Next Article in Journal
Distributed Recovery of a Gaussian Source in Interference with Successive Lattice Processing
Next Article in Special Issue
The Information Loss Problem: An Analogue Gravity Perspective
Previous Article in Journal
Optimal Estimation of Wavelet Decomposition Level for a Matching Pursuit Algorithm
Previous Article in Special Issue
Summoning, No-Signalling and Relativistic Bit Commitments
Open AccessArticle

A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes

Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UK
The School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
Author to whom correspondence should be addressed.
Entropy 2019, 21(9), 844;
Received: 6 July 2019 / Revised: 13 August 2019 / Accepted: 26 August 2019 / Published: 30 August 2019
(This article belongs to the Special Issue Relativistic Quantum Information)
Recently, Bennett et al. (Eur. J. Phys. 37:014001, 2016) presented a physically-motivated and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes. Working within the standard assumptions of quantum field theory and only postulating the physicality of the photon, we derive the Hamiltonian, H ^ , and the electric and magnetic field observables, E ^ and B ^ , respectively, without having to invoke a specific gauge. As an example, we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler space, and demonstrate consistency with other field quantisation schemes by reproducing the Unruh effect. View Full-Text
Keywords: quantum electrodynamics; relativistic quantum information quantum electrodynamics; relativistic quantum information
Show Figures

Figure 1

MDPI and ACS Style

Maybee, B.; Hodgson, D.; Beige, A.; Purdy, R. A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes. Entropy 2019, 21, 844.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop