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Abstract: The lipophilic composition of wild Arbutus unedo L. berries, collected from  

six locations in Penacova (center of Portugal), as well as some general chemical parameters, 

namely total soluble solids, pH, titratable acidity, total phenolic content and antioxidant 

activity was studied in detail to better understand its potential as a source of bioactive 

compounds. The chemical composition of the lipophilic extracts, focused on the fatty 

acids, triterpenoids, sterols, long chain aliphatic alcohols and tocopherols, was investigated 

by gas chromatography–mass spectrometry (GC–MS) analysis of the dichloromethane 

extracts. The lipophilic extractives of the ripe A. unedo berries ranged from 0.72% to 1.66% 

(w/w of dry weight), and consisted mainly of triterpenoids, fatty acids and sterols. Minor 

amounts of long chain aliphatic alcohols and tocopherols were also identified. Forty-one 

compounds were identified and among these, ursolic acid, lupeol, α-amyrin, linoleic and  

α-linolenic acids, and β-sitosterol were highlighted as the major components. To the best of 

our knowledge the current research study provides the most detailed phytochemical 
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repository for the lipophilic composition of A. unedo, and offers valuable information for 

future valuation and exploitation of these berries. 

Keywords: Arbutus unedo L.; ripe berries; GC–MS analysis; lipophilic composition; 

triterpenoids; fatty acids; sterols 

 

1. Introduction 

Arbutus unedo L. (A. unedo), also known as strawberry tree, is a Mediterranean plant belonging to 

the Ericaceae family and Vaccionioideae (or Arbutoideae) subfamily, with an extension along the 

Atlantic coast of Europe [1,2]. A. unedo is an evergreen shrub with spherical berries covered with 

conical hair-like spikes, soft yellow pulp and an average diameter of 2 cm [2,3]. A. unedo berries 

exploitation can be traced back to ancient times where their use in folk medicine is claimed, namely  

in treatment of kidney diseases, cardiovascular, gastrointestinal, dermatologic and urological  

disorders [4,5]. Nowadays, the market associated to these berries is mainly oriented to the production 

of alcoholic distillates and also for jellies and jams [6], and are seldom eaten as fresh fruits [7,8]. 

Understanding the chemical composition of foods, particularly focusing on the phytochemical 

fingerprinting, has become central to research in order to address the increasing demand for 

nutraceuticals in foods [9]. The chemical composition of strawberry tree berries regarding the macro- 

and micro-nutrients and phenolic compounds is relatively well known [6–8,10–25]. In the lipophilic 

fraction, the presence of polyunsaturated fatty acids, namely α-linolenic (C18:3 (Δ9, 12, 15)) and linoleic 

acid (C18:2 (Δ9, 12)) [12,15,18,24], of triterpenoids, such as lupeol, α- and β-amyrin, olean-l2-en-3β,23-diol, 

lupenone, amyrone, ursolic aldehyde, α-amyrenone, uvaol, and ursolic and oleanolic acids [26,27] and 

of sterols, such as 5-α-cholestane, cholestan-3-one, cholesterol, stigmasterol and stigmast-4-en-3-one [27] 

has been reported. However, to the best of our knowledge, there is a lack of studies regarding the 

detailed quantification of these lipophilic components in A. unedo berries. 
The particular interest in fatty acids, triterpenoids and sterols, results from their recognized benefits 

in human nutrition and therefore their importance for the valorization of these berries: lipophilic 

components have shown a wide range of biological activities such as hypocholesterolemic effect,  
anti-inflammatory, antitumor activities among others [28,29]. 

In this context, the present study aims to increase the depth of knowledge about the lipophilic fraction 

(focused on the fatty acids, long chain aliphatic alcohols, triterpenoids, sterols and tocopherols) by  

GC–MS of wild A. unedo berries lipophilic extracts. In order to establish a more representative 

lipophilic profile, wild samples harvested from six locations in Penacova (center of Portugal) were 

evaluated. Moreover, to contribute to a more complete characterization of A. unedo berries, this study 

also provides baseline information concerning total soluble solids, pH, titratable acidity, total phenolic 

content and antioxidant activity. 
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2. Results and Discussion 

2.1. General Chemical Characterization 

The general chemical parameters of the ripe A. unedo berries, namely total soluble solids (TSS), 

titratable acidity (TA), pH, total phenolic content (TPC), antioxidant activity and water content are 

displayed in Table 1. The GPS coordinates and the dichloromethane extraction yields are also presented. 

In the present study, A. unedo berries revealed water content ranging between 61.13% in location 3 

and 69.80% in location 5. These values were comparable to the previously reported for these berries 

which ranges from 42.78% to 72.59% [22,30]. The TSS of A. unedo berries ranged from 22.4 ± 0.3 to  

30.1 ± 0.8 °Brix. Fruits from location 2 and 3 presented the lowest and the highest values, respectively. 

The TSS of A. unedo berries was similar to previously reported data from Portuguese fruits  

(≈22 °Brix) [20] and from other European origins (16.50–31.68 °Brix) [30–32]. The TA of the fruits 

collected from the six locations was very similar, ranging between ca. 0.8 g of malic acid per 100 g 

fresh weight in location 4, and ca. 0.9 g of malic acid per 100 g fresh weight, in location 6. TA for 

Portuguese fruits was assessed for the first time and the results were within the range reported for the 

fruits harvested out of Portugal (0.4–1.59 g of malic acid per 100 g fresh weight) [21,30–32]. Similarly 

to TA, pH of the Portuguese fruits was evaluated here for the first time and ranged from 2.97 ± 0.05 in 

location 2, to 3.17 ± 0.07 in location 4. pH values of the berries under study were lower than the ones 

already reported for A. unedo fruits, ranging between 3.21 and 4.6 [21,22,32]. TPC, expressed as mg 

gallic acid per 100 g fresh weight, varied from 1160 ± 13 in location 2, to 2222 ± 35, in location 6. 

TPC in A. unedo berries reached higher values than those already published, not only considering 

Portuguese samples (≈445–941 mg of gallic acid per 100 g fresh weight), but also the European ones 

(590–1973 mg of gallic acid per 100 g fresh weight) [22,30]. 

The antioxidant activity of the studied A. unedo berries ranged between 0.278 ± 0.02, in location 6, 

and 0.589 ± 0.01 mg of extract per mL DPPH, in location 2. The fruits collected from location 6 

presented the lowest EC50 value, revealing the highest radical scavenging activity among the samples 

and therefore, the highest antioxidant activity. The results obtained were within the range reported in 

literature for these ripe berries (0.25–0.79 mg extract per mL DPPH) [15,18,33]. 

The comparison between the fruits collected from the six locations in the center of Portugal (Table 1) 

allowed us to observe a wide variability in the chemical parameters investigated. The differences 

detected can be attributed to various factors such as year, genetic variability (genetic data are not 

available, however different morphological characteristics of the berries and leaves may support this 

idea) and geographic position [17,22]. 
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Table 1. Geographical (GPS) coordinates, general chemical characterization and dichloromethane extraction yields of A. unedo berries 

harvested from six locations in Penacova (center of Portugal). 

Location 
GPS Coordinates Moisture 

(%) 
Total Soluble 

Solids a 
Titratable 
Acidity b 

pH 
Total Phenolic 

Content c 
Antioxidant 

Activity d 
Extraction Yield  

(%, w/w) Latitude Longitude Altitude (m) 
1 40°18ʹ22.3ʹʹ N 8°10ʹ00.5ʹʹ W 200.76 69.80 24.4 ± 0.5 0.89 ± 0.02 3.08 ± 0.02 1342 ± 76 0.469 ± 0.02 1.66 

2 40°17ʹ33.2ʹʹ N 8°11ʹ52.1ʹʹ W 125.00 62.53 22.4 ± 0.3 0.88 ± 0.02 2.97 ± 0.05 1160 ± 13 0.589 ± 0.01 1.56 

3 40°17ʹ36.7ʹʹ N 8°11ʹ51.1ʹʹ W 123.22 61.13 30.1 ± 0.8 0.85 ± 0.09 3.17 ± 0.04 1185 ± 18 0.359 ± 0.03 1.48 

4 40°16ʹ53.4ʹʹ N 8°12ʹ25.8ʹʹ W 100.00 61.87 25.7 ± 0.6 0.81 ± 0.10 3.17 ± 0.07 1889 ± 66 0.356 ± 0.01 1.58 

5 40°16ʹ37.4ʹʹ N 8°11ʹ57.5ʹʹ W 75.00 67.87 28.3 ± 0.5 0.89 ± 0.09 3.09 ± 0.07 2183 ± 48 0.343 ± 0.06 1.55 

6 40°16ʹ34.7ʹʹ N 8°11ʹ50.3ʹʹ W 75.00 69.47 22.9 ± 0.2 0.91 ± 0.02 3.05 ± 0.07 2222 ± 35 0.278 ± 0.02 0.72 
a Expressed as °Brix; b Expressed as g of malic acid per 100 g fresh weight; c Expressed as mg of gallic acid per 100 g fresh weight; d Expressed as EC50: mg of extract  

per mL DPPH. 
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2.2. Chemical Characterization of the Lipophilic Extractives from A. unedo Berries 

The dichloromethane extraction yields (Table 1) of ripe A. unedo fruits ranged between 0.72% and 

1.66%. We observed that the lowest extractive yield, 0.72%, found in sample 6, is nearly half of the 

extractive yields obtained for the berries collected from location 1 to 5. The great discrepancy in the 

lipidic content observed in A. unedo is in agreement with previously reported data concerning other 

berries, namely mulberries (Morus spp.), which ranged from 0.14% to 0.40%. These fluctuations may 

be due to different environmental conditions where the species are grown [34] and also to the genetic 

diversity of the plants [35]. To the best of our knowledge there are no reports in the literature about 

lipophilic extractives yields of A. unedo fruits. Nevertheless, these lipophilic contents were similar to 

those found for other berries such as elderberries (Sambucus nigra L.) [36]. 

The lipophilic fraction of A. unedo fruits harvested from six different locations presented similar 

compositions, either before or after alkaline hydrolysis. Figure 1 shows a typical GC–MS chromatogram 

of the A. unedo berries dichloromethane derivatized extract after alkaline hydrolysis. 

 

Figure 1. GC–MS chromatogram of the trimethylsilyl (TMS)-derivatized dichloromethane 

extracts of A. unedo berries after alkaline hydrolysis. Abbreviations: FA, fatty acids; 

LCAA, long chain aliphatic alcohols; IS, internal standard; ST, sterols; TT, triterpenoids. 

The GC–MS analysis allowed the identification of 41 compounds belonging to five chemical families, 

namely triterpenoids, sterols, fatty acids, long chain aliphatic alcohols and tocopherols. The detailed 

information about the individual components identified, expressed as mg of compound per 100 g of 

fresh berries, before and after alkaline hydrolysis, is summarized in Table 2. Triterpenoids, followed 

by fatty acids and sterols, were the major families of lipophilic compounds found in fruits from all 

locations as illustrated in Figure 2 and Table 2. 
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Figure 2. Major families of lipophilic compounds identified in A. unedo berries  

collected from six locations in Penacova (center of Portugal), before (BH) and after (AH) 

alkaline hydrolysis. 

Triterpenoids represented the major family of lipophilic components of A. unedo berries (Table 2). 

This family accounted for up to 90% of the total amount of detected compounds before hydrolysis  

and up to 70% after hydrolysis (mainly due to the strong increment in the amount of fatty acids).  

The triterpenoids content ranged from 97 and 99 mg per 100 g of fresh weight after and before 

hydrolysis, respectively, in location 6, to 206 and 234 mg per 100 g of fresh weight after and before 

hydrolysis, respectively, in location 2. Ursolic acid was the major compound representing up to 39% of 

all identified compounds before hydrolysis and up to 25% after hydrolysis. 

Other identified triterpenoids included lupeol, oleanolic acid, uvaol, olean-12-en-3β,23-diol, α- and 

β-amyrin and lupeol derivatives. All the triterpenoids identified in the present study have been 

previously described as A. unedo fruits lipophilic components [27], but without any quantification  

The total triterpenoids content of strawberry tree fruits is within the range of 100–240 mg of 

triterpenoids per 100 g fresh fruit, a value higher than that reported for other berries such as bilberry 

(Vaccinium myrtillus L.), which ranges between ca. 75 and 80 mg triterpenoids per 100 g fresh  

fruit [37]. 

Fatty acids (Table 2) represented the second major group of lipophilic compounds present in  

A. unedo fruits, corresponding to 1%–5% (1 to 10 mg per 100 g of fresh weight) of the total amount of 

detected lipophilic compounds in the dry extract before hydrolysis and between 10% and 38% after 

hydrolysis (21 to 112 mg per 100 g of fresh weight). 
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Table 2. Lipophilic composition (expressed as mg per 100 g−1 fresh weight) of A. unedo berries collected from six locations in Penacova 

(center of Portugal) Portugal, before (BH) and after (AH) alkaline hydrolysis. a 

R.t. (min) Compound 
Locations 

1 2 3 4 5 6 
BH AH BH AH BH AH BH AH BH AH BH AH 

 Fatty Acids 10 75 6 95 5 120 1 21 5 70 1 33 
 Saturated 6 19 3 20 4 28 tr 10 5 24 0 14 

8.46 Hexanoic acid C6:0 nd tr nd tr nd tr nd tr nd tr nd tr 
11.68 Octanoic acid C8:0 nd tr nd tr nd tr nd tr nd tr nd tr 
14.87 Nonanoic acid C9:0 nd tr nd tr nd tr nd tr nd tr nd tr 
17.96 Decanoic acid C10:0 nd tr nd tr nd tr nd tr nd tr nd tr 
23.61 Dodecanoic acid C12:0 tr 1 tr tr tr tr tr tr tr tr tr tr 
26.94 Tridecanoic acid C13:0 nd tr nd tr nd tr nd tr nd tr nd tr 
28.74 Tetradecanoic acid C14:0 nd 2 nd 1 nd 2 nd 1 nd 1 nd 2 
31.78 Pentadecanoic acid C15:0 nd tr nd tr nd tr nd tr nd tr nd tr 
33.49 Hexadecanoic acid C16:0 6 12 3 12 4 23 nd 4 nd 10 nd 9 
35.64 Heptadecanoic acid C17:0 nd tr nd tr nd tr nd 3 nd 7 nd tr 
37.77 Octadecanoic acid C18:0 tr 5 tr 8 tr 10 tr 2 5 4 tr 3 
41.73 Eicosanoic acid C20:0 nd tr nd tr nd tr nd tr nd 1 nd tr 
45.45 Docosanoic acid C22:0 tr tr nd tr tr tr tr tr tr 1 tr tr 
47.08 Tricosanoic acid C23:0 nd tr nd tr nd tr nd tr nd tr nd tr 
48.91 Tetracosanoic acid C24:0 tr tr tr tr tr tr tr tr tr tr tr tr 

 Unsaturated 4 46 2 75 1 85 1 11 1 45 1 19 

32.68 Hexadec-9-enoic acid C16:1 (Δ9) isomer 
tr tr tr tr tr tr tr 1 tr tr tr 10 

32.81 Hexadec-9-enoic acid C16:1 (Δ9) isomer 

36.98 
Octadeca-9,12-dienoic acid C18:2 (Δ9, 12) +  

Octadeca-9,12,15-trienoic acid C18:3 (Δ9, 12, 15) 
4 33 2 75 1 85 1 10 1 45 1 6 

37.16 Octadec-9-enoic acid C18:1 (Δ9) isomer 
tr 23 tr tr tr tr tr tr tr tr tr 3 

37.26 Octadec-9-enoic acid C18:1 (Δ9) isomer 
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Table 2. Cont. 

R.t. (min) Compound 
Locations 

1 2 3 4 5 6 
BH AH BH AH BH AH BH AH BH AH BH AH 

 Long Chain Aliphatic Alcohols 0 2 0 4 0 5 0 17 0 2 0 tr 
26.84 Tetradecan-1-ol nd tr nd tr nd tr nd 1 nd tr nd tr 
31.68 Hexadecan-1-ol nd tr nd tr nd 1 nd 9 nd 1 nd tr 
35.41 Octadec-9-en-1-ol nd 2 nd 4 nd 4 nd 7 nd 1 nd tr 
36.12 Octadecan-1-ol nd tr nd tr nd tr nd tr nd tr nd tr 

 Sterols 15 15 17 16 16 16 16 30 11 26 7 6 
55.09 Cholestan-3-one nd tr tr tr tr tr tr tr tr tr tr tr 
55.83 Campesterol nd 1 nd 1 nd tr nd tr nd 4 nd tr 
56.65 Stigmasterol tr tr tr tr tr tr tr tr tr tr tr tr 
57.75 Sitosterol 15 14 17 16 16 16 16 30 11 21 7 6 

 Triterpenoids 157 149 234 206 191 160 160 144 147 142 99 97 
57.16 Amyrin derivative 2 tr 2 2 2 tr 2 12 1 2 1 tr 
57.33 Lupenone 3 2 3 3 4 3 3 3 2 1 1 1 
57.57 β-Amyrin 2 1 1 1 2 1 2 26 tr 6 1 13 
58.24 α-Amyrin 29 26 36 31 32 28 36 35 24 38 37 50 
58.54 Lupeol 35 35 49 44 33 30 31 3 31 43 3 tr 
59.62 Lupenyl acetate 5 5 8 7 6 5 1 1 3 3 2 3 
62.10 Olean-12-en-3β,23-diol 3 3 5 5 3 3 3 3 3 3 1 2 
62.25 Uvaol 1 2 35 31 26 23 3 4 18 7 1 1 
62.50 Oleanolic acid 24 22 2 1 2 2 17 21 1 10 10 8 
63.56 Ursolic acid 54 53 93 81 81 63 62 36 63 28 42 20 

 Tocopherols 10 2 6 3 4 2 3 1 1 4 2 1 
53.88 α-Tocopherol 4 1 3 2 1 1 1 1 1 2 1 tr 
54.18 γ-Tocopherol 6 2 3 1 3 1 2 tr tr 2 1 tr 

 Total (mg 100 g−1 fresh fruit) 192 243 262 324 217 303 179 213 164 243 109 137 
a Abbreviations: nd, not detected; tr, traces. The results are the average of the concordant values obtained for each sample (less than 5% variation between injections). 
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After hydrolysis, the total fatty acids content increased up to 70 times and the content of unsaturated 

fatty acids was found to be considerably higher than that of saturated fatty acids in all samples, with 

the exception of location 4. The highest ratio of unsaturated/saturated fatty acids was about 3.6 in 

location 2 and the lowest was about 1 in location 4. As illustrated in Figure 2 and Table 2, it can be 

seen that the fatty acid content of the berries harvested from location 4 is the lowest, when compared to 

the remaining samples. This difference can be attributed to the complex interactions between intrinsic 

factors, such as the genetic factors and vegetative stage of the plant, and extrinsic factors such as type 

of soil, microclimatic conditions (level of radiation, temperature, wind exposure and water availability) 

and geographic position [35]. 

The identified fatty acids ranged from hexanoic (C6:0) to tetracosanoic acids (C24:0), including six 

unsaturated structures (cis- and trans-C16:1 and C18:1, C18:2 and C18:3). Hexadecanoic acid (C16:0) 

was the most abundant saturated fatty acid in A. unedo fruits with the highest content observed in 

location 3, with 16 mg per 100 g of fresh weight after hydrolysis. Octadeca-9,12-dienoic (ω-6) and 

octadeca-9,12,15-trienoic (ω-3) acids were the major unsaturated fatty acids reaching up to 85 mg per 

100 g of fresh weight in location 3 after hydrolysis. These were followed by cis- and trans-octadec-9-enoic 

acids and cis- and trans-hexadec-9-enoic acids. The compounds identified in the present study have 

already been reported in A. unedo fruits however, only the contents of hexadecanoic, octadec-9-enoic, 

octadeca-9,12-dienoic and octadeca-9,12,15-trienoic acids were reported [15,18,30]. Previous studies 

revealed that octadeca-9,12-dienoic and octadeca-9,12,15-trienoic acids accounted for 92.1 ± 6.6 mg 

and 83.5 ± 16.3 mg per 100 g, followed by hexadecanoic and octadec-9-enoic acids which accounted 

for 50.01 ± 1.0 and 39.9 ± 9.2 mg per 100 g fresh weight respectively [30]. In this study, the  

octadeca-9,12-dienoic and octadeca-9,12,15-trienoic acids content represented about 120 mg per 100 g 

fresh fruit, about 23 mg of octadec-9-enoic acid and 24 mg of hexadecanoic acid (Table 2). These results 

were in agreement with previously reported data on A. unedo berries: unsaturated fatty acids were 

predominant over the saturated fatty acids, with octadeca-9,12-dienoic and octadeca-9,12,15-trienoic 

acids as the major compounds after hydrolysis [15,30]. 

The sterols found in A. unedo include cholestan-3-one, campesterol, stigmasterol and β-sitosterol 

(Table 2). These phytosterols represented up to 9% of the total extract before hydrolysis and up to 14% 

after hydrolysis (6–30 mg per 100 g of fresh weight). β-sitosterol was the main component of this 

family, representing between 82% and 100% of total sterols content (6–30 mg per 100 g of fresh weight). 

With the exception of campesterol all the sterols identified in the present study have already been 

reported in the literature as A. unedo berries components [27], but their quantification was not reported 

before. The sterols content of strawberry tree fruits reported here (Table 2) is similar to the values 

reported for other berries, such as bilberry (Vaccinium myrtillus L.), with ca. 18 and 23 mg sterols per 

100 g fresh fruit [37], and higher than that reported for sea-buckthorn (Hippophae rhamnoides L.) 

(0.33 to 0.53 mg per 100 g of fresh weight) [38]. 

Long-chain aliphatic alcohols were detected in quite low amounts after alkaline hydrolysis, 

representing about 1%–8% of the total lipophilic extractives of ripe A. unedo fruits (ranged from 2 to 

17 mg per 100 g of fresh weight, for locations 2 and 5, and 4, respectively). No aliphatic alcohols  

have been detected before hydrolysis. Octadec-9-en-1-ol was the most abundant compound identified, 

representing 43%–100% of the total long-chain aliphatic alcohols. 
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Tocopherols (α- and γ-tocopherols) were detected as the minor class of compounds in A. unedo 

berries. The highest tocopherol content (10 mg per 100 g of fresh weight) was found in location 1, 

before hydrolysis, and after hydrolysis in location 5 with 4 mg per 100 g of fresh weight of berries. 

The content of tocopherols found in strawberry tree fruits was higher than that reported in literature for 

the same fruits, with 0.023–9.4 mg per 100 g fresh weight [7,18]. 

3. Experimental Section 

3.1. Chemicals 

Dichloromethane (≥99% purity), methanol (≥99.8% purity) and sodium hydroxide (≥97% purity) were 

supplied by Fischer Scientific (Pittsburgh, PA, USA). Hydrochloric acid (≥37%) was purchased from 

Fluka Chemie (Madrid, Spain). Tetracosane (99% purity), N,O-bis(trimethylsilyl)trifluoroacetamide 

(99% purity), trimethylchlorosilane (99% purity), hexadecanoic acid (≥99% purity), nonadecan-1-ol 

(99% purity), cholesterol (99% purity), ursolic acid (≥90% purity), oleanolic acid (≥97% purity), and 

betulinic acid (≥98% purity) were obtained from Sigma Chemicals Co. (Madrid, Spain). Pyridine 

(≥99.5% purity) was purchased from Panreac (Castellar del Vallès, Spain). 

3.2. Samples 

A. unedo berries were supplied by Medronhalva Lda., from São Pedro de Alva, in Penacova, 

Portugal. The wild fruits were harvested from 6 locations (Table 1) in order to acquire a representative 

sampling, reflecting the natural variability of the berries from that region. 

A. unedo berries (around 500 g for each sample) were hand-harvested on-site at a mature stage, in 

11 December 2013. The mature stage was established based on the following parameters: total soluble 

solids (expressed as °Brix, which should be at least 16.5 [31]), titratable acidity (should be at least  

0.4 g of malic acid per 100 g fresh fruit [31]) and also on fruit’s colour (homogenous red-scarlet 

pigmentation). After harvesting, the fruits were refrigerated, transported to the laboratory and stored at 

−20 °C until analysis. 

3.3. General Chemical Characterization 

The total soluble solids content, titratable acidity and pH determination was performed as described 

by Ruiz-Rodríguez et al. [22]. The total soluble solids content was determined using a hand-held 

refractometer (Atago) directly in the fruits pulp. pH was measured using a Crison micropH 2000  

pH-meter over an homogenized sample (obtained from the fruits manually crushed) 1/4 (w/v) in 

distilled water. TA was determined by titration with 0.1 M NaOH until pH of 8.1 was reached and was 

expressed as g malic acid per100 g fresh weight. 

Prior to the total phenolic content and the antioxidant activity determination, the samples were 

prepared accordingly to Santos et al. [39]. A. unedo berries were freeze-dried using a VirTis BenchTop 

K (SP Industries, New York, NY, USA), and the water content determined (105 °C/8 h). Nearly 15 g 

(±0.1) of each sample were accurately weighed and ground prior to extraction and submitted to  

a Soxhlet extraction with dichloromethane for 6 h to remove the lipophilic fraction. The solid residue 

was suspended (mass/volume 1:100) in a methanol/water/acetic acid mixture, 49.5:49.5:1 at room 
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temperature for 24 h under constant stirring to extract the phenolic compounds. The suspension  

was then filtered, methanol removed by low-pressure evaporation, and the extract freeze-dried.  

All extractions were performed in triplicate. 

The total phenolic content of the samples was determined by the Folin-Ciocalteu method as described 

by Singleton [40]. The method is based on the addition of 500 μL of distilled water to 125 μL of the 

diluted sample (the previously mentioned extract) and 125 μL of Folin-Ciocalteu reagent. The mixture 

is kept for 5 min and then 1.25 mL of Na2CO3 (75 g·L−1) and 1 mL of distilled water are added.  

The solutions were kept for 30 min and then the absorbance was measured at λ = 760 nm. All the 

measurements were made in triplicate, using three aliquots of each extract and the average value  

was calculated in each case. The total phenolic content was calculated as gallic acid equivalents  

from the calibration curve of gallic acid standard solutions (50–250 mg·L−1; calibration curve:  

y = 0.0045x + 0.049; r2 = 0.9989) and expressed as mg of gallic acid equivalent (GAE) per 100 g fresh 

weight [39]. 

The antioxidant activity was determined by the DPPH method [41]. Briefly, 3.9 mL of DPPH 

solution was added to 0.1 mL of sample containing different concentrations (0.313, 0.625, 1.25, 2.5 

and 5 mg extract per mL of solution). The mixture was kept for 30 min in the dark. The absorbance was 

measured at 515 nm, in a Perkin Elmer Lambda 35 UV-Vis Spectrometer and compared with a control 

sample. All measurements were made in triplicate, using three aliquots of each extract and the average 

value was calculated in each case. The antioxidant activity was expressed as EC50, mg of dry extract 

that reduces DPPH in 50% [39]. EC50 was calculated by: (Abs control − Abs sample)/Abs control × 100 

and were determined from the plotted graphs of EC50 against the concentration of the extracts. 

For all the above reported methods, three independent aliquots of each sample were analysed. 

3.4. Lipophilic Compounds Determination 

3.4.1. Extraction 

The lipophilic extracts were obtained as aforementioned in Section 3.3, prior to the extraction of the 

phenolic fraction. To the extraction of the lipophilic fraction, dichloromethane was chosen because it is 

a fairly specific solvent for lipophilic extractives for analytical purposes [42]. 

3.4.2. Alkaline Hydrolysis 

About 20 mg (±0.1) of each lipophilic extract was accurately weighed and dissolved in 10 mL of  

1 M NaOH in 50% aqueous methanol. The mixture was heated at 100 °C, under a nitrogen atmosphere, 

for 1 h. The reaction mixture was cooled, acidified with 1 M HCl to pH ≈ 2, and then extracted three 

times with dichloromethane, and the solvent was evaporated to dryness [42]. The alkaline hydrolysis 

reaction was performed to detect indirectly esterified compounds, e.g., triglycerides, steryl esters, etc. 

3.4.3. GC–MS Analysis 

Before GC–MS analysis, nearly 20 mg (±0.1) of each DCM extract solid residue was accurately 

weighed and converted into trimethylsilyl (TMS) derivatives according to a previously optimized 

methodology [43]. Briefly, each sample was dissolved in 250 μL of pyridine containing 1 mg of 
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tetracosane (internal standard), and compounds with hydroxyl and carboxyl groups were converted  

into trimethylsilyl ethers and esters, respectively, by adding 250 μL of N,O-bis(trimethylsilyl)-

trifluoroacetamide and 50 μL of trimethylchlorosilane. The mixture was maintained at 70 °C for 30 min. 

GC–MS analyses were performed using a Trace Gas Chromatograph 2000 Series equipped with  

a Thermo Scientific DSQ II single-quadropole mass spectrometer (Waltham, MA, USA). Separation of 

compounds was carried out in a DB-1 J&W capillary column (30 m × 0.32 mm inner diameter,  

0.25 μm film thickness, Agilent Technologies, Santa Clara, CA, USA) using helium as the carrier gas 

(35 cm·s−1). The chromatographic conditions were as follows: initial temperature, 80 °C for 5 min, 

temperature rate, 4 °C·min−1 up to 260 °C, 2 °C·min−1 up to 285 °C, then maintained for 10 min; 

injector temperature, 250 °C; transfer-line temperature, 290 °C, split ratio, 1:50. The mass spectrometer 

was operated in the electron impact (EI) mode with electron impact energy of 70 eV, and data were 

collected at a rate of 1 scan·s−1 over a range of m/z 33–700. The ion source was kept at 250 °C. Data 

acquisition was carried out with the Xcalibur data system (ThermoFinnigan, San Jose, CA, USA). 

Chromatographic peaks were identified as TMS derivatives by comparing their mass spectra with 

the equipment mass spectral library (Wiley-NIST Mass Spectral Library, Oxford, UK, 1999), with 

literature MS fragmentation data [43–46] and also by injection of standards. For semi-quantitative 

analysis, GC–MS was calibrated with hexadecanoic acid for fatty acids, nonadecan-1-ol for long  

chain aliphatic alcohols, cholesterol for phytosterols, ursolic, oleanolic and betulinic acids for the 

corresponding compounds relative to tetracosane, used as internal standard as described in detail in 

previous studies [44,45]. The respective response factors needed to obtain correct quantification of the 

peak areas were calculated as the average of four GC–MS runs. For tocopherol the response factor of 

sterols was used. The compound contents are expressed as mg per 100 g of fresh weight of fruit. For 

each extract, two independent aliquots before alkaline hydrolysis, and another two aliquots after 

alkaline hydrolysis were prepared. Each aliquot was injected in triplicate. The results of Figure 2 and 

Table 2 are the average of the concordant values obtained for each sample (less than 5% variation 

between injections of the same aliquot). 

4. Conclusions 

The present work represents a detailed phytochemical study about the lipophilic fraction from ripe 

A. unedo berries, being the berries harvested from six locations from Penacova (center of Portugal). 

Fatty acids, triterpenoids, sterols, long-chain aliphatic alcohols and tocopherols were the main chemical 

families under study, with triterpenoids as the predominant compounds, followed by fatty acids and 

sterols. Long-chain aliphatic alcohols and tocopherols were identified as minor components. Among 

the 41 compounds identified, ursolic acid, lupeol, linoleic and α-linolenic acids and β-sitosterol were 

the main constituents. To the best of our knowledge, long chain fatty alcohols, as well as campesterol, 

were reported for the first time as components of strawberry tree berries and a comprehensive 

quantification of several lipophilic components was accomplished also for the first time. The present 

study also unveiled the A. unedo berries as a source of ω-3 and ω-6 fatty acids, phytosterols and 

tocopherols, compounds with well-established beneficial effects in human health. This may be useful 

to value A. unedo fruits as sources of valuable phytochemicals and enhance future applications with 

nutritional, pharmacological or cosmetic purposes. Furthermore, this information can also be relevant 
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for the valorization of residues from A. unedo alcoholic beverages distillery. A high variability in the 

lipophilic content of wild A. unedo berries collected from the six locations was observed, therefore it 

will be important to study the effect of ripening, season, genotype, harvesting and processing in order 

to understand the profile of variation of the lipophilic composition of A. unedo berries. Finally, the full 

understanding of these berries nutraceutical potential also require a systematic analysis of other 

fractions as for example phenolic compounds, which will be reported soon. 
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