Bioactive Phytochemicals from Wild Arbutus unedo L. Berries from Different Locations in Portugal: Quantification of Lipophilic Components
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Chemical Characterization
Location | GPS Coordinates | Moisture (%) | Total Soluble Solids a | Titratable Acidity b | pH | Total Phenolic Content c | Antioxidant Activity d | Extraction Yield (%, w/w) | ||
---|---|---|---|---|---|---|---|---|---|---|
Latitude | Longitude | Altitude (m) | ||||||||
1 | 40°18ʹ22.3ʹʹ N | 8°10ʹ00.5ʹʹ W | 200.76 | 69.80 | 24.4 ± 0.5 | 0.89 ± 0.02 | 3.08 ± 0.02 | 1342 ± 76 | 0.469 ± 0.02 | 1.66 |
2 | 40°17ʹ33.2ʹʹ N | 8°11ʹ52.1ʹʹ W | 125.00 | 62.53 | 22.4 ± 0.3 | 0.88 ± 0.02 | 2.97 ± 0.05 | 1160 ± 13 | 0.589 ± 0.01 | 1.56 |
3 | 40°17ʹ36.7ʹʹ N | 8°11ʹ51.1ʹʹ W | 123.22 | 61.13 | 30.1 ± 0.8 | 0.85 ± 0.09 | 3.17 ± 0.04 | 1185 ± 18 | 0.359 ± 0.03 | 1.48 |
4 | 40°16ʹ53.4ʹʹ N | 8°12ʹ25.8ʹʹ W | 100.00 | 61.87 | 25.7 ± 0.6 | 0.81 ± 0.10 | 3.17 ± 0.07 | 1889 ± 66 | 0.356 ± 0.01 | 1.58 |
5 | 40°16ʹ37.4ʹʹ N | 8°11ʹ57.5ʹʹ W | 75.00 | 67.87 | 28.3 ± 0.5 | 0.89 ± 0.09 | 3.09 ± 0.07 | 2183 ± 48 | 0.343 ± 0.06 | 1.55 |
6 | 40°16ʹ34.7ʹʹ N | 8°11ʹ50.3ʹʹ W | 75.00 | 69.47 | 22.9 ± 0.2 | 0.91 ± 0.02 | 3.05 ± 0.07 | 2222 ± 35 | 0.278 ± 0.02 | 0.72 |
2.2. Chemical Characterization of the Lipophilic Extractives from A. unedo Berries
R.t. (min) | Compound | Locations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||||||
BH | AH | BH | AH | BH | AH | BH | AH | BH | AH | BH | AH | ||
Fatty Acids | 10 | 75 | 6 | 95 | 5 | 120 | 1 | 21 | 5 | 70 | 1 | 33 | |
Saturated | 6 | 19 | 3 | 20 | 4 | 28 | tr | 10 | 5 | 24 | 0 | 14 | |
8.46 | Hexanoic acid C6:0 | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr |
11.68 | Octanoic acid C8:0 | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr |
14.87 | Nonanoic acid C9:0 | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr |
17.96 | Decanoic acid C10:0 | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr |
23.61 | Dodecanoic acid C12:0 | tr | 1 | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr |
26.94 | Tridecanoic acid C13:0 | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr |
28.74 | Tetradecanoic acid C14:0 | nd | 2 | nd | 1 | nd | 2 | nd | 1 | nd | 1 | nd | 2 |
31.78 | Pentadecanoic acid C15:0 | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr |
33.49 | Hexadecanoic acid C16:0 | 6 | 12 | 3 | 12 | 4 | 23 | nd | 4 | nd | 10 | nd | 9 |
35.64 | Heptadecanoic acid C17:0 | nd | tr | nd | tr | nd | tr | nd | 3 | nd | 7 | nd | tr |
37.77 | Octadecanoic acid C18:0 | tr | 5 | tr | 8 | tr | 10 | tr | 2 | 5 | 4 | tr | 3 |
41.73 | Eicosanoic acid C20:0 | nd | tr | nd | tr | nd | tr | nd | tr | nd | 1 | nd | tr |
45.45 | Docosanoic acid C22:0 | tr | tr | nd | tr | tr | tr | tr | tr | tr | 1 | tr | tr |
47.08 | Tricosanoic acid C23:0 | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr |
48.91 | Tetracosanoic acid C24:0 | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr |
Unsaturated | 4 | 46 | 2 | 75 | 1 | 85 | 1 | 11 | 1 | 45 | 1 | 19 | |
32.68 | Hexadec-9-enoic acid C16:1 (Δ9) isomer | tr | tr | tr | tr | tr | tr | tr | 1 | tr | tr | tr | 10 |
32.81 | Hexadec-9-enoic acid C16:1 (Δ9) isomer | ||||||||||||
36.98 | Octadeca-9,12-dienoic acid C18:2 (Δ9, 12) + Octadeca-9,12,15-trienoic acid C18:3 (Δ9, 12, 15) | 4 | 33 | 2 | 75 | 1 | 85 | 1 | 10 | 1 | 45 | 1 | 6 |
37.16 | Octadec-9-enoic acid C18:1 (Δ9) isomer | tr | 23 | tr | tr | tr | tr | tr | tr | tr | tr | tr | 3 |
37.26 | Octadec-9-enoic acid C18:1 (Δ9) isomer | ||||||||||||
Long Chain Aliphatic Alcohols | 0 | 2 | 0 | 4 | 0 | 5 | 0 | 17 | 0 | 2 | 0 | tr | |
26.84 | Tetradecan-1-ol | nd | tr | nd | tr | nd | tr | nd | 1 | nd | tr | nd | |
31.68 | Hexadecan-1-ol | nd | tr | nd | tr | nd | 1 | nd | 9 | nd | 1 | nd | tr |
35.41 | Octadec-9-en-1-ol | nd | 2 | nd | 4 | nd | 4 | nd | 7 | nd | 1 | nd | tr |
36.12 | Octadecan-1-ol | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr | nd | tr |
Sterols | 15 | 15 | 17 | 16 | 16 | 16 | 16 | 30 | 11 | 26 | 7 | 6 | |
55.09 | Cholestan-3-one | nd | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr |
55.83 | Campesterol | nd | 1 | nd | 1 | nd | tr | nd | tr | nd | 4 | nd | tr |
56.65 | Stigmasterol | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr |
57.75 | Sitosterol | 15 | 14 | 17 | 16 | 16 | 16 | 16 | 30 | 11 | 21 | 7 | 6 |
Triterpenoids | 157 | 149 | 234 | 206 | 191 | 160 | 160 | 144 | 147 | 142 | 99 | 97 | |
57.16 | Amyrin derivative | 2 | tr | 2 | 2 | 2 | tr | 2 | 12 | 1 | 2 | 1 | tr |
57.33 | Lupenone | 3 | 2 | 3 | 3 | 4 | 3 | 3 | 3 | 2 | 1 | 1 | 1 |
57.57 | β-Amyrin | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 26 | tr | 6 | 1 | 13 |
58.24 | α-Amyrin | 29 | 26 | 36 | 31 | 32 | 28 | 36 | 35 | 24 | 38 | 37 | 50 |
58.54 | Lupeol | 35 | 35 | 49 | 44 | 33 | 30 | 31 | 3 | 31 | 43 | 3 | tr |
59.62 | Lupenyl acetate | 5 | 5 | 8 | 7 | 6 | 5 | 1 | 1 | 3 | 3 | 2 | 3 |
62.10 | Olean-12-en-3β,23-diol | 3 | 3 | 5 | 5 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 2 |
62.25 | Uvaol | 1 | 2 | 35 | 31 | 26 | 23 | 3 | 4 | 18 | 7 | 1 | 1 |
62.50 | Oleanolic acid | 24 | 22 | 2 | 1 | 2 | 2 | 17 | 21 | 1 | 10 | 10 | 8 |
63.56 | Ursolic acid | 54 | 53 | 93 | 81 | 81 | 63 | 62 | 36 | 63 | 28 | 42 | 20 |
Tocopherols | 10 | 2 | 6 | 3 | 4 | 2 | 3 | 1 | 1 | 4 | 2 | 1 | |
53.88 | α-Tocopherol | 4 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | tr |
54.18 | γ-Tocopherol | 6 | 2 | 3 | 1 | 3 | 1 | 2 | tr | tr | 2 | 1 | tr |
Total (mg 100 g−1 fresh fruit) | 192 | 243 | 262 | 324 | 217 | 303 | 179 | 213 | 164 | 243 | 109 | 137 |
3. Experimental Section
3.1. Chemicals
3.2. Samples
3.3. General Chemical Characterization
3.4. Lipophilic Compounds Determination
3.4.1. Extraction
3.4.2. Alkaline Hydrolysis
3.4.3. GC–MS Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Torres, J.A.; Valle, F.; Pinto, C.; García-Fuentes, A.; Salazar, C.; Cano, E. Arbutus unedo L. communities in southern Iberian Peninsula mountains. Plant Ecol. 2002, 160, 207–223. [Google Scholar] [CrossRef]
- Kim, T.L. Edible Medicinal and Non-Medicinal Plants; Springer: New York, NY, USA, 2012; pp. 444–451. [Google Scholar]
- Sealy, J.R.; Webb, D.A. Arbutus unedo L. J. Ecol. 1950, 38, 223–236. [Google Scholar] [CrossRef]
- Leonti, M.; Casu, L.; Sanna, F.; Bonsignore, L. A comparison of medicinal plant use in Sardinia and Sicily—De Materia Medica revisited? J. Ethnopharmacol. 2009, 121, 255–267. [Google Scholar] [CrossRef] [PubMed]
- El-Hilaly, J.; Hmammouchi, M.; Lyoussi, B. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). J. Ethnopharmacol. 2003, 86, 149–158. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; de Leo, M.; Braca, A. Phenolics of Arbutus unedo L. (Ericaceae) fruits: Identification of anthocyanins and gallic acid derivatives. J. Agric. Food Chem. 2006, 54, 10234–10238. [Google Scholar] [CrossRef] [PubMed]
- Pallauf, K.; Rivas-Gonzalo, J.C.; del Castillo, M.D.; Cano, M.P.; de Pascual-Teresa, S. Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. J. Food Compos. Anal. 2008, 21, 273–281. [Google Scholar] [CrossRef]
- Alarcão-E-Silva, M.L.C.M.M.; Leitão, A.E.B.; Azinheira, H.G.; Leitão, M.C.A. The arbutus berry: Studies on its color and chemical characteristics at two mature stages. J. Food Compos. Anal. 2001, 14, 27–35. [Google Scholar] [CrossRef]
- Nöthlings, U.; Schulze, M.B.; Weikert, C.; Boeing, H.; van der Schouw, Y.T.; Bamia, C.; Benetou, V.; Lagiou, P.; Krogh, V.; Beulens, J.W.J. Intake of vegetables, legumes, and fruit, and risk for all-cause, cardiovascular, and cancer mortality in a European diabetic population. J. Nutr. 2008, 138, 775–781. [Google Scholar] [PubMed]
- Tavares, L.; Fortalezas, S.; Carrilho, C.; McDougall, G.J.; Stewart, D.; Ferreira, R.B.; Santos, C.N. Antioxidant and antiproliferative properties of strawberry tree tissues. J. Berry Res. 2010, 1, 3–12. [Google Scholar]
- Fortalezas, S.; Tavares, L.; Pimpão, R.; Tyagi, M.; Pontes, V.; Alves, P.M.; McDougall, G.; Stewart, D.; Ferreira, R.B.; Santos, C.N. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo). Nutrients 2010, 2, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G.; Faleiro, M.L.; Guerreiro, A.C.; Antunes, M.D. Arbutus unedo L.: Chemical and biological properties. Molecules 2014, 19, 15799–15823. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chem. 2013, 141, 3721–3730. [Google Scholar] [CrossRef] [PubMed]
- Şeker, M.; Toplu, C. Determination and comparison of chemical characteristics of Arbutus unedo L. and Arbutus andrachnae L. (family Ericaceae) fruits. J. Med. Food 2010, 13, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Baptista, P.; Malheiro, R.; Casal, S.; Bento, A.; Pereira, J.A. Influence of strawberry tree (Arbutus unedo L.) fruit ripening stage on chemical composition and antioxidant activity. Food Res. Int. 2011, 44, 1401–1407. [Google Scholar] [CrossRef]
- Carcache-Blanco, E.J.; Cuendet, M.; Park, E.J.; Su, B.-N.; Rivero-Cruz, J.F.; Farnsworth, N.R.; Pezzuto, J.M.; Douglas Kinghorn, A. Potential cancer chemopreventive agents from Arbutus unedo. Nat. Prod. Res. 2006, 20, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Maleš, Ž.; Plazibat, M.; Bilušić Vundać, V.; Žuntar, I. Qualitative and quantitative analysis of flavonoids of the strawberry tree—Arbutus unedo L. (Ericaceae). Acta Pharm. 2006, 56, 245–250. [Google Scholar]
- Barros, L.; Carvalho, A.M.; Morais, J.S.; Ferreira, I.C.F.R. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem. 2010, 120, 247–254. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Kucukislamoglu, M.; Reunanen, M. Sugar, non-volatile and phenolic acids composition of strawberry tree (Arbutus unedo L. var. Ellipsoidea) fruits. J. Food Compos. Anal. 2000, 13, 171–177. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Miguel, M.G.C.; Antunes, M.D.C. The effect of temperature and film covers on the storage ability of Arbutus unedo L. fresh fruit. Sci. Hortic. 2013, 159, 96–102. [Google Scholar] [CrossRef]
- Özcan, M.M.; Hacıseferoğulları, H. The strawberry (Arbutus unedo L.) fruits: Chemical composition, physical properties and mineral contents. J. Food Eng. 2007, 78, 1022–1028. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, B.-M.; Morales, P.; Fernández-Ruiz, V.; Sánchez-Mata, M.-C.; Cámara, M.; Díez-Marqués, C.; Pardo-de-Santayana, M.; Molina, M.; Tardío, J. Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Res. Int. 2011, 44, 1244–1253. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, B.M.; Sánchez-Moreno, C.; de Ancos, B.; Cortes, M.D.; Fernández Ruíz, V.; Camara, M.; Tardío, J. Wild Arbutus unedo L. and Rubus ulmifolius Schott fruits are underutilized sources of valuable bioactive compounds with antioxidant capacity. Friuts 2014, 69, 435–448. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Fernández-Ruiz, V.; Sánchez-Mata, M.C.; Cámara, M.; Morales, R.; Tardío, J. Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. Eur. J. Lipid Sci. Technol. 2013, 115, 176–185. [Google Scholar] [CrossRef]
- Oliveira, I.; Baptista, P.; Bento, A.; Pereira, J.A. Arbutus unedo L. and its benefits on human health. J. Food Nutr. Res. 2011, 50, 73–85. [Google Scholar]
- Gaspar, E.M.S.M.; das Neves, H.J.C.; Noronha, J.P. Application of HPLC-PBMS to the identification of unknown components in a triterpenoid fraction of Arbutus unedo fruits. J. High Resolut. Chromatogr. 1997, 20, 417–420. [Google Scholar] [CrossRef]
- Noronha, J.P. Metabolitos Secundários do fruto de Arbutus unedo L. (Medronho). Ph.D. Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2001; p. 301. [Google Scholar]
- Marinangeli, C.P.F.; Varady, K.A.; Jones, P.J.H. Plant sterols combined with exercise for the treatment of hypercholesterolemia: Overview of independent and synergistic mechanisms of action. J. Nutr. Biochem. 2006, 17, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Domingues, M.A.R.; Guerra, A.R.; Duarte, M.; Freire, C.S.R.; Neto, C.P.; Silva, C.M.S.; Silvestre, A.J.D. Bioactive triterpenic acids: From agroforestry biomass residues to promising therapeutic tools. Mini Rev. Org. Chem. 2014, 11, 382–399. [Google Scholar] [CrossRef]
- Vidrih, R.; Hribar, J.; Prgomet, Ž.; Poklar Ulrih, N. The physico-chemical properties of strawberry tree (Arbutus unedo L.) fruits. Croat. J. Food Sci. Technol. 2013, 5, 29–33. [Google Scholar]
- Sulusoglu, M.; Cavusoglu, A.; Erkal, S. Arbutus unedo L. (Strawberry tree) selection in Turkey Samanli mountain locations. J. Med. Plants Res. 2011, 5, 3545–3551. [Google Scholar]
- Celikel, G.; Demirsoy, L.; Demirsoy, H. The strawberry tree (Arbutus unedo L.) selection in Turkey. Sci. Hortic. 2008, 118, 115–119. [Google Scholar] [CrossRef]
- Mendes, L.; de Freitas, V.; Baptista, P.; Carvalho, M. Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit. Food Chem. Toxicol. 2011, 49, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Nie, W.-J. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem. 2015, 174, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Flück, H. Intrinsic and extrinsic factors affecting the production of secondary plant products. In Chemical Plant Taxonomy; Swain, T.B., Ed.; Academic Press: London, UK, 1963; pp. 167–186. [Google Scholar]
- Salvador, Â.C.; Rocha, S.M.; Silvestre, A.J.D. Lipophilic phytochemicals from elderberries (Sambucus nigra L.): Influence of ripening, cultivar and season. Ind. Crops Prod. 2015, 71, 15–23. [Google Scholar]
- Szakiel, A.; Pączkowski, C.; Huttunen, S. Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland. J. Agric. Food Chem. 2012, 60, 11839–11849. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Karlsson, R.M.; Oksman, P.H.; Kallio, H.P. Phytosterols in sea buckthorn (Hippophae rhamnoides L.) berries: Identification and effects of different origins and harvesting times. J. Agric. Food Chem. 2001, 49, 5620–5629. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. Bark by high-performance liquid chromatography–mass spectrometry. J. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef] [PubMed]
- Rossi, V.L. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Villano, D.; Fernández-Pachón, M.S.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Identification of new hydroxy fatty acids and ferulic acid esters in the wood of Eucalyptus globulus. Holzforschung 2002, 56, 143–149. [Google Scholar] [CrossRef]
- Domingues, R.M.A.; Sousa, G.D.A.; Silva, C.M.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal. Ind. Crops Prod. 2011, 33, 158–164. [Google Scholar] [CrossRef]
- Vilela, C.; Santos, S.A.O.; Villaverde, J.J.; Oliveira, L.; Nunes, A.; Cordeiro, N.; Freire, C.S.R.; Silvestre, A.J.D. Lipophilic phytochemicals from banana fruits of several Musa species. Food Chem. 2014, 162, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Vilela, C.; Santos, S.A.O.; Oliveira, L.; Camacho, J.F.; Cordeiro, N.; Freire, C.S.R.; Silvestre, A.J.D. The ripe pulp of Mangifera indica L.: A rich source of phytosterols and other lipophilic phytochemicals. Food Res. Int. 2013, 54, 1535–1540. [Google Scholar] [CrossRef]
- Ramos, P.A.B.; Guerra, A.R.; Guerreiro, O.; Freire, C.S.R.; Silva, A.M.S.; Duarte, M.F.; Silvestre, A.J.D. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): A source of valuable bioactive terpenic compounds. J. Agric. Food Chem. 2013, 61, 8420–8429. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, D.F.S.; Salvador, Â.C.; Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Silvestre, A.J.D.; Rocha, S.M. Bioactive Phytochemicals from Wild Arbutus unedo L. Berries from Different Locations in Portugal: Quantification of Lipophilic Components. Int. J. Mol. Sci. 2015, 16, 14194-14209. https://doi.org/10.3390/ijms160614194
Fonseca DFS, Salvador ÂC, Santos SAO, Vilela C, Freire CSR, Silvestre AJD, Rocha SM. Bioactive Phytochemicals from Wild Arbutus unedo L. Berries from Different Locations in Portugal: Quantification of Lipophilic Components. International Journal of Molecular Sciences. 2015; 16(6):14194-14209. https://doi.org/10.3390/ijms160614194
Chicago/Turabian StyleFonseca, Daniela F. S., Ângelo C. Salvador, Sónia A. O. Santos, Carla Vilela, Carmen S. R. Freire, Armando J. D. Silvestre, and Sílvia M. Rocha. 2015. "Bioactive Phytochemicals from Wild Arbutus unedo L. Berries from Different Locations in Portugal: Quantification of Lipophilic Components" International Journal of Molecular Sciences 16, no. 6: 14194-14209. https://doi.org/10.3390/ijms160614194
APA StyleFonseca, D. F. S., Salvador, Â. C., Santos, S. A. O., Vilela, C., Freire, C. S. R., Silvestre, A. J. D., & Rocha, S. M. (2015). Bioactive Phytochemicals from Wild Arbutus unedo L. Berries from Different Locations in Portugal: Quantification of Lipophilic Components. International Journal of Molecular Sciences, 16(6), 14194-14209. https://doi.org/10.3390/ijms160614194