Choosing between Higher Moment Maximum Entropy Models and Its Application to Homogeneous Point Processes with Random Effects
Abstract
:1. Introduction
2. The Homogeneous Poisson Process with Random Effects and the Maximum Entropy Principle
2.1. The Maximum Entropy Principle
2.2. Homogeneous Poisson Processes with Random Effects
2.3. Model Specification of the General Poisson–MaxEnt Model
3. Estimating Unknown Poisson–Maximum Entropy Parameters
The MLE–Maximum Entropy Method for the Poisson–MaxEnt Model
4. Simulation Studies and Data Applications
4.1. Simulation Studies
4.1.1. Kullback–Leibler Divergence
4.1.2. Discrepancy Measure
4.2. Data Applications
4.2.1. Likelihood Ratio Tests
4.2.2. Automobile Warranty Claims Study
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Moment Matching Estimation for the Poisson–MaxEnt Model
References
- Xu, G.; Chiou, S.H.; Huang, C.Y.; Wang, M.C.; Yan, J. Joint scale-change models for recurrent events and failure time. J. Am. Stat. Assoc. 2015, 111, 1–38. [Google Scholar] [CrossRef]
- Brijs, T.; Karlis, D.; Swinnen, G.; Vanhoof, K.; Wets, W.; Manchanda, P. A multivariate Poisson mixture model for marketing applications. Stat. Neerlandica 2004, 58, 322–348. [Google Scholar] [CrossRef]
- Fredette, M.; Lawless, J.F. Finite horizon prediction of recurrent events with application to forecast of warranty claims. Technometrics 2007, 49, 66–80. [Google Scholar] [CrossRef]
- Khribi, L.; Fredette, M.; MacGibbon, B. The Poisson maximum entropy model for homogeneous Poisson processes. Commun. Stat.-Simul. Comput. 2015, 45, 3435–3456. [Google Scholar] [CrossRef]
- Aroian, L.A. The fourth degree exponential distribution function. Ann. Math. Stat. 1948, 19, 589–592. [Google Scholar] [CrossRef]
- Mohammad-Djafari, A. Maximum likelihood estimation of the Lagrange parameters of the maximum entropy distributions. In Maximum Entropy and Bayesian Methods; Smith, C.R., Erickson, G.J., Neudorfer, P.O., Eds.; Kluwer Academic Publishers: Norwell, MA, USA, 1992; Volume 50, pp. 131–139. [Google Scholar]
- Mohammad-Djafari, A. A Matlab program to calculate the maximum entropy distributions. In Maximum Entropy and Bayesian Methods; Smith, C.R., Erickson, G.J., Neudorfer, P.O., Eds.; Kluwer Academic Publishers: Norwell, MA, USA, 1992; Volume 50, pp. 221–233. [Google Scholar]
- Wragg, A.; Dowson, D.C. Fitting continuous probability density functions over (0, ∞) using information theory ideas. IEEE Trans. Inf. Theory 1970, 16, 226–230. [Google Scholar] [CrossRef]
- Wu, X. Calculation of maximum entropy densities with application to income distribution. J. Econom. 2003, 115, 347–354. [Google Scholar] [CrossRef]
- Zellner, A.; Highfield, R.A. Calculation of maximum entropy distributions and approximation of marginal posterior distributions. J. Econom. 1987, 37, 195–209. [Google Scholar] [CrossRef]
- Broadbent, D.E. A difficulity in assessing bimodality in certain distributions. Br. J. Math. Stat. Psychol. 1966, 19, 125–126. [Google Scholar] [CrossRef]
- Eisenberger, I. Genesis of bimodal distributions. Technometrics 1964, 6, 357–363. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Dick, J.; Pillichshammer, F. Discrepancy Theory and Quasi-Monte Carlo Integration; Springer: New York, NY, USA, 2014. [Google Scholar]
- Shannon, C.E. The mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Weinstock, R. Calculus of Variations—With Applications to Physics and Engineering; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Cook, R.J.; Lawless, J.F. The Statistical Analysis of Recurrent Events; Springer: New York, NY, USA, 2007. [Google Scholar]
- Noel van Erp, H.R.; Linger, R.O.; Van Gelder, P.H.A.J.M. Deriving proper uniform priors for regression coefficients, Parts I, II, and III. Entropy 2017, 19, 250. [Google Scholar]
- Terenin, A.; Draper, D. A Noninformative prior on a space of distribution functions. Entropy 2017, 19, 391. [Google Scholar] [CrossRef]
- Lawless, J.F.; Fredette, M. Frequentist prediction intervals and predictive distributions. Biometrika 2005, 92, 529–542. [Google Scholar] [CrossRef]
- Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. WinBUGS User Manual, Version 1.4; Technical Report; Medical Research Council Biostatistics Unit: Cambridge, UK, 2003; Available online: http://www.politicalbubbles.org/bayes_beach/manual14.pdf (accessed on 13 December 2017).
- Talvila, E. Necessary and sufficient conditions for differentiating under the integral sign. Am. Math. Mon. 2001, 108, 544–548. [Google Scholar] [CrossRef]
- Aida, T. Model selection criteria using divergences. Entropy 2014, 16, 2686–2689. [Google Scholar]
- Lods, B.; Pistone, G. Information geometry formalism for the spatially homogeneous boltzmann equation. Entropy 2015, 17, 4323–4363. [Google Scholar] [CrossRef]
- Tiňo, P. Pushing for the extreme: Estimation of Poisson distribution from low count unreplicated data-how close can we get? Entropy 2013, 15, 1202–1220. [Google Scholar] [CrossRef]
- Mead, L.R.; Papanicolaou, N. Maximum entropy in the problem of moments. J. Math. Phys. 1984, 25, 2404–2417. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Lawless, J.F.; Robinson, J. Methods for the analysis and prediction of warranty claims. Technometrics 1991, 33, 273–285. [Google Scholar] [CrossRef]
- Wilks, S.S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 1938, 9, 60–62. [Google Scholar] [CrossRef]
Moments for | Random Effects | |||
---|---|---|---|---|
; and c.v. = | Gamma | |||
MaxEnt2MM | ||||
MaxEnt4MM | ||||
MaxEnt6MM | ||||
Ggamma | ||||
Weibull | ||||
LNormal | ||||
InvGauss | ||||
Uniform | ||||
; and c.v. = | ||||
Gamma | ||||
MaxEnt2MM | ||||
MaxEnt4MM | ||||
MaxEnt6MM | ||||
Ggamma | ||||
Weibull | ||||
LNormal | ||||
InvGauss |
Moments for | Random Effects | Gamma | MLE | MLE | MLE |
---|---|---|---|---|---|
2 Moments | 4 Moments | 6 Moments | |||
; and c.v. = | Gamma | ||||
MaxEnt2MM | |||||
MaxEnt4MM | |||||
MaxEnt6MM | |||||
Ggamma | |||||
Weibull | |||||
LNormal | |||||
InvGauss | |||||
Uniform | |||||
; and c.v. = | Gamma | ||||
MaxEnt2MM | |||||
MaxEnt4MM | |||||
MaxEnt6MM | |||||
Ggamma | |||||
Weibull | |||||
LNormal | |||||
InvGauss |
Number of Claims | Number of Cars |
---|---|
0 | 26,693 |
1 | 7911 |
2 | 3421 |
3 | 1773 |
4 | 939 |
5 | 555 |
6 | 380 |
7 | 188 |
8 | 112 |
9 | 84 |
129 | |
33,438 | 42,188 |
(in Days) | p-Value of LRT MaxEnt 2MM vs. 4MM | p-Value of LRT MaxEnt 4MM vs. 6MM | p-Value of LRT MaxEnt 6MM vs. 8MM | Number of Moments Suggested |
---|---|---|---|---|
45 | <0.01% | <0.01% | ||
85 | <0.01% | |||
125 | <0.01% | |||
165 | ||||
205 | ||||
245 | ||||
285 | ||||
325 | ||||
365 | 44.85% |
(in Days) | Gamma | MLE 2 Moments | MLE 4 Moments | MLE 6 Moments | MLE 8 Moments |
---|---|---|---|---|---|
45 | |||||
85 | |||||
125 | |||||
165 | |||||
205 | |||||
245 | |||||
285 | |||||
325 | |||||
365 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khribi, L.; MacGibbon, B.; Fredette, M. Choosing between Higher Moment Maximum Entropy Models and Its Application to Homogeneous Point Processes with Random Effects. Entropy 2017, 19, 687. https://doi.org/10.3390/e19120687
Khribi L, MacGibbon B, Fredette M. Choosing between Higher Moment Maximum Entropy Models and Its Application to Homogeneous Point Processes with Random Effects. Entropy. 2017; 19(12):687. https://doi.org/10.3390/e19120687
Chicago/Turabian StyleKhribi, Lotfi, Brenda MacGibbon, and Marc Fredette. 2017. "Choosing between Higher Moment Maximum Entropy Models and Its Application to Homogeneous Point Processes with Random Effects" Entropy 19, no. 12: 687. https://doi.org/10.3390/e19120687
APA StyleKhribi, L., MacGibbon, B., & Fredette, M. (2017). Choosing between Higher Moment Maximum Entropy Models and Its Application to Homogeneous Point Processes with Random Effects. Entropy, 19(12), 687. https://doi.org/10.3390/e19120687