# A Truncation Scheme for the BBGKY2 Equation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Maximum Entropy Distributions

## 3. The BBGKY Hierarchy

## 4. The Stosszahlansatz for BBGKY2

## 5. The Collision Term

## 6. Final Remarks

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev.
**1957**, 106. [Google Scholar] [CrossRef] - Jaynes, E.T. Information Theory and Statistical Mechanics. II. Phys. Rev.
**1957**, 108. [Google Scholar] [CrossRef] - Schneidman, E.; Still, S.; Berry, M.J.; Bialek, W. Network Information and Connected Correlations. Phys. Rev. Lett.
**2003**, 91, 238701. [Google Scholar] [CrossRef] [PubMed] - Schneidman, E.; Berry, M.J.; Segev, R.; Bialek, W. Weak Pairwise Correlations Imply Strongly Correlated Network States in a Neural Population. Nature
**2006**, 440, 1007–1012. [Google Scholar] [CrossRef] [PubMed] - Stephens, G.J.; Bialek, W. Statistical Mechanics of Letters in Words. Phys. Rev. E
**2010**, 81, 066119. [Google Scholar] [CrossRef] - Mora, T.; Bialek, W. Are Biological Systems Poised at Criticality? J. Stat. Phys.
**2011**, 144, 268–302. [Google Scholar] [CrossRef] - Bialek, W.; Cavagna, A.; Giardina, I.; Mora, T.; Silvestri, E.; Viale, M.; Walczak, A.M. Statistical Mechanics for Natural Flocks of Birds. Proc. Natl. Acad. Sci. USA
**2012**, 109, 4786–4791. [Google Scholar] [CrossRef] [PubMed] - Stephens, G.J.; Mora, T.; Tkačik, G.; Bialek, W. Statistical Thermodynamics of Natural Images. Phys. Rev. Lett.
**2013**, 110, 018701. [Google Scholar] [CrossRef] [PubMed] - Van der Straeten, E. Maximum Entropy Estimation of Transition Probabilities of Reversible Markov Chains. Entropy
**2009**, 11, 867–887. [Google Scholar] [CrossRef] - Marre, O.; El Boustani, S.; Frégnac, Y.; Destexhe, A. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations. Phys. Rev. Lett.
**2009**, 102, 138101. [Google Scholar] [CrossRef] [PubMed] - Cavagna, A.; Giardina, I.; Ginelli, F.; Mora, T.; Piovani, D.; Tavarone, R.; Walczak, A.M. Dynamical Maximum Entropy Approach to Flocking. Phys. Rev. E
**2014**, 89, 042707. [Google Scholar] [CrossRef] - Chliamovitch, G.; Dupuis, A.; Golub, A.; Chopard, B. Improving Predictability of Time Series Using Maximum Entropy Methods. Europhys. Lett.
**2015**, 110. [Google Scholar] [CrossRef] - Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J.
**1948**, 27, 379–423. [Google Scholar] [CrossRef] - Khinchin, A.Y. Mathematical Foundations of Information Theory; Dover: Mineola, NY, USA, 1957. [Google Scholar]
- Kreuzer, H.J. Nonequilibrium Thermodynamics and its Statistical Foundations; Oxford University Press: Oxford, UK, 1984. [Google Scholar]
- Liboff, R.L. Kinetic Theory; Springer: New York, NY, USA, 2003. [Google Scholar]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chliamovitch, G.; Malaspinas, O.; Chopard, B.
A Truncation Scheme for the BBGKY2 Equation. *Entropy* **2015**, *17*, 7522-7529.
https://doi.org/10.3390/e17117522

**AMA Style**

Chliamovitch G, Malaspinas O, Chopard B.
A Truncation Scheme for the BBGKY2 Equation. *Entropy*. 2015; 17(11):7522-7529.
https://doi.org/10.3390/e17117522

**Chicago/Turabian Style**

Chliamovitch, Gregor, Orestis Malaspinas, and Bastien Chopard.
2015. "A Truncation Scheme for the BBGKY2 Equation" *Entropy* 17, no. 11: 7522-7529.
https://doi.org/10.3390/e17117522