# Strong Coupling and Nonextensive Thermodynamics

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction: The System and Its Surroundings

## 2. Hamiltonian of Mean Force: A Framework for Nonextensive Thermodynamics

## 3. Strongly Coupled System

## 4. The Interaction Region

#### 4.1. Capillary Pressure

#### 4.2. Capillary Condensation

#### 4.3. Wetting

#### 4.4. Tolman Length

## 5. Concluding Remarks

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S. Physics of Long-Range Interacting Systems; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Palma, C.A.; Björk, J.; Klappenberger, F.; Arras, E.; Kühne, D.; Stafström, S.; V. Barth, J. Visualization and thermodynamic encoding of single-molecule partition function projections. Nat. Commun.
**2015**, 6, 6210. [Google Scholar] [CrossRef] [PubMed] - Derrickson, S.W.; Bittner, E.R. Thermodynamics of Atomic Clusters Using Variational Quantum Hydrodynamics. J. Phys. Chem. A
**2007**, 111, 10345. [Google Scholar] [CrossRef] [PubMed] - Kapri, R.; Bhattacharjee, S.M. Unzipping DNA by force: Thermodynamics and finite size behaviour. J. Phys. Condens. Matter
**2006**, 18, S215. [Google Scholar] [CrossRef] - Bustamante, C.; Keller, D.; Oster, G. The physics of molecular motors. Acc. Chem. Res.
**2001**, 34, 412. [Google Scholar] [CrossRef] [PubMed] - Peyravi, M. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies. Front. Chem. Sci. Eng.
**2020**, 14, 673. [Google Scholar] [CrossRef] - Galteland, O.; Bedeaux, D.; Hafskjold, B.; Kjelstrup, S. Pressures Inside a Nano-Porous Medium. The Case of a Single Phase Fluid. Front. Phys.
**2019**, 7, 60. [Google Scholar] [CrossRef][Green Version] - Reguera, D.; Rubí, J.M.; Vilar, J.M.G. The Mesoscopic Dynamics of Thermodynamic Systems. J. Phys. Chem. B
**2005**, 109, 21502. [Google Scholar] [CrossRef][Green Version] - Schmidt, M.; Kusche, R.; Hippler, T.; Donges, J.; Kronmüller, W.; von Issendorff, B.; Haberland, H. Negative Heat Capacity for a Cluster of 147 Sodium Atoms. Phys. Rev. Lett.
**2001**, 86, 1191. [Google Scholar] [CrossRef] - Iacopini, S.; Rusconi, R.; Piazza, R. The “macromolecular tourist”: Universal temperature dependence of thermal diffusion in aqueous colloidal suspensions. Eur. Phys. J. E
**2006**, 19, 59. [Google Scholar] [CrossRef] - Latella, I.; Peréz-Madrid, A.; Campa, A.; Casetti, L.; Ruffo, S. Thermodynamics of Nonadditive Systems. Phys. Rev. Lett.
**2015**, 114, 230601. [Google Scholar] [CrossRef][Green Version] - Talkner, P.; Hanggi, P. Open system trajectories specify fluctuating work but not heat. Phys. Rev. E
**2016**, 94, 022143. [Google Scholar] [CrossRef] [PubMed][Green Version] - Seifert, U. First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett.
**2016**, 116, 020601. [Google Scholar] [CrossRef] [PubMed][Green Version] - Jarzynski, C. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems. Phys. Rev. X
**2017**, 7, 011008. [Google Scholar] [CrossRef][Green Version] - De Miguel, R.; Rubí, J.M. Negative thermophoretic force in the strong coupling regime. Phys. Rev. Lett.
**2019**, 123, 200602. [Google Scholar] [CrossRef] [PubMed][Green Version] - Elcock, E.W.; Landsberg, P.T. Temperature Dependent Energy Levels in Statistical Mechanics. Proc. Phys. Soc. Lond. Sect. B
**1957**, 70, 161. [Google Scholar] [CrossRef] - Shental, O.; Kanter, I. Shannon meets Carnot: Generalized second thermodynamic law. Europhys. Lett.
**2009**, 85, 10006. [Google Scholar] [CrossRef][Green Version] - De Miguel, R.; Rubí, J.M. Finite Systems in a Heat Bath: Spectrum Perturbations and Thermodynamics. J. Phys. Chem. B
**2016**, 120, 9180. [Google Scholar] [CrossRef] - Yamano, T. Efficiencies of thermodynamics when temperature-dependent energy levels exist. Phys. Chem. Chem. Phys.
**2016**, 18, 7011. [Google Scholar] [CrossRef] - Kolář, M.; Ryabov, A.; Filip, R. Heat capacities of thermally manipulated mechanical oscillator at strong coupling. Sci. Rep.
**2019**, 9, 10855. [Google Scholar] [CrossRef] - Hill, T.L. Thermodynamics of Small Systems. J. Chem. Phys.
**1962**, 36, 3182. [Google Scholar] [CrossRef] - Hill, T.L. Thermodynamics of Small Systems, Parts I & II; Dover: New York, NY, USA, 2013. [Google Scholar]
- Gibbs, J.W.; Bumstead, H.A.; Van Name, R.G. Scientific Papers of J. Willard Gibbs: Thermodynamics; Longmans, Green and Co.: London, UK, 1906; p. 219. [Google Scholar]
- Ch. Mitropoulos, A. What is a surface excess? J. Eng. Sci. Tech. Rev.
**2008**, 1, 1. [Google Scholar] [CrossRef] - Liu, H.; Cao, G. Effectiveness of the Young-Laplace equation at nanoscale. Sci. Rep.
**2016**, 6, 23936. [Google Scholar] [CrossRef] [PubMed] - Zhong, J.; Riordon, J.; Hadi Zandavi, S.; Xu, Y.; H. Persad, A.; Mostowfi, F.; Sinton, D. Capillary Condensation in 8 nm Deep Channels. J. Phys. Chem. Lett.
**2018**, 9, 497. [Google Scholar] [CrossRef] [PubMed] - Seveno, D.; D. Blake, T.; De Coninck, J. Young’s Equation at the Nanoscale. Phys. Rev. Lett.
**2013**, 111, 096101. [Google Scholar] [CrossRef] - Tolman, R.C. The Effect of Droplet Size on Surface Tension. J. Chem. Phys.
**1949**, 17, 333. [Google Scholar] [CrossRef][Green Version] - Montero de Hijes, P.; R. Espinosa, J.; Bianco, V.; Sanz, E.; Vega, C. Interfacial Free Energy and Tolman Length of Curved Liquid–Solid Interfaces from Equilibrium Studies. J. Phys. Chem. C
**2020**, 124, 8795. [Google Scholar] [CrossRef] - Bhuyan, D.; W. Greene, G.; Kumar Das, R. Prospects and application of nanobiotechnology in food preservation: Molecular perspectives. Crit. Rev. Biotechnol.
**2019**, 39, 759. [Google Scholar] [CrossRef] - Liu, C.; Cui, Z.; Zhang, X.; Mao, S. Nanobiomaterials in Drug Delivery: Designing Strategies and Critical Concepts for Their Potential Clinical Applications. In Nanobiomaterial Engineering; Chandra, P., Prakash, R., Eds.; Springer: Singapore, 2020. [Google Scholar]

**Figure 1.**Graph: Interaction potential of a spherical system coupled to its environment. The potential decays as ${(r+\delta )}^{-\alpha}$. The effective interaction region extends over a distance $\delta $ which fulfills condition (1). Diagram: The system has energy E, volume V, and N particles. The system’s pressure $\widehat{p}$ and chemical potential $\widehat{\mu}$ differ from the environment by an amount ${p}_{\delta}=\widehat{p}-p$, and ${\mu}_{\delta}=\widehat{\mu}-\mu $, where ${p}_{\delta}$ and ${\mu}_{\delta}$ are, respectively, the pressure and chemical potential at the effective interaction region. The interaction region is a phase with thickness $\delta $, volume ${\mathcal{V}}_{\delta}$, energy ${\mathcal{E}}_{\delta}$, and ${\mathcal{N}}_{\delta}$ particles.

**Figure 2.**Capillary tube with three phases and three interfacial regions. The difference between ${p}_{\delta}^{\mathrm{VS}}$ and ${p}_{\delta}^{\mathrm{LS}}$ causes the wetting angle $\theta $ to deviate from 90°. This causes in turn an interfacial pressure ${p}_{\delta}^{\mathrm{LV}}={p}_{\delta}^{\mathrm{VS}}-{p}_{\delta}^{\mathrm{LS}}$ between the liquid and the vapor phases.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

de Miguel, R.; Rubí, J.M. Strong Coupling and Nonextensive Thermodynamics. *Entropy* **2020**, *22*, 975.
https://doi.org/10.3390/e22090975

**AMA Style**

de Miguel R, Rubí JM. Strong Coupling and Nonextensive Thermodynamics. *Entropy*. 2020; 22(9):975.
https://doi.org/10.3390/e22090975

**Chicago/Turabian Style**

de Miguel, Rodrigo, and J. Miguel Rubí. 2020. "Strong Coupling and Nonextensive Thermodynamics" *Entropy* 22, no. 9: 975.
https://doi.org/10.3390/e22090975