The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes
Abstract
1. Introduction
2. Effective Electric Field in Bulk of Colloidal Polyelectrolyte
2.1. Electric Field in Absence of Current
2.2. Electric Field in Presence of Current
3. Ohmic Transport in a Weak Colloidal Polyelectrolyte
3.1. Approximation of the Conducting Spheres
3.2. Approximation of the Conducting Thick-Walled Spheres
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lucas, I.T.; Durand-Vidal, S.; Bernard, O.; Dahirel, V.; Dubois, E.; Dufrêche, J.F.; Gourdin-Bertin, S.; Jardat, M.; Meriguet, G.; Roger, G. Influence of the volume fraction on the electrokinetic properties of maghemite nanoparticles in suspension. Mol. Phys.: Int. J. Interface Chem. Phys. 2014, 112, 1463–1471. [Google Scholar] [CrossRef]
- Salez, T.J.; Huang, B.; Rietjens, M.; Bonetti, M.; Wiertel-Gasquet, C.; Roger, M.; Filomeno, C.L.; Dubois, E.; Perzynski, R.; Nakamae, S. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? Phys. Chem. Chem. Phys. 2017, 19, 9409–9416. [Google Scholar] [CrossRef] [PubMed]
- Shklovski, B.I.; Efros, A.L. Electronic Properties of Doped Semiconductors, 1st ed.; Springer: Berlin, Germany, 1984; pp. 94–107. [Google Scholar]
- Derjaguin, B.V.; Landau, L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chem. URSS 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Verwey, E.; Overbeek, J. Theory of the Stability of Lyophobic Colloids, 1948 ed.; Elsevier: Amsterdam, The Netherlands, 1948; pp. 131–136. [Google Scholar]
- Riedl, J.C.; Akhavan Kazemi, M.A.; Cousin, F.; Dubois, E.; Fantini, S.; Lois, S.; Perzynski, R.; Peyre, V. Colloidal dispersions of oxide nanoparticles in ionic liquids: Elucidating the key parameters. Nanoscale Adv. 2020. [Google Scholar] [CrossRef]
- Bacri, J.C.; Perzynski, R.; Salin, D.; Cabuil, V.; Massart, R. Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater. 1990, 85, 27–32. [Google Scholar] [CrossRef]
- Dubois, E.; Cabuil, V.; Boué, F.; Perzynski, R. Structural analogy between aqueous and oily magnetic fluids. J. Chem. Phys. 1999, 111, 7147–7160. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics. In Course of Theoretical Physics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 5, pp. 276–278. [Google Scholar]
- Rotenberg, B.; Dufrêche, J.F.; Turq, P. Frequency-dependent dielectric permittivity of salt-free charged lamellar systems. J. Chem. Phys. B 2005, 123, 154902–154903. [Google Scholar] [CrossRef] [PubMed]
- Durand-Vidal, S.; Jardat, M.; Dahirel, V.; Bernard, O.; Perrigaud, K.; Turq, P. Determining the radius and the apparent charge of a micelle from electrical conductivity measurements by using a transport theory: Explicit equations for practical use. J. Chem. Phys. B 2006, 110, 15542–15547. [Google Scholar] [CrossRef] [PubMed]
- Jardat, M.; Dahirel, V.; Durand-Vidal, S.; Lucas, I.; Bernard, O.; Turq, P. Effective charges of micellar species obtained from Brownian dynamics simulations and from an analytical transport theory. Mol. Phys. 2004, 104, 3667–3674. [Google Scholar] [CrossRef]
- Heltner, P.; Papir, Y.; Krieger, I. Diffraction of light by nonaqueous ordered suspensions. J. Phys. Chem. 1971, 75, 1881–1886. [Google Scholar] [CrossRef]
- Kose, A.; Ozake, T.; Takano, K.; Kobayschi, Y.; Hachisu, S. Direct observation of ordered latex suspension by metallurgical microscope. J. Colloid Interface Sci. 1973, 44, 330–338. [Google Scholar] [CrossRef]
- Williams, R.; Crandall, R. The structure of crystallized suspensions of polystyrene spheres. Phys. Lett. A 1974, 48, 225–226. [Google Scholar] [CrossRef]
- Alexander, S.; Chaikin, P.; Grant, P.; Morales, G.; Pincus, P. Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory. J. Chem. Phys. 1984, 80, 5776–5781. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics: Vol. 6, Fluid Mechanics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; p. 46. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999; p. 114. [Google Scholar]
- Dykhne, A.M. Conductivity of a Two-Dimensional Two-Phase System. Sov. JETP 1971, 32, 63–65. [Google Scholar]
- Onsager, L. On the theory of electrolytes. Physica Z 1927, 28, 277–298. [Google Scholar]
- Debye, P.; Huckel, E. The theory of the electrolyte II-The border law for electrical conductivity. Physica Z 1923, 24, 305–325. [Google Scholar]
- Lifshitz, E.M.; Pitaevskii, L.P. Physical Kinetics: Course of Theoretical Physics—Volume 10, 1st ed.; Butterworth-Heinenann Ltd.: London, UK, 2002; p. 125. [Google Scholar]
- Grosberg, A.; Nguyen, T.; Shklovskii, B. The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 2002, 74, 329–345. [Google Scholar] [CrossRef]
- Robinson, R.; Stokes, R. Electrolyte Solutions, 1959 ed.; Butterworths Scientific Publications: London, UK, 1959; p. 119. [Google Scholar]
- Lizana, L.; Grossberg, A. Exact expressions for the mobility and electrophoretic mobility of a weakly charged sphere in a simple electrolyte. Europhys. Lett. 2013, 104, 68004–68009. [Google Scholar] [CrossRef][Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chikina, I.; Shikin, V.; Varlamov, A. The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes. Entropy 2020, 22, 225. https://doi.org/10.3390/e22020225
Chikina I, Shikin V, Varlamov A. The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes. Entropy. 2020; 22(2):225. https://doi.org/10.3390/e22020225
Chicago/Turabian StyleChikina, Ioulia, Valeri Shikin, and Andrey Varlamov. 2020. "The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes" Entropy 22, no. 2: 225. https://doi.org/10.3390/e22020225
APA StyleChikina, I., Shikin, V., & Varlamov, A. (2020). The Ohm Law as an Alternative for the Entropy Origin Nonlinearities in Conductivity of Dilute Colloidal Polyelectrolytes. Entropy, 22(2), 225. https://doi.org/10.3390/e22020225