How Can AI Virtual Streamers Gain Consumer Trust to Influence Purchase Intention in Live-Streaming E-Commerce?
Abstract
1. Introduction
- (1)
- How do the characteristics and scenario fit of AI streamers affect purchase intention?
- (2)
- How do consumers perceive and trust different types of AI streamers and live-streaming scenarios?
- (3)
- How do consumers’ innovativeness and product types moderate the differences in consumer trust caused by AI streamers’ characteristics and live-streaming scenarios?
2. Theoretical Background and Literature Review
2.1. Stimulus–Organism–Response Framework
2.2. AI Streamer Marketing
3. Research Model and Hypotheses
3.1. Research Model
3.2. AI Streamers’ Image and Ability Characteristics as Second-Order Constructs
3.3. Hypotheses Development
3.3.1. The Effect of AI Streamers on Purchase Intention
3.3.2. Mediating Role of Consumer Trust
3.3.3. Moderating Role of Consumer Innovativeness
3.3.4. Moderating Role of Product Type
4. Methods
4.1. Questionnaire and Measures
4.2. Control Variables
4.3. Sampling
4.4. Normality Test
4.5. Data Analysis
4.6. Common Method Bias
5. Results
5.1. PLS-SEM
5.1.1. Assessment of Reflective Constructs
5.1.2. Assessment of the Formative Construct
5.1.3. Structural Model and Hypothesis Testing
5.1.4. The Mediating Effect of Consumer Trust
5.1.5. The Moderating Effect of Consumer Innovativeness
5.1.6. Multigroup Analysis
5.2. fsQCA
5.2.1. Variable Calibration
5.2.2. Necessity Analysis
5.2.3. Configuration Analysis
6. Discission and Conclusions
6.1. Key Findings
6.2. Theoretical Contributions
6.3. Managerial Implications
6.4. Research Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Construct | Item | Scales | |
|---|---|---|---|
| AI streamers’ characteristics (AC) | Cuteness | CU1 | The AI streamer is very cute. |
| CU2 | The AI streamer is very likable. | ||
| CU3 | The AI streamer is very popular. | ||
| Vitality | VI1 | The AI streamer is very lifelike and vibrant. | |
| VI2 | The AI streamer is very energetic. | ||
| VI3 | The AI streamer is very natural. | ||
| Professionalism | PR1 | The AI streamer has relevant knowledge in this product field (product brand, performance, price) | |
| PR2 | The AI streamer can make effective evaluations of the products it recommends. | ||
| PR3 | The AI streamer has extensive experience in selecting and showcasing products to the audience. | ||
| Responsiveness | RE1 | The AI streamer is always willing to help the audience solve problems. | |
| RE2 | The AI streamer provides timely service to the audience (promptly responding to audience requests). | ||
| RE3 | The AI streamer can provide the service in one go (accurately respond to the audience’s requests). | ||
| AI streamers’ scenario fit (SF) | SF1 | The background of the live stream matches the brand products very well. | |
| SF2 | The theme of the live stream is very suitable for the brand or product image. | ||
| SF3 | The style of the live stream is consistent with the tone of the brand or product. | ||
| Consumer innovativeness (CI) | CI1 | I like to get in touch with new things earlier than other people. | |
| CI2 | I am an early user of many new products. | ||
| CI3 | I like to buy new products or use new technologies. | ||
| Consumer trust (CT) | CT1 | I believe the AI streamer’s introduction and recommendation of the product are trustworthy. | |
| CT2 | The AI streamer will do its best to help me solve problems encountered during the shopping process. | ||
| CT3 | I believe in the after-sales service promised by the AI streamer. | ||
| Purchase intention (PI) | PI1 | The AI streamer’s recommendations have enriched my understanding of certain product characteristics and services. | |
| PI2 | In the future, when I want to shop, I will consider the recommendations of the AI streamer. | ||
| PI3 | I would recommend my family and friends to purchase products or services from this live streamer. | ||
References
- Wongkitrungrueng, A.; Assarut, N. The role of live streaming in building consumer trust and engagement with social commerce sellers. J. Bus. Res. 2020, 117, 543–556. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, N.; Guo, Q. How do virtual streamers affect purchase intention in the live streaming context? A presence perspective. J. Retail. Consum. Serv. 2023, 73, 103356. [Google Scholar] [CrossRef]
- Wu, R.; Liu, J.; Chen, S.; Tong, X. The effect of E-commerce virtual live streamer socialness on consumers’ experiential value: An empirical study based on Chinese E-commerce live streaming studios. J. Res. Interact. Mark. 2023, 17, 714–733. [Google Scholar] [CrossRef]
- Kim, E.Y.; Ko, S.H. Consumer Responses toward Fashion Collaboration Brands—Effects of Collaboration Type and Brand Sensitivity. J. Korean Soc. Cloth. Text. 2012, 36, 1058–1073. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Zhu, P. How do e-commerce anchors’ characteristics influence consumers’ impulse buying? An emotional contagion perspective. J. Retail. Consum. Serv. 2024, 76, 103587. [Google Scholar] [CrossRef]
- Zhang, A.; Rau, P.L.P. Tools or peers? Impacts of anthropomorphism level and social role on emotional attachment and disclosure tendency towards intelligent agents. Comput. Hum. Behav. 2023, 138, 107415. [Google Scholar] [CrossRef]
- Liao, J.; Chen, K.; Qi, J.; Li, J.; Yu, I.Y. Creating immersive and parasocial live shopping experience for viewers: The role of streamers’ interactional communication style. J. Res. Interact. Mark. 2023, 17, 140–155. [Google Scholar] [CrossRef]
- Balakrishnan, J.; Dwivedi, Y.K. Conversational commerce: Entering the next stage of AI-powered digital assistants. Ann. Oper. Res. 2024, 333, 653–687. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, K.; Wang, C. Way to success: Understanding top streamer’s popularity and influence from the perspective of source characteristics. J. Retail. Consum. Serv. 2022, 64, 102786. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X. Expectancy violations and discontinuance behavior in live-streaming commerce: Exploring human interactions with virtual streamers. Behav. Sci. 2024, 14, 920. [Google Scholar] [CrossRef]
- Xin, M.; Jian, L.; Liu, W.; Bao, Y. Exploring the Effect of Live Streaming Atmospheric Cues on Consumer Impulse Buying: A Flow Experience Perspective. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 149. [Google Scholar] [CrossRef]
- Pan, R.; Feng, J.; Zhao, Z. Fly with the wings of live-stream selling—Channel strategies with/without switching demand. Prod. Oper. Manag. 2022, 31, 3387–3399. [Google Scholar] [CrossRef]
- Qin, M.; Liu, M. How consumer perceptions of virtual streamers affect purchase intention in live streaming commerce: Based on cognition-affect-behavior model. Asia Pac. J. Mark. Logist. 2025, 37, 1679–1695. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Y.; Li, T.; Guan, Y.; Cui, X. How do virtual AI streamers influence viewers’ livestream shopping behavior? The effects of persuasive factors and the mediating role of arousal. Inf. Syst. Front. 2024, 26, 1803–1834. [Google Scholar] [CrossRef]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Eroglu, S.A.; Machleit, K.A.; Davis, L.M. Atmospheric qualities of online retailing. J. Bus. Res. 2001, 54, 177–184. [Google Scholar] [CrossRef]
- Bues, M.; Steiner, M.; Stafflage, M.; Krafft, M. How Mobile In-Store Advertising Influences Purchase Intention: Value Drivers and Mediating Effects from a Consumer Perspective. Psychol. Mark. 2017, 34, 157–174. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K. How live streaming influences purchase intentions in social commerce: An IT affordance perspective. Electron. Commer. Res. Appl. 2019, 37, 100886. [Google Scholar] [CrossRef]
- Meng, L.; Duan, S.; Zhao, Y.; Lü, K.; Chen, S. The impact of online celebrity in livestreaming E-Commerce on purchase intention from the perspective of emotional contagion. J. Retail. Consum. Serv. 2021, 63, 102733. [Google Scholar] [CrossRef]
- Rungruangjit, W. What drives Taobao live streaming commerce? The role of parasocial relationships, congruence and source credibility in Chinese consumers’ purchase intentions. Heliyon 2022, 8, e09676. [Google Scholar] [CrossRef]
- Yang, G.; Chaiyasoonthorn, W.; Chaveesuk, S. Exploring the influence of live streaming on consumer purchase intention: A structural equation modeling approach in the Chinese E-commerce sector. Acta Psychol. 2024, 249, 104415. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Chen, Q. The effects of tourism e-commerce live streaming features on consumer purchase intention: The mediating roles of flow experience and trust. Front. Psychol. 2022, 13, 995129. [Google Scholar] [CrossRef]
- Kang, K.; Lu, J.; Guo, L.; Li, W. The dynamic effect of interactivity on customer engagement behavior through tie strength: Evidence from live streaming commerce platforms. Int. J. Inf. Manag. 2021, 56, 102251. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, X.; Zhai, M.; Zhang, D.; Li, G. AI or human? The effect of streamer types on consumer purchase intention in live streaming. Int. J. Hum.–Comput. Interact. 2025, 41, 305–317. [Google Scholar] [CrossRef]
- Malik, A.A.; Brem, A. Digital twins for collaborative robots: A case study in human-robot interaction. Robot. Comput.-Integr. Manuf. 2021, 68, 102092. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Y. Signaling Effects in AI Streamers: Optimal Separation Strategy Under Different Market Conditions. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 2997–3016. [Google Scholar] [CrossRef]
- Gambino, A.; Liu, B. Considering the context to build theory in HCI, HRI, and HMC: Explicating differences in processes of communication and socialization with social technologies. Hum.-Mach. Commun. 2022, 4, 111–130. [Google Scholar] [CrossRef]
- Hermann, E. Artificial intelligence and mass personalization of communication content—An ethical and literacy perspective. New Media Soc. 2022, 24, 1258–1277. [Google Scholar] [CrossRef]
- Shibuya, Y.; Hamm, A.; Pargman, T.C. Mapping HCI research methods for studying social media interaction: A systematic literature review. Comput. Hum. Behav. 2022, 129, 107131. [Google Scholar] [CrossRef]
- Cuddy, A.J.; Fiske, S.T.; Glick, P. Warmth and competence as universal dimensions of social perception: The stereotype content model and the BIAS map. Adv. Exp. Soc. Psychol. 2008, 40, 61–149. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, X.; Cohen, J.; Mou, J. Human vs. AI: Understanding the impact of anthropomorphism on consumer response to chatbots from the perspective of trust and relationship norms. Inf. Process. Manag. 2022, 59, 102940. [Google Scholar] [CrossRef]
- De Visser, E.J.; Monfort, S.S.; McKendrick, R.; Smith, M.A.; McKnight, P.E.; Krueger, F.; Parasuraman, R. Almost human: Anthropomorphism increases trust resilience in cognitive agents. J. Exp. Psychol. Appl. 2016, 22, 331. [Google Scholar] [CrossRef]
- Aslami, N.; Apriani, A.; Widayati, C.C.; Losi, R.V. The role of trust in mediating perceived ease of use, perceived risk and e-WOM on purchase intention. J. Persp. Manaj. Kewiraus. 2022, 2, 69–81. [Google Scholar] [CrossRef]
- Oktaviani, R.; Murwani, F.D.; Hermawan, A. The Effect of Live Streaming Quality on Purchase Intention through Immersive Experience, Consumer Trust, and Perceived Value (Study of This is April Consumers on TikTok). Int. J. Bus. Law Educ. 2024, 5, 765–789. [Google Scholar] [CrossRef]
- Chandrruangphen, E.; Assarut, N.; Sinthupinyo, S. The effects of live streaming attributes on consumer trust and shopping intentions for fashion clothing. Cogent. Bus. Manag. 2022, 9, 2034238. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Xu, Y.; Zeng, K. How live streaming features impact consumers’ purchase intention in the context of cross-border E-commerce? A research based on SOR theory. Front. Psychol. 2021, 12, 767876. [Google Scholar] [CrossRef]
- Xiao, Y.; Ihara, M. Analyzing key opinion leaders’ live commerce strategies in a cross-cultural environment: Insights from Japan–China e-commerce. J. Int. Consum. Mark. 2025, 4, 362–376. [Google Scholar] [CrossRef]
- Liu-Thompkins, Y.; Okazaki, S.; Li, H. Artificial empathy in marketing interactions: Bridging the human-AI gap in affective and social customer experience. J. Acad. Mark. Sci. 2022, 50, 1198–1218. [Google Scholar] [CrossRef]
- Ma, S.; Wei, W.; Wang, J.; Liu, H.; Song, Y.; Yang, L. Influencing Factors of Consumers’ Impulse Purchase Intentions in Livestream E-Commerce Based on DEMATEL-AISM. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 86. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Yeoh, W.; Qi, C.; Jiang, H. Exploring the Interaction Between Streaming Modes and Product Types in E-Commerce Sales. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 53. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, B.; Zhang, P.; Qi, J.; Cao, J.; Gao, D.; Zhao, H.; Feng, X.; Wang, Q.; Zhuo, L.; et al. A virtual character generation and animation system for E-Commerce live streaming. In Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2021; Volume 578, pp. 1202–1211. [Google Scholar] [CrossRef]
- Chen, H. Application progress of artificial intelligence and augmented reality in orthopaedic arthroscopy surgery. J. Orthop. Surg. Res. 2023, 18, 775. [Google Scholar] [CrossRef]
- Bai, S.; Cao, L.; Zhou, J. Is the Anthropomorphic Virtual Anchor Its Optimal Form? An Exploration of the Impact of Virtual Anchors’ Appearance on Consumers’ Emotions and Purchase Intention. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 110. [Google Scholar] [CrossRef]
- Niu, B.; Yu, X.; Dong, J. Could AI livestream perform better than KOL in cross-border operations? Transp. Res. Part E Logist. Transp. Rev. 2023, 174, 103130. [Google Scholar] [CrossRef]
- Huang, M.; Rust, R.T. Artificial intelligence in service. J. Serv. Res. 2018, 21, 155–172. [Google Scholar] [CrossRef]
- Gervasi, R.; Mastrogiacomo, L.; Franceschini, F. A conceptual framework to evaluate human-robot collaboration. Int. J. Adv. Manuf. Technol. 2020, 108, 841–865. [Google Scholar] [CrossRef]
- Xiao, L.; Kumar, V. Robotics for customer service: A useful complement or an ultimate substitute? J. Serv. Res. 2021, 24, 9–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhao, X. Supervising or assisting? The influence of virtual anchor driven by AI–human collaboration on customer engagement in live streaming e-commerce. Electron. Commer. Res. 2025, 25, 3047–3070. [Google Scholar] [CrossRef]
- Sun, L.; Tang, Y. Avatar effect of AI-enabled virtual streamers on consumer purchase intention in e-commerce livestreaming. J. Consum. Behav. 2024, 23, 2999–3010. [Google Scholar] [CrossRef]
- Zhu, Y.; Xin, L.; Wang, H.; Park, H. Effects of AI Virtual Anchors on Brand Image and Loyalty: Insights from Perceived Value Theory and SEM-ANN Analysis. Systems 2025, 13, 79. [Google Scholar] [CrossRef]
- Thien, L.M. Assessing a second-order quality of school life construct using partial least squares structural equation modelling approach. Int. J. Res. Method Educ. 2022, 43, 243–256. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F., Jr.; Cheah, J.H.; Becker, J.M.; Ringle, C.M. How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australas. Mark. J. 2019, 27, 197–211. [Google Scholar] [CrossRef]
- Jarvis, C.B.; MacKenzie, S.B.; Podsakoff, P.M. A critical review of construct indicators and measurement model misspecification in marketing and consumer research. J. Consum. Res. 2003, 30, 199–218. [Google Scholar] [CrossRef]
- Hu, Q.; Lu, Y.; Pan, Z.; Gong, Y.; Yang, Z. Can AI artifacts influence human cognition? The effects of artificial autonomy in intelligent personal assistants. Int. J. Inf. Manag. 2021, 56, 102250. [Google Scholar] [CrossRef]
- Ou, C.X.; Pavlou, P.A.; Davison, R.M. Swift guanxi in online marketplaces: The role of computer-mediated communication technologies. MIS Q. 2014, 38, 209–230. [Google Scholar] [CrossRef]
- Wang, C.; Liu, T.; Zhu, Y.; Wang, H.; Wang, X.; Zhao, S. The influence of consumer perception on purchase intention: Evidence from cross-border E-commerce platforms. Heliyon 2023, 9, e21617. [Google Scholar] [CrossRef]
- Chen, H.; Shao, B.; Yang, X.; Kang, W.; Fan, W. Avatars in live streaming commerce: The influence of anthropomorphism on consumers’ willingness to accept virtual live streamers. Comput. Hum. Behav. 2024, 156, 108216. [Google Scholar] [CrossRef]
- Yu, X.; Xu, Z.; Song, Y.; Liu, X. The cuter, the better? The impact of cuteness on intention to purchase AI voice assistants: A moderated serial-mediation model. Front. Psychol. 2022, 13, 1036848. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, N.; Guo, Q. How cool virtual streamer influences customer in live-streaming commerce? An explanation of stereotype content model. J. Retail. Consum. Serv. 2025, 82, 104139. [Google Scholar] [CrossRef]
- Clark, N.K.; Rutter, D.R. Social categorization, visual cues, and social judgements. Eur. J. Soc. Psychol. 1985, 15, 105–119. [Google Scholar] [CrossRef]
- Robbins, T.L.; DeNisi, A.S. A closer look at interpersonal affect as a distinct influence on cognitive processing in performance evaluations. J. Appl. Psychol. 1994, 79, 341. [Google Scholar] [CrossRef]
- Park, H.J.; Lin, L.M. The effects of match-ups on the consumer attitudes toward internet celebrities and their live streaming contents in the context of product endorsement. J. Retail. Consum. Serv. 2020, 52, 101934. [Google Scholar] [CrossRef]
- McCormick, K. Celebrity endorsements: Influence of a product-endorser match on Millennials attitudes and purchase intentions. J. Retail. Consum. Serv. 2016, 32, 39–45. [Google Scholar] [CrossRef]
- Lee, A.Y.; Labroo, A.A. The effect of conceptual and perceptual fluency on brand evaluation. J. Mark. Res. 2004, 41, 151–165. [Google Scholar] [CrossRef]
- Garbarino, E.; Johnson, M.S. The different roles of satisfaction, trust, and commitment in customer relationships. J. Mark. 1999, 63, 70–87. [Google Scholar] [CrossRef]
- Qureshi, I.; Fang, Y.; Ramsey, E.; McCole, P.; Ibbotson, P.; Compeau, D. Understanding online customer repurchasing intention and the mediating role of trust–an empirical investigation in two developed countries. Eur. J. Inf. Syst. 2009, 18, 205–222. [Google Scholar] [CrossRef]
- Sharma, N.K.; Kushwaha, G.S. Eco-labels: A tool for green marketing or just a blind mirror for consumers. Electron. Green J. 2019, 1. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Z.; Zhu, Y.; Huang, X.; Wu, Y. The impact of social presence on consumer stickiness: The mediating role of trust and the moderating effect of closeness. Curr. Psychol. 2025, 44, 2102–2113. [Google Scholar] [CrossRef]
- Thongpapanl, N.; Ashraf, A.R.; Lapa, L.; Venkatesh, V. Differential effects of customers’ regulatory fit on trust, perceived value, and m-commerce use among developing and developed countries. J. Int. Mark. 2018, 26, 22–44. [Google Scholar] [CrossRef]
- Lee, S.M.; Chen, L. The impact of flow on online consumer behavior. J. Comput. Inform. Syst. 2010, 50, 1–10. [Google Scholar] [CrossRef]
- Finkel, E.J.; Eastwick, P.W. Interpersonal attraction: In search of a theoretical Rosetta Stone. Pers. Soc. Psychol. 2015, 3, 179–210. [Google Scholar] [CrossRef]
- Hausman, A.V.; Siekpe, J.S. The effect of web interface features on consumer online purchase intentions. J. Bus. Res. 2009, 62, 5–13. [Google Scholar] [CrossRef]
- Beverland, M.B.; Lindgreen, A.; Vink, M.W. Projecting authenticity through advertising: Consumer judgments of advertisers’ claims. J. Advert. 2008, 37, 5–15. [Google Scholar] [CrossRef]
- Bansal, H.S.; Voyer, P.A. Word-of-mouth processes within a services purchase decision context. J. Serv. Res. 2000, 3, 166–177. [Google Scholar] [CrossRef]
- Casaló, L.V.; Flavián, C.; Ibáñez-Sánchez, S. Influencers on Instagram: Antecedents and consequences of opinion leadership. J. Bus. Res. 2020, 117, 510–519. [Google Scholar] [CrossRef]
- Rogers, E.M.; Shoemaker, F.F. Communication of Innovations: A Cross-Cultural Approach; The Free Press: New York, NY, USA, 1971; 476p. [Google Scholar] [CrossRef]
- Anwar, A.; Thongpapanl, N.; Ashraf, A.R. Strategic imperatives of mobile commerce in developing countries: The influence of consumer innovativeness, ubiquity, perceived value, risk, and cost on usage. J. Strat. Mark. 2021, 29, 722–742. [Google Scholar] [CrossRef]
- Schouten, A.P.; Janssen, L.; Verspaget, M. Celebrity vs. Influencer endorsements in advertising: The role of identification, credibility, and Product-Endorser fit. Int. J. Advert. 2021, 39, 258–281. [Google Scholar] [CrossRef]
- Deng, L.; Tan, J.; He, D.; Zhao, H.; Wang, Z. Dynamic Mechanism of Destination Brand Diffusion: Agent-Based Modeling and Simulation. Systems 2024, 12, 124. [Google Scholar] [CrossRef]
- Alexander, D.L.; Lynch, J.G., Jr.; Wang, Q. As Time Goes By: Do Cold Feet Follow Warm intentions for Really New versus Incrementally New Products? J. Mark. Res. 2008, 45, 307–319. [Google Scholar] [CrossRef]
- Zhao, M.; Hoeffler, S.; Dahl, D.W. The role of Imagination-Focused Visualization on new product evaluation. J. Mark. Res. 2009, 46, 46–55. [Google Scholar] [CrossRef]
- Trepte, S.; Scherer, H. Opinion leaders–Do they know more than others about their area of interest? De Gruyter. Brill. 2010, 35, 119–140. [Google Scholar] [CrossRef]
- Ohanian, R. The impact of celebrity spokes persons’ perceived image on consumers’ intention to purchase. J. Advert. Res. 1991, 31, 46–54. [Google Scholar] [CrossRef]
- Gorn, G.J. The Effects of Music in Advertising on Choice Behavior: A Classical Conditioning approach. J. Mark. 1982, 46, 94. [Google Scholar] [CrossRef]
- McKnight, D.H.; Choudhury, V.; Kacmar, C. Developing and Validating trust Measures for e-Commerce: An Integrative Typology. Inf. Syst. Res. 2002, 13, 334–359. [Google Scholar] [CrossRef]
- Hong, J.; Suh, E.; Kim, S. Context-aware systems: A literature review and classification. Expert Syst. Appl. 2009, 36, 8509–8522. [Google Scholar] [CrossRef]
- Yang, B.; Sun, Y.; Shen, X.L. Understanding AI-based customer service resistance: A perspective of defective AI features and tri-dimensional distrusting beliefs. Inf. Process. Manag. 2023, 60, 103257. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Kang, H. Sample size determination and power analysis using the G* Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, X.; Huang, W.; Zhang, X. Gimmick or genuineness? Exploring the antecedents of AI virtual streamers aversion in live-streaming commerce. Technol. Forecast. Soc. Change 2025, 212, 123981. [Google Scholar] [CrossRef]
- Mardia, K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970, 57, 519–530. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. SSRN Electron. J. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Reio, T.G., Jr. The threat of common method variance bias to theory building. Hum. Resour. Dev. Rev. 2010, 9, 405–411. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Srinivasan, R.; Swink, M. An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. Prod. Oper. Manag. 2018, 27, 1849–1867. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Sobgo, A.D.Z.; Sun, L.; Atingabili, S.; Kewou, N.Y.N.; Tcheudjeu, A.T. Psychological and situational determinants shaping consumers’ intention to purchase eco-friendly personal care products: PLS-SEM and fsQCA insights. J. Clean. Prod. 2025, 522, 146281. [Google Scholar] [CrossRef]
- Becker, J.M.; Klein, K.; Wetzels, M. Hierarchical latent variable models in PLS-SEM. Long Range Plann. 2012, 45, 359–394. [Google Scholar] [CrossRef]
- Hair, J.F.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Rungtusanatham, M.; Miller, J.W.; Boyer, K.K. Theorizing, testing, and concluding for mediation in SCM research: Tutorial and procedural recommendations. J. Oper. Manag. 2014, 3, 99–113. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. Testing measurement invariance of composites using partial least squares. Int. Mark. Rev. 2016, 33, 405–431. [Google Scholar] [CrossRef]
- Yang, S.; Isa, S.M.; Ramayah, T. Does uncertainty avoidance moderate the effect of self-congruity on revisit intention? A two-city (Auckland and Glasgow) investigation. J. Destin. Mark. Manag. 2022, 24, 100703. [Google Scholar] [CrossRef]
- Gannon, M.; Rasoolimanesh, S.M.; Taheri, B. Assessing the mediating role of residents’ perceptions toward tourism development. J. Travel Res. 2021, 60, 149–171. [Google Scholar] [CrossRef]
- Ragin Charles, C. The Comparative Method: Moving Beyond Qualitative and Quantitative Strategies; University of California Press: Oakland, CA, USA, 2014. [Google Scholar] [CrossRef]
- Mori, M.; MacDorman, K.F.; Kageki, N. The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 2021, 19, 98–100. [Google Scholar] [CrossRef]
- Kamolsook, A.; Badir, Y.F.; Frank, B. Consumers’ switching to disruptive technology products: The roles of comparative economic value and technology type. Technol. Forecast. Soc. Change 2019, 140, 328–340. [Google Scholar] [CrossRef]


| Source | Antecedents | Outcome | Perspective | Moderator | Method |
|---|---|---|---|---|---|
| Gao et al. [2] | AI streamers’ characteristics | Purchase intention | Social presence and telepresence | Streamer image | SEM |
| Wu et al. [3] | AI streamers’ socialness | Experiential value | Social presence | Communication style and situation | SEM |
| Li et al. [5] | AI streamers’ characteristics | Impulse buying | Emotional responses | Viewer engagement | SEM-ANN |
| Chen and Li [10] | Negative expectation violations | Discontinuance behavior | Psychological states | N.A. | SEM |
| Qin and Liu [13] | Consumer perceptions | Purchase intention | Psychological contract | N.A. | SEM |
| Zhang et al. [14] | Persuasive cues | Parasocial interaction and impulse buying | Arousal | Mindset | SEM |
| Sun and Tang [49] | Form realism and behavioral realism | Purchase intention | Parasocial interaction | Relationship norm orientation | ANOVA |
| Zhu et al. [50] | AI streamers’ characteristics and perceived value | Brand loyalty | Brand image | N.A. | SEM-ANN |
| Our paper | AI streamers’ characteristics and scenarios | Purchase intention | Consumer trust | Consumer innovativeness and product type | SEM-fsQCA |
| Variable | Category | N | Percentage (%) |
|---|---|---|---|
| Gender | Male | 122 | 29.8 |
| Female | 288 | 70.2 | |
| Age | <20 | 6 | 1.5 |
| 20–29 | 195 | 47.6 | |
| 30–39 | 178 | 43.4 | |
| 40–49 | 18 | 4.4 | |
| >50 | 13 | 3.2 | |
| Educational level | Junior high school or below | 1 | 0.2 |
| High school | 68 | 16.6 | |
| Junior college | 85 | 20.7 | |
| Undergraduate college | 160 | 39.0 | |
| Graduate and above | 96 | 23.4 | |
| Proficiency | Very unskilled | 2 | 0.5 |
| Not skilled | 6 | 1.5 | |
| General proficiency | 124 | 30.2 | |
| More skilled | 130 | 31.7 | |
| Very skilled | 148 | 36.1 | |
| Frequency | 1–2 times per week | 104 | 25.4 |
| 3–4 times per week | 102 | 24.9 | |
| 5–6 times per week | 100 | 24.4 | |
| 7 or more times per week | 104 | 25.4 | |
| Viewing time (Average per week) | Within 2 h | 91 | 22.2 |
| 2–4 Hours | 124 | 30.2 | |
| 4–6 Hours | 96 | 23.4 | |
| More than 6 h | 99 | 24.1 | |
| Income (CNY per month) | <2500 | 94 | 22.9 |
| 2500–4999 | 106 | 25.9 | |
| 5000–7499 | 74 | 18.0 | |
| 7500–9999 | 65 | 15.9 | |
| ≥10,000 | 71 | 17.3 |
| Construct | Items | Factor Loading | Mean | S.E. | Cronbach’s α | AVE | CR | |
|---|---|---|---|---|---|---|---|---|
| AI streamers’ image characteristics (IC) | Cuteness (CU) | CU1 | 0.875 | 5.700 | 1.056 | 0.831 | 0.747 | 0.899 |
| CU2 | 0.853 | 5.530 | 1.223 | |||||
| CU3 | 0.865 | 5.480 | 1.243 | |||||
| Vitality (VI) | VI1 | 0.891 | 5.500 | 1.193 | 0.826 | 0.743 | 0.896 | |
| VI2 | 0.840 | 5.690 | 1.145 | |||||
| VI3 | 0.854 | 5.440 | 1.328 | |||||
| AI streamers’ ability characteristics (AC) | Professionalism (PR) | PR1 | 0.834 | 5.500 | 1.066 | 0.788 | 0.703 | 0.876 |
| PR2 | 0.833 | 5.430 | 1.137 | |||||
| PR3 | 0.847 | 5.360 | 1.206 | |||||
| Responsiveness (RE) | RE1 | 0.869 | 5.480 | 1.207 | 0.828 | 0.744 | 0.897 | |
| RE2 | 0.847 | 5.370 | 1.227 | |||||
| RE3 | 0.872 | 5.210 | 1.294 | |||||
| AI streamers’ scenario fit (SF) | SF1 | 0.836 | 5.620 | 1.049 | 0.784 | 0.698 | 0.874 | |
| SF2 | 0.822 | 5.630 | 1.041 | |||||
| SF3 | 0.849 | 5.690 | 1.021 | |||||
| Consumer innovativeness (CI) | CI1 | 0.837 | 5.680 | 0.968 | 0.813 | 0.728 | 0.889 | |
| CI2 | 0.864 | 5.410 | 1.300 | |||||
| CI3 | 0.858 | 5.660 | 1.130 | |||||
| Consumer trust (CT) | CT1 | 0.807 | 5.650 | 1.222 | 0.783 | 0.698 | 0.874 | |
| CT2 | 0.820 | 5.650 | 1.100 | |||||
| CT3 | 0.877 | 5.620 | 1.051 | |||||
| Purchase intention (PI) | PI1 | 0.792 | 5.900 | 1.037 | 0.793 | 0.708 | 0.879 | |
| PI2 | 0.847 | 5.670 | 0.982 | |||||
| PI3 | 0.884 | 5.660 | 0.989 | |||||
| Construct | Item | CU | VI | PR | RE | SF | CI | CT | PI | |
|---|---|---|---|---|---|---|---|---|---|---|
| AI streamers’ image characteristics (IC) | CU | CU1 | 0.879 | 0.653 | 0.502 | 0.470 | 0.545 | 0.514 | 0.548 | 0.632 |
| CU2 | 0.851 | 0.601 | 0.526 | 0.516 | 0.492 | 0.458 | 0.546 | 0.569 | ||
| CU3 | 0.863 | 0.618 | 0.551 | 0.522 | 0.485 | 0.505 | 0.571 | 0.556 | ||
| VI | VI1 | 0.636 | 0.892 | 0.551 | 0.537 | 0.540 | 0.462 | 0.529 | 0.568 | |
| VI2 | 0.609 | 0.839 | 0.552 | 0.503 | 0.529 | 0.450 | 0.470 | 0.506 | ||
| VI3 | 0.622 | 0.854 | 0.553 | 0.513 | 0.471 | 0.436 | 0.491 | 0.489 | ||
| AI streamers’ ability characteristics (AC) | PR | PR1 | 0.491 | 0.525 | 0.838 | 0.557 | 0.551 | 0.380 | 0.480 | 0.499 |
| PR2 | 0.512 | 0.546 | 0.831 | 0.505 | 0.479 | 0.355 | 0.458 | 0.480 | ||
| PR3 | 0.528 | 0.539 | 0.846 | 0.525 | 0.505 | 0.430 | 0.481 | 0.507 | ||
| RE | RE1 | 0.525 | 0.519 | 0.530 | 0.867 | 0.516 | 0.432 | 0.532 | 0.461 | |
| RE2 | 0.469 | 0.493 | 0.539 | 0.850 | 0.454 | 0.394 | 0.447 | 0.455 | ||
| RE3 | 0.510 | 0.543 | 0.565 | 0.871 | 0.522 | 0.418 | 0.499 | 0.443 | ||
| AI streamers’ scenario fit (SF) | SF1 | 0.478 | 0.485 | 0.519 | 0.452 | 0.836 | 0.403 | 0.543 | 0.549 | |
| SF2 | 0.503 | 0.524 | 0.493 | 0.475 | 0.822 | 0.395 | 0.522 | 0.526 | ||
| SF3 | 0.492 | 0.487 | 0.519 | 0.518 | 0.849 | 0.405 | 0.567 | 0.587 | ||
| Consumer innovativeness (CI) | CI1 | 0.408 | 0.363 | 0.311 | 0.338 | 0.366 | 0.837 | 0.393 | 0.420 | |
| CI2 | 0.560 | 0.527 | 0.469 | 0.459 | 0.441 | 0.864 | 0.423 | 0.434 | ||
| CI3 | 0.485 | 0.439 | 0.400 | 0.429 | 0.418 | 0.858 | 0.404 | 0.402 | ||
| Consumer trust (CT) | CT1 | 0.467 | 0.440 | 0.438 | 0.398 | 0.470 | 0.297 | 0.807 | 0.543 | |
| CT2 | 0.559 | 0.477 | 0.478 | 0.526 | 0.574 | 0.428 | 0.820 | 0.564 | ||
| CT3 | 0.575 | 0.524 | 0.495 | 0.499 | 0.581 | 0.458 | 0.877 | 0.625 | ||
| Purchase intention (PI) | PI1 | 0.576 | 0.517 | 0.503 | 0.419 | 0.536 | 0.405 | 0.552 | 0.793 | |
| PI2 | 0.558 | 0.488 | 0.498 | 0.419 | 0.563 | 0.357 | 0.578 | 0.846 | ||
| PI3 | 0.578 | 0.521 | 0.493 | 0.485 | 0.575 | 0.475 | 0.618 | 0.884 | ||
| CI | CT | CU | PI | PR | RE | SF | VI | |
|---|---|---|---|---|---|---|---|---|
| Fornell–Larcker Criterion (1981) [96] | ||||||||
| CI | 0.853 | |||||||
| CT | 0.477 | 0.835 | ||||||
| CU | 0.569 | 0.642 | 0.864 | |||||
| PI | 0.491 | 0.693 | 0.677 | 0.842 | ||||
| PR | 0.463 | 0.564 | 0.609 | 0.591 | 0.838 | |||
| RE | 0.481 | 0.572 | 0.582 | 0.524 | 0.631 | 0.863 | ||
| SF | 0.480 | 0.652 | 0.587 | 0.664 | 0.610 | 0.577 | 0.836 | |
| VI | 0.521 | 0.577 | 0.722 | 0.605 | 0.640 | 0.601 | 0.596 | 0.862 |
| Heterotrait–Monotrait Ratio | ||||||||
| CI | ||||||||
| CT | 0.592 | |||||||
| CU | 0.690 | 0.793 | ||||||
| PI | 0.611 | 0.877 | 0.835 | |||||
| PR | 0.576 | 0.717 | 0.753 | 0.749 | ||||
| RE | 0.584 | 0.705 | 0.701 | 0.647 | 0.781 | |||
| SF | 0.600 | 0.827 | 0.728 | 0.841 | 0.776 | 0.715 | ||
| VI | 0.633 | 0.714 | 0.871 | 0.747 | 0.794 | 0.726 | 0.741 | |
| Higher-Order Construct | Formative Indicators | Outer Weights | VIF | T-Value | p-Value |
|---|---|---|---|---|---|
| AI streamers’ image characteristics | Cuteness | 0.549 | 2.088 | 68.672 | 0.000 |
| Vitality | 0.529 | 2.088 | 67.362 | 0.000 | |
| AI streamers’ ability characteristics | Professionalism | 0.553 | 1.661 | 64.727 | 0.000 |
| Responsiveness | 0.555 | 1.661 | 55.936 | 0.000 |
| Hypothesis | β | S.E. | T-Value | 95% Bca-CIs | p-Value | Remarks |
|---|---|---|---|---|---|---|
| H1a: IC → PI | 0.315 | 0.063 | 5.024 | [0.192; 0.441] | 0.000 | Supported |
| H1b: AC → PI | 0.055 | 0.061 | 0.905 | [−0.060; 0.178] | 0.365 | Not Supported |
| H1c: SF → PI | 0.241 | 0.056 | 4.301 | [0.130; 0.352] | 0.000 | Supported |
| H1d: CT → PI | 0.305 | 0.058 | 5.264 | [0.193; 0.414] | 0.000 | Supported |
| Model Path | Parameter | β | S.E. | T-Value | p-Value | VAF (%) |
|---|---|---|---|---|---|---|
| IC → CT → PI | Indirect effect | 0.096 | 0.029 | 3.336 | 0.000 | 23.358 |
| Direct effect | 0.315 | 0.063 | 5.024 | 0.000 | ||
| Total effect | 0.411 | 0.070 | 5.908 | 0.000 | ||
| SF → CT → PI | Indirect effect | 0.101 | 0.028 | 3.580 | 0.000 | 29.532 |
| Direct effect | 0.241 | 0.056 | 4.303 | 0.000 | ||
| Total effect | 0.342 | 0.060 | 5.697 | 0.000 |
| Parameters | Effect Size | S.E. | T-Value | p-Value | Remarks |
|---|---|---|---|---|---|
| CI × IC → CT | −0.095 | 0.033 | 2.834 | 0.005 | Supported |
| CI × AC → CT | −0.072 | 0.028 | 2.564 | 0.010 | Supported |
| CI × SF → CT | −0.076 | 0.027 | 2.835 | 0.005 | Supported |
| Constructs | Configural Invariance | Mean Invariance | Variance Invariance | Configurational Invariance | |||
|---|---|---|---|---|---|---|---|
| Correlation | p Value | Difference | p Value | Difference | p Value | ||
| IC | 1.000 | 0.758 | 0.024 | 0.838 | 0.027 | 0.918 | Yes |
| AC | 1.000 | 0.304 | −0.068 | 0.494 | −0.201 | 0.344 | Yes |
| SF | 1.000 | 0.697 | −0.087 | 0.364 | −0.096 | 0.727 | Yes |
| CT | 1.000 | 0.504 | 0.032 | 0.734 | 0.041 | 0.883 | Yes |
| CI | 0.999 | 0.084 | 0.036 | 0.717 | −0.071 | 0.725 | Yes |
| PI | 0.999 | 0.582 | 0.030 | 0.757 | 0.113 | 0.695 | Yes |
| Path | Path Coefficient (Incremental Product) | T Value | p Value | Path Coefficient (Disruptive Product) | T Value | p Value |
|---|---|---|---|---|---|---|
| IC → PI | 0.230 | 2.234 | 0.026 | 0.346 | 4.121 | 0.000 |
| IC → CT → PI | 0.040 | 1.226 | 0.220 | 0.088 | 2.290 | 0.022 |
| CI × IC → CT | −0.109 | 2.795 | 0.005 | −0.091 | 1.329 | 0.184 |
| AC → PI | 0.260 | 3.079 | 0.002 | −0.025 | 0.302 | 0.763 |
| AC → CT → PI | 0.058 | 1.829 | 0.067 | 0.032 | 1.196 | 0.232 |
| CI × AC → CT | −0.115 | 2.992 | 0.003 | −0.026 | 0.433 | 0.665 |
| SF → PI | 0.260 | 3.079 | 0.002 | 0.232 | 3.083 | 0.002 |
| SF → CT → PI | 0.044 | 1.480 | 0.139 | 0.112 | 2.947 | 0.003 |
| CI × SF → CT | −0.087 | 2.529 | 0.011 | −0.088 | 1.544 | 0.123 |
| CT → PI | 0.263 | 3.146 | 0.002 | 0.324 | 4.155 | 0.000 |
| Construct | Fully In | Crossover Point | Fully Out | |
|---|---|---|---|---|
| AI streamers’ image characteristics | Cuteness | 6.500 | 5.833 | 3.408 |
| Vitality | 6.333 | 5.667 | 3.667 | |
| AI streamers’ ability characteristics | Professionalism | 6.667 | 5.667 | 4.333 |
| Responsiveness | 6.667 | 5.667 | 3.667 | |
| AI streamers’ scenario fit | 6.667 | 6.667 | 5.667 | |
| Consumer innovativeness | 6.667 | 6.667 | 5.667 | |
| Consumer trust | 6.667 | 6.500 | 5.833 | |
| Purchase intention | 6.667 | 6.333 | 5.667 | |
| Condition | Purchase Intention | ~Purchase Intention | ||
|---|---|---|---|---|
| Consistency | Coverage | Consistency | Coverage | |
| AI streamers’ image characteristics | 0.776 | 0.845 | 0.654 | 0.491 |
| ~AI streamers’ image characteristics | 0.533 | 0.690 | 0.793 | 0.710 |
| AI streamers’ ability characteristics | 0.739 | 0.829 | 0.629 | 0.488 |
| ~AI streamers’ ability characteristics | 0.543 | 0.680 | 0.780 | 0.674 |
| AI streamers’ scenario fit | 0.780 | 0.830 | 0.662 | 0.486 |
| ~AI streamers’ scenario fit | 0.517 | 0.689 | 0.768 | 0.707 |
| Consumer innovativeness | 0.782 | 0.818 | 0.669 | 0.483 |
| ~Consumer innovativeness | 0.506 | 0.689 | 0.748 | 0.703 |
| Consumer trust | 0.802 | 0.819 | 0.696 | 0.490 |
| ~Consumer trust | 0.500 | 0.704 | 0.743 | 0.722 |
| Antecedent Condition | Purchase Intention | ~Purchase Intention | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S1 | S2 | S3 | S4 | S5 | |
| AI streamers’ image characteristics | ⬤ | ⬤ | ⬤ | ⬤ | ● | ● | ⊗ | ||||||
| AI streamers’ ability characteristics | ⊗ | ⬤ | ⬤ | ⬤ | ⬤ | ⬤ | ● | ⊗ | ● | ||||
| AI streamers’ scenario fit | ⬤ | ⬤ | ⬤ | ⬤ | ● | ● | ● | ||||||
| Consumer innovativeness | ● | ● | ⬤ | ⬤ | ⬤ | ● | |||||||
| Consumer trust | ● | ● | ⬤ | ⬤ | ⬤ | ● | ● | ||||||
| Consistency | 0.939 | 0.914 | 0.923 | 0.917 | 0.916 | 0.922 | 0.923 | 0.923 | 0.512 | 0.525 | 0.521 | 0.740 | 0.766 |
| Raw coverage | 0.376 | 0.608 | 0.610 | 0.596 | 0.607 | 0.626 | 0.599 | 0.615 | 0.545 | 0.585 | 0.581 | 0.429 | 0.438 |
| Unique coverage | 0.024 | 0.013 | 0.008 | 0.010 | 0.014 | 0.020 | 0.006 | 0.019 | 0.027 | 0.038 | 0.027 | 0.019 | 0.004 |
| Overall solution consistency | 0.864 | 0.494 | |||||||||||
| Overall solution coverage | 0.803 | 0.718 | |||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shui, X.; Bian, S.; Zhang, P. How Can AI Virtual Streamers Gain Consumer Trust to Influence Purchase Intention in Live-Streaming E-Commerce? J. Theor. Appl. Electron. Commer. Res. 2025, 20, 325. https://doi.org/10.3390/jtaer20040325
Shui X, Bian S, Zhang P. How Can AI Virtual Streamers Gain Consumer Trust to Influence Purchase Intention in Live-Streaming E-Commerce? Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(4):325. https://doi.org/10.3390/jtaer20040325
Chicago/Turabian StyleShui, Xinru, Shilong Bian, and Peng Zhang. 2025. "How Can AI Virtual Streamers Gain Consumer Trust to Influence Purchase Intention in Live-Streaming E-Commerce?" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 4: 325. https://doi.org/10.3390/jtaer20040325
APA StyleShui, X., Bian, S., & Zhang, P. (2025). How Can AI Virtual Streamers Gain Consumer Trust to Influence Purchase Intention in Live-Streaming E-Commerce? Journal of Theoretical and Applied Electronic Commerce Research, 20(4), 325. https://doi.org/10.3390/jtaer20040325

