# Summoning, No-Signalling and Relativistic Bit Commitments

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. No-Signalling Principles and No-Cloning

#### 2.1. No-Signalling Principles

#### 2.2. The No-Cloning Theorem

## 3. Summoning-Based Bit Commitments and No-Signalling

#### Security Against Post-Quantum No-Superluminal-Signalling Adversaries?

## 4. Discussion

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Kent, A. A no-summoning theorem in relativistic quantum theory. Quantum Inf. Process.
**2013**, 12, 1023–1032. [Google Scholar] [CrossRef] - Kent, A. Quantum tasks in Minkowski space. Class. Quantum Grav.
**2012**, 29, 224013. [Google Scholar] [CrossRef] - Hayden, P.; May, A. Summoning information in spacetime, or where and when can a qubit be? J. Phys. A Math. Theor.
**2016**, 49, 175304. [Google Scholar] [CrossRef] [Green Version] - Wu, Y.; Khalid, A.; Sanders, B. Efficient code for relativistic quantum summoning. New J. Phys.
**2018**, 20, 063052. [Google Scholar] [CrossRef] [Green Version] - Adlam, E.; Kent, A. Quantum paradox of choice: More freedom makes summoning a quantum state harder. Phys. Rev. A
**2016**, 93, 062327. [Google Scholar] [CrossRef] [Green Version] - Kent, A. Unconditionally secure bit commitment with flying qudits. New J. Phys.
**2011**, 13, 113015. [Google Scholar] [CrossRef] - Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys.
**1994**, 24, 379–385. [Google Scholar] [CrossRef] - Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature
**1982**, 299, 802–803. [Google Scholar] [CrossRef] - Dieks, D.G.B.J. Communication by EPR devices. Phys. Lett. A
**1982**, 92, 271–272. [Google Scholar] [CrossRef] [Green Version] - Gisin, N. Quantum cloning without signaling. Phys. Lett. A
**1998**, 242, 1–3. [Google Scholar] [CrossRef] [Green Version] - Kent, A. Nonlinearity without superluminality. Phys. Rev. A
**2005**, 72, 012108. [Google Scholar] [CrossRef] [Green Version] - Barrett, J.; Hardy, L.; Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett.
**2005**, 95, 010503. [Google Scholar] [CrossRef] [PubMed] - Navez, P.; Cerf, N.J. Cloning a real d-dimensional quantum state on the edge of the no-signaling condition. Phys. Rev. A
**2003**, 68, 032313. [Google Scholar] [CrossRef] - Chailloux, A.; Leverrier, A. Relativistic (or 2-prover 1-round) zero-knowledge protocol for NP secure against quantum adversaries. In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, 30 April–4 May 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 369–396. [Google Scholar]
- Lunghi, T.; Kaniewski, J.; Bussieres, F.; Houlmann, R.; Tomamichel, M.; Kent, A.; Gisin, N.; Wehner, S.; Zbinden, H. Experimental bit commitment based on quantum communication and special relativity. Phys. Rev. Lett.
**2013**, 111, 180504. [Google Scholar] [CrossRef] [PubMed] - Liu, Y.; Cao, Y.; Curty, M.; Liao, S.-K.; Wang, J.; Cui, K.; Li, Y.-H.; Lin, Z.-H.; Sun, Q.-C.; Li, D.-D.; et al. Experimental unconditionally secure bit commitment. Phys. Rev. Lett.
**2014**, 112, 010504. [Google Scholar] [CrossRef] [PubMed] - Verbanis, E.; Martin, A.; Houlmann, R.; Boso, G.; Bussières, F.; Zbinden, H. 24-hour relativistic bit commitment. Phys. Rev. Lett.
**2016**, 117, 140506. [Google Scholar] [CrossRef] [PubMed] - Fehr, S.; Fillinger, M. Multi-prover commitments against non-signaling attacks. In Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 403–421. [Google Scholar]
- Bennett, C.H.; Leung, D.; Smith, G.; Smolin, J.A. Can closed timelike curves or nonlinear quantum mechanics improve quantum state discrimination or help solve hard problems? Phys. Rev. Lett.
**2009**, 103, 170502. [Google Scholar] [CrossRef] [PubMed] - Oreshkov, O.; Costa, F.; Brukner, Č. Quantum correlations with no causal order. Nat. Commun.
**2012**, 3, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kent, A.
Summoning, No-Signalling and Relativistic Bit Commitments. *Entropy* **2019**, *21*, 534.
https://doi.org/10.3390/e21050534

**AMA Style**

Kent A.
Summoning, No-Signalling and Relativistic Bit Commitments. *Entropy*. 2019; 21(5):534.
https://doi.org/10.3390/e21050534

**Chicago/Turabian Style**

Kent, Adrian.
2019. "Summoning, No-Signalling and Relativistic Bit Commitments" *Entropy* 21, no. 5: 534.
https://doi.org/10.3390/e21050534