What Drives VOD Purchases in Mobile TV Services? Exploring Utilization, Motivations, and Personality Traits
Abstract
:1. Introduction
2. Theoretical Background
2.1. Mobile TV Service
2.2. Intrinsic and Extrinsic Motivations
2.3. Big-Five Personality Dimensions
3. Hypotheses Development
3.1. Intrinsic Motivation and Purchase
3.2. Extrinsic Motivation and Purchase
3.3. Mobile TV Utilization and Purchase
3.4. Big Five Personality Model and Mobile TV Utilization
3.4.1. Neuroticism
3.4.2. Extraversion
3.4.3. Openness
3.4.4. Agreeableness
3.4.5. Conscientiousness
3.5. Mobile Usage Patterns and Mobile TV Utilization
3.6. Research Model
4. Empirical Analysis
4.1. Measurement Development
4.2. Sample
4.3. Measurement Model
4.4. Structural Model
4.5. Additional Analysis
5. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Construct | Measurement Items | Reference |
---|---|---|
Hedonic need | It is fun to do. I find participating in this service appealing. I think that participating is quite enjoyable. I think it is pleasurable. | [75] |
Spatiotemporal convenience | I can use this service any time I want. I can use this service anywhere I want. Using the service reduces the time required. Using the service is convenient because my mobile device is usually with me. | [76] |
Subjective norm | Innovative people around me think that I should subscribe to or purchase the service. My colleagues think that I should subscribe to or purchase the service. My close friends think that I should subscribe to or purchase the service. | [77] |
Price fairness | The price of the service is fair. The price of the service is appropriate relative to its performance. The price of the service meets my expectations. The price of the service is clearly understandable. | [78,79] |
Purchase | How much do you pay for VOD content in a month? How often do you purchase VOD content? When was the most recent purchase of VOD content? | [80] |
Neuroticism | I see myself as someone who…
| [26,28] |
Extraversion | I see myself as someone who…
| [26,28] |
Openness | I see myself as someone who…
| [26,28] |
Agreeableness | I see myself as someone who…
| [26,28] |
Conscientiousness | I see myself as someone who…
| [26,28] |
Mobile utilization | How many mobile apps do you have on your mobile device? How many mobile apps do you have that you access at least once a day? How long do you use them in a day? | Developed by authors |
Mobile TV utilization | How often do you have access to mobile TV? How long do you watch TV in a day? | Developed by authors |
Duration of public transit use | How long do you use public transportation in a day? | Developed by authors |
References
- Mulla, T. Assessing the factors influencing the adoption of over-the-top streaming platforms: A literature review from 2007 to 2021. Telemat. Inform. 2022, 69, 101797. [Google Scholar] [CrossRef]
- Attaran, M. The impact of 5G on the evolution of intelligent automation and industry digitization. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 1–17. [Google Scholar] [CrossRef]
- Boston, B. Mobile TV: Where we are and where we are going. Int. J. Sci. Soc. 2022, 4, 461–469. [Google Scholar] [CrossRef]
- Hirschberg, N. A correct treatment of traits. Personal. New Look Metatheories 1978, 45–68. [Google Scholar]
- Conway, J.C.; Rubin, A.M. Psychological predictors of television viewing motivation. Commun. Res. 1991, 18, 443–463. [Google Scholar] [CrossRef]
- Bentley, F.; Lottridge, D. Understanding mass-market mobile TV behaviors in the streaming era. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland, UK, 4–9 May 2019. [Google Scholar]
- Sundaravel, E.; Elangovan, N. Emergence and future of Over-the-top (OTT) video services in India: An analytical research. Int. J. Bus. Manag. Soc. Res. 2020, 8, 489–499. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Nam, C. Competitive dynamics in the Korean video platform market: Traditional pay TV platforms vs. OTT platforms. Telemat. Inform. 2016, 33, 711–721. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, E.; Hwang, S.; Kim, J.; Kim, S. Willingness to pay for over-the-top services in China and Korea. Telecommun. Policy 2017, 41, 197–207. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chang, H.-C.; Chou, S.-C.T.; Chen, F.-F. Acceptance and willingness to pay for mobile TV apps. In Proceedings of the 2013 Pacific Asia Conference on Information Systems, Jeju Island, Republic of Korea, 18–22 June 2013. [Google Scholar]
- Schunk, D.H.; DiBenedetto, M.K. Motivation and social cognitive theory. Contemp. Educ. Psychol. 2020, 60, 101832. [Google Scholar] [CrossRef]
- Vroom, V.H. Work and Motivation; Wiley: Hoboken, NJ, USA, 1964. [Google Scholar]
- Weiner, B. An attributional theory of achievement motivation and emotion. Psychol. Rev. 1985, 92, 548–573. [Google Scholar] [CrossRef]
- Weiner, B. Intrapersonal and interpersonal theories of motivation from an attribution perspective. In Student Motivation; Springer: Boston, MA, USA, 2001; pp. 17–30. [Google Scholar]
- Uysal, M.; Jurowski, C. Testing the push and pull factors. Ann. Tour. Res. 1994, 21, 844–846. [Google Scholar] [CrossRef]
- Dann, G.M. Anomie, ego-enhancement and tourism. Ann. Tour. Res. 1977, 4, 184–194. [Google Scholar] [CrossRef]
- Tu, H.M. Sustainable heritage management: Exploring dimensions of pull and push factors. Sustainability 2020, 12, 8219. [Google Scholar] [CrossRef]
- Deci, E.L. Effects of externally mediated rewards on intrinsic motivation. J. Personal. Soc. Psychol. 1971, 18, 105–115. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemp. Educ. Psychol. 2000, 25, 54–67. [Google Scholar] [CrossRef]
- Papacharissi, Z.; Rubin, A.M. Predictors of Internet use. J. Broadcast. Electron. Media 2000, 44, 175–196. [Google Scholar] [CrossRef]
- Oh, S.; Syn, S.Y. Motivations for sharing information and social support in social media: A comparative analysis of Facebook, Twitter, Delicious, YouTube, and Flickr. J. Assoc. Inf. Sci. Technol. 2015, 66, 2045–2060. [Google Scholar] [CrossRef]
- Liao, H.-L.; Liu, S.-H.; Pi, S.-M. Modeling motivations for blogging: An expectancy theory analysis. Soc. Behav. Personal. Int. J. 2011, 39, 251–264. [Google Scholar] [CrossRef]
- Tefertiller, A.; Sheehan, K. TV in the streaming age: Motivations, behaviors, and satisfaction of post-network television. J. Broadcast. Electron. Media 2019, 63, 595–616. [Google Scholar] [CrossRef]
- Cha, J.; Chan-Olmsted, S.M. Substitutability between online video platforms and television. J. Mass Commun. Q. 2012, 89, 261–278. [Google Scholar] [CrossRef]
- Cha, J. Predictors of television and online video platform use: A coexistence model of old and new video platforms. Telemat. Inform. 2013, 30, 296–310. [Google Scholar] [CrossRef]
- John, O.P.; Srivastava, S. The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In Handbook of Personality: Theory and Research; Guilford Press: New York, NY, USA, 1999; pp. 102–138. [Google Scholar]
- Digman, J.M. Personality structure: Emergence of the five-factor model. Annu. Rev. Psychol. 1990, 41, 417–440. [Google Scholar] [CrossRef]
- Devaraj, S.; Easley, R.F.; Crant, J.M. Research note-how does personality matter? Relating the five-factor model to technology acceptance and use. Inf. Syst. Res. 2008, 19, 93–105. [Google Scholar] [CrossRef]
- Barrick, M.R.; Mount, M.K. The big five personality dimensions and job performance: A meta-analysis. Pers. Psychol. 1991, 44, 1–26. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A. Extraversion and its positive emotional core. In Handbook of Personality Psychology; Academic Press: Cambridge, MA, USA, 1997; pp. 767–793. [Google Scholar]
- Wang, Y.; Dunlop, P.D.; Parker, S.K.; Griffin, M.A.; Gachunga, H. The moderating role of honesty-humility in the association of agreeableness with interpersonal competency: A study of managers in two countries. Appl. Psychol. 2022, 71, 219–242. [Google Scholar] [CrossRef]
- Barrick, M.R.; Mount, M.K. Select on conscientiousness and emotional stability. In Handbook of Principles of Organizational Behavior; Locke, E.A., Ed.; Blackwell: Malden, MA, USA, 2000; pp. 15–28. [Google Scholar]
- McCrae, R.R.; Costa, P.T., Jr. Personality trait structure as a human universal. Am. Psychol. 1997, 52, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.R. The development of markers for the Big-Five factor structure. Psychol. Assess. 1992, 4, 26–42. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R.; Dye, D.A. Facet scales for agreeableness and conscientiousness: A revision of the NEO Personality Inventory. Personal. Individ. Differ. 1991, 12, 887–898. [Google Scholar] [CrossRef]
- Rosengren, K.E. Uses and gratifications: A paradigm outlined. Uses Mass Commun. Curr. Perspect. Gratif. Res. 1974, 3, 269–286. [Google Scholar]
- Finn, S.; Gorr, M.B. Social isolation and social support as correlates of television viewing motivations. Commun. Res. 1988, 15, 135–158. [Google Scholar] [CrossRef]
- Thong, J.Y.; Hong, S.-J.; Tam, K.Y. The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. Int. J. Hum.-Comput. Stud. 2006, 64, 799–810. [Google Scholar] [CrossRef]
- Van der Heijden, H. Factors influencing the usage of websites: The case of a generic portal in The Netherlands. Inf. Manag. 2003, 40, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Ngai, E.; Ju, X. Understanding mobile health service use: An investigation of routine and emergency use intentions. Int. J. Inf. Manag. 2019, 45, 107–117. [Google Scholar] [CrossRef]
- Kim, C.; Mirusmonov, M.; Lee, I. An empirical examination of factors influencing the intention to use mobile payment. Comput. Hum. Behav. 2010, 26, 310–322. [Google Scholar] [CrossRef]
- Yen, Y.-S.; Wu, F.-S. Predicting the adoption of mobile financial services: The impacts of perceived mobility and personal habit. Comput. Hum. Behav. 2016, 65, 31–42. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Monroe, K.B.; Cox, J.L. The price is unfair! A conceptual framework of price fairness perceptions. J. Mark. 2004, 68, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Etzioni, A. Moral Dimension: Toward a New Economics; Simon and Schuster: New York, NY, USA, 2010. [Google Scholar]
- Gumussoy, C.A.; Koseoglu, B. The effects of service quality, perceived value and price fairness on hotel customers’ satisfaction and loyalty. J. Econ. Bus. Manag. 2016, 4, 523–527. [Google Scholar] [CrossRef]
- Nainggolan, F.; Hidayet, A. The Effect of Country of Origin, Brand Image, Price Fairness, and Service Quality on Loyalty Toward iPhone Mobile Users, Mediated by Consumer Satisfaction. Eur. J. Bus. Manag. Res. 2020, 5, 1–5. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Kaufmann, N.; Schulze, T.; Veit, D. More than fun and money. Worker Motivation in Crowdsourcing-A Study on Mechanical Turk. In Proceedings of the 2011 Americas Conference on Information Systems, Detroit, MI, USA, 4–8 August 2011. [Google Scholar]
- Elhajjar, S.; Ouaida, F. An analysis of factors affecting mobile banking adoption. Int. J. Bank Mark. 2020, 38, 352–367. [Google Scholar] [CrossRef]
- Kao, W.K.; L’Huillier, E.A. The moderating role of social distancing in mobile commerce adoption. Electron. Commer. Res. Appl. 2022, 52, 101116. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Kim, J.; McMillan, S.J. Motivators for the intention to use mobile TV: A comparison of South Korean males and females. Int. J. Advert. 2009, 28, 147–167. [Google Scholar] [CrossRef]
- Saga, V.L.; Zmud, R.W. The nature and determinants of IT acceptance, routinization, and infusion. In Proceedings of the IFIP TC8 Working Conference on Diffusion, Transfer and Implementation of Information Technology, New York, NY, USA, 11–13 October 1993. [Google Scholar]
- Lee, H.; Kim, D.; Ryu, J.; Lee, S. Acceptance and rejection of mobile TV among young adults: A case of college students in South Korea. Telemat. Inform. 2011, 28, 239–250. [Google Scholar] [CrossRef]
- Frischlich, L.; Schatto-Eckrodt, T.; Boberg, S.; Wintterlin, F. Roots of incivility: How personality, media use, and online experiences shape uncivil participation. Media Commun. 2021, 9, 195–208. [Google Scholar] [CrossRef]
- Weaver, J.B. Exploring the links between personality and media preferences. Personal. Individ. Differ. 1991, 12, 1293–1299. [Google Scholar] [CrossRef]
- Correa, T.; Hinsley, A.W.; De Zuniga, H.G. Who interacts on the Web? The intersection of users’ personality and social media use. Comput. Hum. Behav. 2010, 26, 247–253. [Google Scholar] [CrossRef]
- Ross, C.; Orr, E.S.; Sisic, M.; Arseneault, J.M.; Simmering, M.G.; Orr, R.R. Personality and motivations associated with Facebook use. Comput. Hum. Behav. 2009, 25, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Meng, K.S.; Leung, L. Factors influencing TikTok engagement behaviors in China: An examination of gratifications sought, narcissism, and the Big Five personality traits. Telecommun. Policy 2021, 45, 102172. [Google Scholar] [CrossRef]
- Weaver, J.B. Individual differences in television viewing motives. Personal. Individ. Differ. 2003, 35, 1427–1437. [Google Scholar] [CrossRef]
- Kraaykamp, G.; Van Eijck, K. Personality, media preferences, and cultural participation. Personal. Individ. Differ. 2005, 38, 1675–1688. [Google Scholar] [CrossRef] [Green Version]
- Finn, S. Origins of media exposure linking personality traits to TV, radio, print, and film use. Commun. Res. 1997, 24, 507–529. [Google Scholar] [CrossRef]
- Bianchi, A.; Phillips, J.G. Psychological predictors of problem mobile phone use. Cyberpsychol. Behav. 2005, 8, 39–51. [Google Scholar] [CrossRef]
- Kraaykamp, G. Parents, personality and media preferences. Communications 2001, 26, 15–38. [Google Scholar] [CrossRef]
- Tan, C.S.; Lau, X.S.; Kung, Y.T.; Kailsan, R.A.L. Openness to experience enhances creativity: The mediating role of intrinsic motivation and the creative process engagement. J. Creat. Behav. 2019, 53, 109–119. [Google Scholar] [CrossRef]
- Pentina, I.; Zhang, L.; Bata, H.; Chen, Y. Exploring privacy paradox in information-sensitive mobile app adoption: A cross-cultural comparison. Comput. Hum. Behav. 2016, 65, 409–419. [Google Scholar] [CrossRef]
- Ryan, T.; Xenos, S. Who uses Facebook? An investigation into the relationship between the Big Five, shyness, narcissism, loneliness, and Facebook usage. Comput. Hum. Behav. 2011, 27, 1658–1664. [Google Scholar] [CrossRef]
- Seidman, G. Self-presentation and belonging on Facebook: How personality influences social media use and motivations. Personal. Individ. Differ. 2013, 54, 402–407. [Google Scholar] [CrossRef]
- Alter, S. Making sense of smartness in the context of smart devices and smart systems. Inf. Syst. Front. 2020, 22, 381–393. [Google Scholar] [CrossRef]
- Harari, G.M.; Müller, S.R.; Stachl, C.; Wang, R.; Wang, W.; Bühner, M.; Rentfrow, P.J.; Campbell, A.T.; Gosling, S.D. Sensing sociability: Individual differences in young adults’ conversation, calling, texting, and app use behaviors in daily life. J. Personal. Soc. Psychol. 2020, 119, 204. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, C.; Ma, X.; Chen, G. Predicting mobile application usage using contextual information. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012. [Google Scholar]
- Kim, D.; Park, K.; Lee, D.-J.; Ahn, Y. Predicting mobile trading system discontinuance: The role of attention. Electron. Commer. Res. Appl. 2020, 44, 101008. [Google Scholar] [CrossRef]
- Kokkinou, A.; Tremiliti, E.; van Iwaarden, M.; Mitas, O.; Straatman, S. Are you traveling alone or with your device? The impact of connected mobile device usage on the travel experience. J. Hosp. Tour. Insights 2022, 5, 45–61. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Brüggen, E.; Wetzels, M.; de Ruyter, K.; Schillewaert, N. Individual differences in motivation to participate in online panels: The effect on reponse rate and reponse quality perceptions. Int. J. Mark. Res. 2011, 53, 369–390. [Google Scholar] [CrossRef] [Green Version]
- Mallat, N.; Rossi, M.; Tuunainen, V.K.; Öörni, A. The impact of use context on mobile services acceptance: The case of mobile ticketing. Inf. Manag. 2009, 46, 190–195. [Google Scholar] [CrossRef]
- Bock, G.-W.; Zmud, R.W.; Kim, Y.-G.; Lee, J.-N. Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS Q. 2005, 29, 87–111. [Google Scholar] [CrossRef]
- Bei, L.-T.; Chiao, Y.-C. An integrated model for the effects of perceived product, perceived service quality, and perceived price fairness on consumer satisfaction and loyalty. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2001, 14, 125–140. [Google Scholar]
- Grewal, D.; Hardesty, D.M.; Iyer, G.R. The effects of buyer identification and purchase timing on consumers’ perceptions of trust, price fairness, and repurchase intentions. J. Interact. Mark. 2004, 18, 87–100. [Google Scholar] [CrossRef]
- Sherman, E.; Smith, R.B. Mood states of shoppers and store image: Promising interactions and possible behavioral effects. In Advances in Consumer Research; Wallendorf, E., Ed.; Association for Consumer Research: Provo, UT, USA, 1987; pp. 251–254. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Babin, B.J.; Black, W.C. Multivariate Data Analysis: A Global Perspective; Pearson: Upper Saddle River, NJ, USA, 2010; Volume 7. [Google Scholar]
- Gefen, D.; Straub, D. A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Commun. Assoc. Inf. Syst. 2005, 16, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Bui, M.; Kemp, E. E-tail emotion regulation: Examining online hedonic product purchases. Int. J. Retail Distrib. Manag. 2013, 41, 155–170. [Google Scholar] [CrossRef]
- Söderlund, M. Customer familiarity and its effects on satisfaction and behavioral intentions. Psychol. Mark. 2002, 19, 861–879. [Google Scholar] [CrossRef]
- Chen, L.Y. Antecedents of customer satisfaction and purchase intention with mobile shopping system use. Int. J. Serv. Oper. Manag. 2013, 15, 259–274. [Google Scholar] [CrossRef]
- Dotson, M.J.; Hyatt, E.M. Major influence factors in children’s consumer socialization. J. Consum. Mark. 2005, 22, 35–42. [Google Scholar] [CrossRef]
Big Five | Personality |
---|---|
Extraversion | Sociable, gregarious, assertive, and active |
Agreeableness | Being kind, considerate, likable, helpful, and cooperative |
Neuroticism | Anxious, depressed, angry, embarrassed, emotional, and worried |
Openness | Being imaginative, cultured, curious, original, and broad-minded |
Conscientiousness | Being organized, systematic, efficient, practical, and steady |
Profile | Option | Count | % |
---|---|---|---|
Gender | Male | 313 | 50.4 |
Female | 308 | 49.6 | |
Age | 10 s | 2 | 0.3 |
20 s | 102 | 16.4 | |
30 s | 176 | 28.3 | |
40 s | 250 | 40.3 | |
50 s | 91 | 14.7 | |
Period of mobile TV service use (in months) | <1 | 131 | 21.1 |
1~3 | 124 | 20.0 | |
4~6 | 93 | 15.0 | |
7~12 | 66 | 10.6 | |
>12 | 207 | 33.3 | |
Total | 621 | 100 |
Construct | Mean (S.D.) | Alpha | CR | AVE | Items | Loadings | t-Value |
---|---|---|---|---|---|---|---|
Hedonic need | 4.481 (1.366) | 0.958 | 0.970 | 0.889 | HedN1 | 0.937 | 127.689 |
HedN2 | 0.934 | 133.137 | |||||
HedN3 | 0.950 | 188.260 | |||||
HedN4 | 0.950 | 188.872 | |||||
Price fairness | 3.820 (1.329) | 0.957 | 0.969 | 0.886 | PriF1 | 0.940 | 155.423 |
PriF2 | 0.942 | 157.829 | |||||
PriF3 | 0.941 | 168.635 | |||||
PriF4 | 0.942 | 183.836 | |||||
Spatiotemporal convenience | 4.938 (1.338) | 0.939 | 0.956 | 0.846 | STC1 | 0.932 | 121.302 |
STC2 | 0.927 | 116.651 | |||||
STC3 | 0.890 | 76.620 | |||||
STC4 | 0.929 | 107.115 | |||||
Subjective norms | 3.993 (1.327) | 0.923 | 0.946 | 0.815 | SubN1 | 0.931 | 124.058 |
SubN2 | 0.944 | 222.172 | |||||
SubN3 | 0.947 | 224.951 | |||||
SubN4 | 0.777 | 27.366 | |||||
Agreeableness | 4.942 (1.004) | 0.880 | 0.918 | 0.736 | Agree1 | 0.862 | 45.559 |
Agree2 | 0.898 | 69.212 | |||||
Agree3 | 0.802 | 26.520 | |||||
Agree4 | 0.868 | 45.613 | |||||
Conscientiousness | 5.031 (1.020) | 0.910 | 0.937 | 0.788 | Cons1 | 0.868 | 41.287 |
Cons2 | 0.900 | 59.513 | |||||
Cons3 | 0.891 | 49.731 | |||||
Cons4 | 0.891 | 55.302 | |||||
Extraversion | 4.146 (1.171) | 0.879 | 0.917 | 0.735 | Extra1 | 0.776 | 31.159 |
Extra2 | 0.897 | 85.405 | |||||
Extra3 | 0.891 | 66.809 | |||||
Extra4 | 0.861 | 54.035 | |||||
Neuroticism | 3.818 (1.254) | 0.907 | 0.935 | 0.782 | Neuro1 | 0.916 | 70.632 |
Neuro2 | 0.921 | 90.191 | |||||
Neuro3 | 0.798 | 28.374 | |||||
Neuro4 | 0.897 | 73.536 | |||||
Openness | 4.493 (1.152) | 0.899 | 0.937 | 0.832 | Open1 | 0.934 | 126.280 |
Open2 | 0.931 | 114.742 | |||||
Open3 | 0.870 | 55.337 | |||||
Mobile utilization | 3.227 (0.912) | 0.753 | 0.848 | 0.652 | MobA1 | 0.716 | 17.533 |
MobA2 | 0.833 | 34.241 | |||||
MobA3 | 0.866 | 39.687 | |||||
Mobile TV utilization | 2.572 (1.042) | 0.808 | 0.912 | 0.839 | MobTV1 | 0.923 | 116.545 |
MobTV2 | 0.909 | 102.880 | |||||
VOD purchase | 2.260 (1.125) | 0.911 | 0.944 | 0.849 | VODP1 | 0.893 | 93.767 |
VODP2 | 0.943 | 175.593 | |||||
VODP3 | 0.927 | 138.345 |
Agree | Cons | Extra | HedN | MobA | MobTV | Neuro | Open | PriF | STC | SubN | VODP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Agree | 0.858 | |||||||||||
Cons | 0.621 | 0.887 | ||||||||||
Extra | 0.505 | 0.459 | 0.857 | |||||||||
HedN | 0.495 | 0.466 | 0.495 | 0.943 | ||||||||
MobA | 0.269 | 0.248 | 0.197 | 0.347 | 0.808 | |||||||
MobTV | 0.211 | 0.153 | 0.346 | 0.450 | 0.333 | 0.916 | ||||||
Neuro | 0.017 | -0.060 | 0.126 | 0.111 | 0.081 | 0.203 | 0.884 | |||||
Open | 0.549 | 0.646 | 0.615 | 0.466 | 0.206 | 0.309 | 0.026 | 0.912 | ||||
PriF | 0.344 | 0.300 | 0.516 | 0.573 | 0.127 | 0.427 | 0.319 | 0.434 | 0.941 | |||
STC | 0.501 | 0.459 | 0.371 | 0.748 | 0.385 | 0.398 | 0.065 | 0.382 | 0.430 | 0.920 | ||
SubN | 0.360 | 0.323 | 0.512 | 0.586 | 0.179 | 0.499 | 0.303 | 0.459 | 0.748 | 0.490 | 0.903 | |
VODP | 0.240 | 0.268 | 0.379 | 0.491 | 0.308 | 0.607 | 0.199 | 0.367 | 0.485 | 0.404 | 0.536 | 0.921 |
Type of Users | N | Mean | S.D. | Difference | t-Value | Significance | |
---|---|---|---|---|---|---|---|
Transit use | Subscribers | 310 | 2.600 | 1.231 | 0.417 *** | 4.105 | <0.001 |
Free users | 311 | 2.180 | 1.298 | ||||
HedN | Subscribers | 310 | 4.953 | 1.089 | 0.942 *** | 9.152 | <0.001 |
Free users | 311 | 4.011 | 1.451 | ||||
STC | Subscribers | 310 | 5.344 | 1.058 | 0.811 *** | 7.927 | <0.001 |
Free users | 311 | 4.533 | 1.461 | ||||
SubN | Subscribers | 310 | 4.474 | 1.182 | 0.961 *** | 9.679 | <0.001 |
Free users | 311 | 3.513 | 1.291 | ||||
PriF | Subscribers | 310 | 4.189 | 1.240 | 0.737 *** | 7.184 | <0.001 |
Free users | 311 | 3.452 | 1.315 | ||||
Open | Subscribers | 310 | 4.717 | 1.088 | 0.447 *** | 4.928 | <0.001 |
Free users | 311 | 4.270 | 1.172 | ||||
Cons | Subscribers | 310 | 5.149 | 0.955 | 0.236 *** | 2.899 | 0.004 |
Free users | 311 | 4.913 | 1.070 | ||||
Extra | Subscribers | 310 | 4.461 | 1.090 | 0.629 *** | 6.944 | <0.001 |
Free users | 311 | 3.832 | 1.167 | ||||
Agree | Subscribers | 310 | 5.105 | 0.928 | 0.325 *** | 4.087 | <0.001 |
Free users | 311 | 4.780 | 1.051 | ||||
Neuro | Subscribers | 310 | 3.925 | 1.325 | 0.214 ** | 2.136 | 0.033 |
Free users | 311 | 3.711 | 1.170 | ||||
MobA | Subscribers | 310 | 3.375 | 0.815 | 0.296 *** | 4.094 | <0.001 |
Free users | 311 | 3.079 | 0.979 | ||||
MobTV | Subscribers | 310 | 3.065 | 0.919 | 0.984 *** | 13.350 | <0.001 |
Free users | 311 | 2.080 | 0.918 | ||||
VODP | Subscribers | 310 | 2.830 | 0.991 | 1.138 *** | 14.606 | <0.001 |
Free users | 311 | 1.692 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Ryu, S.; Kim, D. What Drives VOD Purchases in Mobile TV Services? Exploring Utilization, Motivations, and Personality Traits. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1107-1125. https://doi.org/10.3390/jtaer18020056
Song J, Ryu S, Kim D. What Drives VOD Purchases in Mobile TV Services? Exploring Utilization, Motivations, and Personality Traits. Journal of Theoretical and Applied Electronic Commerce Research. 2023; 18(2):1107-1125. https://doi.org/10.3390/jtaer18020056
Chicago/Turabian StyleSong, Jaemin, Sunghan Ryu, and Dongyeon Kim. 2023. "What Drives VOD Purchases in Mobile TV Services? Exploring Utilization, Motivations, and Personality Traits" Journal of Theoretical and Applied Electronic Commerce Research 18, no. 2: 1107-1125. https://doi.org/10.3390/jtaer18020056
APA StyleSong, J., Ryu, S., & Kim, D. (2023). What Drives VOD Purchases in Mobile TV Services? Exploring Utilization, Motivations, and Personality Traits. Journal of Theoretical and Applied Electronic Commerce Research, 18(2), 1107-1125. https://doi.org/10.3390/jtaer18020056