_{\mathrm{RIGHT}}$. To estimate $D\left(t\right)$, Equation (5) was used. The four letters (A–D) correspond to stages of experimental protocol: (A) baseline, ventilation with normal respiration rate; (B) 6 breaths/min ventilation; (C) 6 breaths/min ventilation with resistance; and (D) recovery, ventilation with normal respiration rate. Negative value of $D\left(t\right)$ means that respiration component of signal drives the cardiac component of signal for whole period of experiment.

**Figure 3.**Group-averaged coupling functions between the phases of respiratory ${\varphi}_{Resp}$ and cardiac ${\varphi}_{Card}$ oscillations estimated for the same signals. Columns correspond to different stages of the experiment: baseline, 6 breaths/min, 6 breaths/min, + resistance and recovery. Additionally, to find insignificant values of coupling functions, a surrogate threshold was estimated. Rows show the coupling functions ${q}^{r,c}$ between the phases of the respiratory and cardiac signals for BP, SAS${}_{\mathrm{LEFT}}$ and SAS${}_{\mathrm{RIGHT}}$, respectively. Note that, when coupling functions lose sinusoidal shape along ${\varphi}_{Resp}$ axis (baseline and recovery stages), weaker interaction between respiration and cardiac components of considered signal is observed.

**Figure 4.**Time evolution of group-averaged a directionality index $D\left(t\right)$ (see Equation (5)) estimated for the phases of the respiratory and cardiac signals for different combination of measured signals. The four letters (A–D) correspond to stages of experimental protocol: (A) baseline, ventilation with normal respiration rate; (B) 6 breaths/min ventilation; (C) 6 breaths/min ventilation with resistance; and (D) recovery, ventilation with normal respiration rate. Negative value of $D\left(t\right)$ means that respiration component drives the cardiac mode of considered signal for whole period of experiment.

**Figure 5.**Group-averaged coupling functions between the phases of respiratory ${\varphi}_{Resp}$ and cardiac ${\varphi}_{Card}$ oscillations estimated for different combination of components of measured signals. Columns correspond to: baseline, 6 breaths/min, 6 breaths/min + resistance and recovery. Additionally, to find insignificant values of coupling functions, a surrogate threshold was estimated. Rows show the coupling functions ${q}^{r,c}$ between the respiratory and the cardiac components for different combinations of measured signals (BP-SAS, SAS-BP and SAS-SAS). Note that a sinusoidal shape of coupling functions along ${\varphi}_{Resp}$ axis is connected with stronger interaction between respiration and cardiac oscillations of considered signals.

**Figure 6.**Statistics for coupling strength. (

**a**) Median values for the coupling strength $\sigma $ for four stages of protocol ((A) baseline, ventilation with normal respiration rate; (B) 6 breaths/min ventilation; (C) 6 breaths/min ventilation with resistance; and (D) recovery, ventilation with normal respiration rate) and the coupling surrogate threshold. In red (black) median values significantly (not significantly) different from mean surrogate plus two standard deviations. (

**b**–

**j**) Box-plots illustrating the distribution within each stage of the protocol of the strength $\sigma $ of the coupling between the respiratory and cardiac components. The Friedman test was used to estimate the p value. ‘A and B’ means that Stage A (baseline) differs significantly from Stage B (6 breaths/min), and similarly for ‘B and D’, etc. Red crosses correspond to outliers.

**Figure 7.**Statistics for coupling similarity. (

**a**) Median values for the coupling similarity for three stages of protocol (B–D) compared to baseline stage (A) ((A) baseline, ventilation with normal respiration rate; (B) 6 breaths/min ventilation; (C) 6 breaths/min ventilation with resistance; and (D) recovery, ventilation with normal respiration rate). (

**b**–

**j**) Box-plots illustrating the distribution of the coupling similarity within each stage of protocol for respiratory and cardiac components of the measured signals. The Friedman test was used to estimate the p value. ‘B and D’ and similar symbols are the same as in the previous figure. Red crosses correspond to outliers.

**Figure 8.**Time evolution (30 s segment) of respiratory component (

**blue line**) and heart rate (

**red line**) extracted from the BP signal from one of the volunteers.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gruszecka, A.; Nuckowska, M.K.; Waskow, M.; Kot, J.; Winklewski, P.J.; Guminski, W.; Frydrychowski, A.F.; Wtorek, J.; Bujnowski, A.; Lass, P.;
et al. Coupling between Blood Pressure and Subarachnoid Space Width Oscillations during Slow Breathing. *Entropy* **2021**, *23*, 113.
https://doi.org/10.3390/e23010113

**AMA Style**

Gruszecka A, Nuckowska MK, Waskow M, Kot J, Winklewski PJ, Guminski W, Frydrychowski AF, Wtorek J, Bujnowski A, Lass P,
et al. Coupling between Blood Pressure and Subarachnoid Space Width Oscillations during Slow Breathing. *Entropy*. 2021; 23(1):113.
https://doi.org/10.3390/e23010113

**Chicago/Turabian Style**

Gruszecka, Agnieszka, Magdalena K. Nuckowska, Monika Waskow, Jacek Kot, Pawel J. Winklewski, Wojciech Guminski, Andrzej F. Frydrychowski, Jerzy Wtorek, Adam Bujnowski, Piotr Lass,
and et al. 2021. "Coupling between Blood Pressure and Subarachnoid Space Width Oscillations during Slow Breathing" *Entropy* 23, no. 1: 113.
https://doi.org/10.3390/e23010113