# Simultaneous Classical Communication and Quantum Key Distribution Based on Plug-and-Play Configuration with an Optical Amplifier

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Protocol Description

#### 2.1. The Plug-and-Play DPMCS Protocol

#### 2.2. SCCQ Protocol Based on Plug-and-Play Configuration

#### 2.3. Addition of an Optical Amplifier

## 3. Performance Analysis and Discussion

#### 3.1. Noise Model of SCCQ Protocol Based on Plug-and-Play Configuration

#### 3.2. Simulation Results

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. Parameter Optimization

**Figure A1.**SCCQ protocol based on plug-and-play configuration using homodyne detection with a practical detector, d = 50, G = 1.

**Figure A2.**SCCQ protocol based on plug-and-play configuration using homodyne detection with a practical detector, g = 1.005, G = 1.

**Figure A3.**SCCQ protocol based on plug-and-play configuration using homodyne detection with a practical detector, g = 1.005, d = 40.

## Appendix B. Calculation of Asymptotic Secret Key Rate

## Appendix C. Secret Key Rate in the Finite-Size Scenario

## References

- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys.
**2002**, 74, 145. [Google Scholar] [CrossRef] - Lo, H.-K.; Curty, M.; Tamaki, K. Secure Quantum Key Distribution. Nat. Photon.
**2014**, 8, 595. [Google Scholar] [CrossRef] - Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The Security of Practical Quantum Key Distribution. Rev. Mod. Phys.
**2009**, 81, 1301. [Google Scholar] [CrossRef] - Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys.
**2012**, 84, 621. [Google Scholar] [CrossRef] - Shor, P.W.; Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett.
**2000**, 85, 441. [Google Scholar] [CrossRef] - Lo, H.K.; Chau, H.F. Unconditional security of quantum key distribution over arbitrarily long distances. Science
**1999**, 283, 2050. [Google Scholar] [CrossRef] [PubMed] - Takeda, S.; Fuwa, M.; Van, L.P.; Furusawa, A. Entanglement Swapping between Discrete and Continuous Variables. Phys. Rev. Lett.
**2015**, 114, 100501. [Google Scholar] [CrossRef] - Huang, D.; Lin, D.; Wang, C.; Liu, W.Q.; Peng, J.Y.; Fang, S.H.; Huang, P.; Zeng, G.H. Continuous-variable quantum key distribution with 1 Mbps secure key rate. Opt. Express
**2015**, 23, 17511. [Google Scholar] [CrossRef] [PubMed] - Pirandola, S.; Ottaviani, C.; Spedalieri, G.; Weedbrook, C.; Braunstein, S.L.; Lloyd, S.; Gehring, T.; Jacobsen, C.S.; Andersen, U.L. High-rate measurement-device-independent quantum cryptography. Nat. Photon.
**2015**, 9, 397. [Google Scholar] [CrossRef] - Huang, D.; Huang, P.; Li, H.; Wang, T.; Zhou, Y.; Zeng, G. Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett.
**2016**, 41, 3511. [Google Scholar] [CrossRef] - Grosshans, F.; Van, A.G.; Wenger, J.; Brouri, R.; Cerf, N.J.; Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature
**2003**, 421, 238. [Google Scholar] [CrossRef] [PubMed] - Wu, X.D.; Liao, Q.; Huang, D.; Wu, X.H.; Guo, Y. Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine. Chin. Phys. B
**2017**, 26, 110304. [Google Scholar] [CrossRef] - Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett.
**2002**, 88, 057902. [Google Scholar] [CrossRef] - Huang, P.; Fang, J.; Zeng, G. State-discrimination attack on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A
**2014**, 89, 042330. [Google Scholar] [CrossRef] - Guo, Y.; Liao, Q.; Wang, Y.J.; Huang, D.; Huang, P.; Zeng, G.H. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A
**2017**, 95, 032304. [Google Scholar] [CrossRef] - Huang, D.; Huang, P.; Lin, D.; Zeng, G. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep.
**2016**, 6, 19201. [Google Scholar] [CrossRef] - Jouguet, P.; Kunz-Jacques, S.; Leverrier, A. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A
**2011**, 84, 062317. [Google Scholar] [CrossRef] - Milicevic, M.; Chen, F.; Zhang, L.; Gulak, P.G. Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography. NPJ Quantum Inf.
**2018**, 4, 21. [Google Scholar] [CrossRef] - Wang, X.; Zhang, Y.; Yu, S.; Guo, H. High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code. Sci. Rep.
**2018**, 8, 10543. [Google Scholar] [CrossRef] [PubMed] - Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol.
**2016**, 34, 157. [Google Scholar] [CrossRef] - Qi, B. Simultaneous classical communication and quantum key distribution using continuous variables. Phys. Rev. A
**2016**, 94, 042340. [Google Scholar] [CrossRef] - Qi, B.; Lim, C.C.W. Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator. Phys. Rev. Appl.
**2018**, 9, 054008. [Google Scholar] [CrossRef] - Huang, D.; Huang, P.; Lin, D.-K.; Wang, C.; Zeng, G.-H. High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett.
**2015**, 40, 3695. [Google Scholar] [CrossRef] [PubMed] - Qi, B.; Lougovski, P.; Pooser, R.; Grice, W.; Bobrek, M. Generating the Local Oscillator Locally in Continuous-Variable Quantum Key Distribution Based on Coherent Detection. Phys. Rev. X
**2015**, 5, 041009. [Google Scholar] [CrossRef] - Soh, D.B.S.; Brif, C.; Coles, P.J.; Lütkenhaus, N.; Camacho, R.M.; Urayama, J.; Sarovar, M. Self-Referenced Continuous-Variable Quantum Key Distribution Protocol. Phys. Rev. X
**2015**, 5, 041010. [Google Scholar] [CrossRef] - Huang, D.; Huang, P.; Wang, T.; Li, H.S.; Zhou, Y.M.; Zeng, G.H. Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A
**2016**, 94, 032305. [Google Scholar] [CrossRef] - Fossier, S.; Diamanti, E.; Debuisschert, T.; Tualle-Brouri, R.; Grangier, P. Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B
**2009**, 42, 114014. [Google Scholar] [CrossRef] - Zhang, H.; Fang, J.; He, G. Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A
**2012**, 86, 022338. [Google Scholar] [CrossRef] - Guo, Y.; Li, R.J.; Liao, Q.; Zhou, J.; Huang, D. Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifiers. Phys. Lett. A
**2017**, 382, 372–381. [Google Scholar] [CrossRef] - Subacius, D.; Zavriyev, A.; Trifonov, A. Backscattering limitation for fiber-optic quantum key distribution systems. Appl. Phys. Lett.
**2005**, 86, 011103. [Google Scholar] [CrossRef] - Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun.
**2017**, 8, 15043. [Google Scholar] [CrossRef] [PubMed] - Renner, R.; Cirac, J.I. de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett.
**2009**, 102, 110504. [Google Scholar] [CrossRef] [PubMed] - Leverrier, A.; Grosshans, F.; Grangier, P. Finite-size analysis of continuous-variable quantum key distribution. Phys. Rev. A
**2010**, 81, 062343. [Google Scholar] [CrossRef] - Furrer, F.; Franz, T.; Berta, M.; Leverrier, A.; Scholz, V.B.; Tomamichel, M.; Werner, R.F. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett.
**2012**, 109, 100502. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**The prepared-and-measure scheme of plug-and-play dual-phase modulated coherent states (DPMCS) protocol. (

**a**) Gaussian modulation scheme by using two phase modulators. PIA, phase insensitive amplifier; RNG, random number generator; PM, phase modulator; FM, Faraday mirror.

**Figure 2.**Simultaneous classical communication and quantum key distribution (SCCQ) protocol based on plug-and-play configuration. The probability distributions of X-quadrature measurement is shown at Alice’s side.

**Figure 3.**Schematic diagram of the modified protocol (SCCQ protocol based on plug-and-play configuration with an optical amplifier).

**Figure 4.**The required displacement $\alpha $ as a function of modulation variance ${V}_{B}$ and transmission distance to obtain a BER of ${10}^{-9}$ in the classical channel. Parameters $\gamma =0.2dB/km$, $\eta =0.5$, and ${\upsilon}_{el}=0.1$.

**Figure 5.**Comparison of secret key rate between the modified protocol (homodyne detection with phase-sensitive amplifier (PSA)) and the original protocol (without PSA) under different imperfect source scenarios. Solid lines represent the original protocol (G = 1) while the dashed lines represent the modified protocol (G = 3). From left to right, the green curves correspond to $g=1.015$, the black curves correspond to $g=1.01$, the red curves correspond to $g=1.005$, and the blue curves correspond to $g=1$ (no source noise). The simulation parameters are ${V}_{B}=4$, ${\zeta}_{p}={10}^{-6}$, ${\zeta}_{RB}=0.02$, $\eta =0.5$, ${\upsilon}_{el}=0.1$.

**Figure 6.**Finite-size secret key rate of SCCQ protocol based on plug-and-play configuration with PSA as a function of transmission distance under different imperfect source scenarios. Solid lines represent the original protocol (G = 1) while the dashed lines represent the modified protocol (G = 3). From left to right, the green curves, the black curves, and the red curves correspond to finite-size scenario of block length $N={10}^{6}$, ${10}^{8}$, and ${10}^{10}$, respectively, and the blue curves represent the asymptotic scenario. (

**a**) The parameter $g=1$ (no source noise). (

**b**) The parameter $g=1.005$. (

**c**) The parameter $g=1.01$. (

**d**) The parameter $g=1.015$. Other parameters are set to be the same as Figure 5.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wu, X.; Wang, Y.; Liao, Q.; Zhong, H.; Guo, Y.
Simultaneous Classical Communication and Quantum Key Distribution Based on Plug-and-Play Configuration with an Optical Amplifier. *Entropy* **2019**, *21*, 333.
https://doi.org/10.3390/e21040333

**AMA Style**

Wu X, Wang Y, Liao Q, Zhong H, Guo Y.
Simultaneous Classical Communication and Quantum Key Distribution Based on Plug-and-Play Configuration with an Optical Amplifier. *Entropy*. 2019; 21(4):333.
https://doi.org/10.3390/e21040333

**Chicago/Turabian Style**

Wu, Xiaodong, Yijun Wang, Qin Liao, Hai Zhong, and Ying Guo.
2019. "Simultaneous Classical Communication and Quantum Key Distribution Based on Plug-and-Play Configuration with an Optical Amplifier" *Entropy* 21, no. 4: 333.
https://doi.org/10.3390/e21040333