Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = wing morphogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4345 KiB  
Article
Morphological and Transcriptome Analysis of the Near-Threatened Orchid Habenaria radiata with Petals Shaped Like a Flying White Bird
by Seiji Takeda, Yuki Nishikawa, Tsutomu Tachibana, Takumi Higaki, Tomoaki Sakamoto and Seisuke Kimura
Plants 2025, 14(3), 393; https://doi.org/10.3390/plants14030393 - 28 Jan 2025
Viewed by 1264
Abstract
Orchids have evolved flowers with unique morphologies through coevolution with pollinators, such as insects. Among the floral organs, the lip (labellum), one of the three petals, exhibits a distinctive shape and plays a crucial role in attracting pollinators and facilitating pollination in many [...] Read more.
Orchids have evolved flowers with unique morphologies through coevolution with pollinators, such as insects. Among the floral organs, the lip (labellum), one of the three petals, exhibits a distinctive shape and plays a crucial role in attracting pollinators and facilitating pollination in many orchids. The lip of the terrestrial orchid Habenaria radiata is shaped like a flying white bird and is believed to attract and provide a platform for nectar-feeding pollinators, such as hawk moths. To elucidate the mechanism of lip morphogenesis, we conducted time-lapse imaging of blooming flowers to observe the extension process of the lip and analyzed the cellular morphology during the generation of serrations. We found that the wing part of the lip folds inward in the bud and fully expands in two hours after blooming. The serrations of the lip were initially formed through cell division and later deepened through polar cell elongation. Transcriptome analysis of floral buds revealed the expression of genes involved in floral organ development, cell division, and meiosis. Additionally, genes involved in serration formation are also expressed in floral buds. This study provides insights into the mechanism underlying the formation of the unique lip morphology in Habenaria radiata. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

11 pages, 1472 KiB  
Article
Effects of miR-306 Perturbation on Life Parameters in the English Grain Aphid, Sitobion avenae (Homoptera: Aphididae)
by Linyuan Wu, Guohua Wei, Yi Yan, Xuguo Zhou, Xun Zhu, Yunhui Zhang and Xiangrui Li
Int. J. Mol. Sci. 2024, 25(11), 5680; https://doi.org/10.3390/ijms25115680 - 23 May 2024
Cited by 1 | Viewed by 1207
Abstract
MicroRNAs (miRNA) play a vital role in insects’ growth and development and have significant potential value in pest control. Previously, we identified miR-306 from small RNA libraries within the English grain aphid, Sitobion avenae, a devasting insect pest for wheat. miR-306 not [...] Read more.
MicroRNAs (miRNA) play a vital role in insects’ growth and development and have significant potential value in pest control. Previously, we identified miR-306 from small RNA libraries within the English grain aphid, Sitobion avenae, a devasting insect pest for wheat. miR-306 not only involves in wing morphogenesis, but also is critically important for aphid survival. Its specific impacts on the life history traits, however, remain unclear. Here, we evaluate the impact of miR-306 perturbation on S. avenae populations using a two-sex life table approach. This comprehensive analysis revealed that miR-306 perturbation significantly prolongs the developmental stages (9.64% and 8.20%) and adult longevity of S. avenae, while decreasing pre-adult survival rate (41.45% and 38.74%) and slightly reducing average fecundity (5.80% and 13.05%). Overall, miR-306 perturbation negatively affects the life table parameters of the aphid population. The population prediction models show a significant decline in the aphid population 60 days post interference, compared to the control groups (98.14% and 97.76%). Our findings highlight the detrimental effects of miR-306 perturbation on S. avenae population growth and suggest potential candidate genes for the development of RNAi-based biopesticides targeted specifically at this pest species. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 12013 KiB  
Article
CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda
by Congke Wang, Te Zhao, Xiaolong Liu, Tianliang Li, Leiming He, Qinqin Wang, Li Wang and Lin Zhou
Insects 2024, 15(1), 16; https://doi.org/10.3390/insects15010016 - 29 Dec 2023
Cited by 1 | Viewed by 2181
Abstract
The homeotic gene Antennapedia (Antp) has been identified as playing a pivotal role in the morphogenesis of the thorax and wings across various insect species. Leveraging insights from previous studies, the functional characterization of Antp in S. frugiperda was undertaken using [...] Read more.
The homeotic gene Antennapedia (Antp) has been identified as playing a pivotal role in the morphogenesis of the thorax and wings across various insect species. Leveraging insights from previous studies, the functional characterization of Antp in S. frugiperda was undertaken using RT-qPCR and the CRISPR/Cas9 genome-editing system. Phylogenetic analyses indicate that Antp shares a high degree of sequence homology among Lepidoptera species. The expression profile of SfAntp was detected by RT-qPCR. The results showed that SfAntp was expressed in the whole growth cycle of S. frugiperda, the expression level was the highest in the egg stage, and the expression level was higher from 12 h to 48 h. Tissue-specific expression profiling demonstrated that SfAntp was most abundantly expressed in the thoracic segments and legs. To functionally disrupt SfAntp, two sgRNA sites were designed at the first exon of SfAntp and the gene was knocked out by CRISPR/Cas9 via microinjection. The results showed that the deletion of SfAntp produced a mutant phenotype of thoracic fusion, thoracic leg defect, leg-like protrusions between the head and thoracic segments and pupation deformity. In addition, deletion of SfAntp resulted in high embryo mortality. Through DNA sequencing, it was found that the target site of the SfAntp mutant had different degrees of frameshift mutations, indicating that the mutant phenotype was indeed caused by the knockout of SfAntp. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

10 pages, 3137 KiB  
Article
Decreased Expression of Pulmonary Homeobox NKX2.1 and Surfactant Protein C in Developing Lungs That Over-Express Receptors for Advanced Glycation End-Products (RAGE)
by Derek M. Clarke, Katrina L. Curtis, Ryan A. Wendt, Brendan M. Stapley, Evan T. Clark, Nathan Beckett, Kennedy M. Campbell, Juan A. Arroyo and Paul R. Reynolds
J. Dev. Biol. 2023, 11(3), 33; https://doi.org/10.3390/jdb11030033 - 15 Jul 2023
Cited by 3 | Viewed by 2391
Abstract
Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors of the immunoglobin superfamily prominently expressed by lung epithelium. Previous experiments demonstrated that over-expression of RAGE by murine alveolar epithelium throughout embryonic development causes neonatal lethality coincident with significant lung hypoplasia. In [...] Read more.
Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors of the immunoglobin superfamily prominently expressed by lung epithelium. Previous experiments demonstrated that over-expression of RAGE by murine alveolar epithelium throughout embryonic development causes neonatal lethality coincident with significant lung hypoplasia. In the current study, we evaluated the expression of NKX2.1 (also referred to as TTF-1), a homeodomain-containing transcription factor critical for branching morphogenesis, in mice that differentially expressed RAGE. We also contextualized NKX2.1 expression with the abundance of FoxA2, a winged double helix DNA binding protein that influences respiratory epithelial cell differentiation and surfactant protein expression. Conditional RAGE over-expression was induced in mouse lung throughout gestation (embryonic day E0–18.5), as well as during the critical saccular period of development (E15.5–18.5), and analyses were conducted at E18.5. Histology revealed markedly less lung parenchyma beginning in the canalicular stage of lung development and continuing throughout the saccular period. We discovered consistently decreased expression of both NKX2.1 and FoxA2 in lungs from transgenic (TG) mice compared to littermate controls. We also observed diminished surfactant protein C in TG mice, suggesting possible hindered differentiation and/or proliferation of alveolar epithelial cells under the genetic control of these two critical transcription factors. These results demonstrate that RAGE must be specifically regulated during lung formation. Perturbation of epithelial cell differentiation culminating in respiratory distress and perinatal lethality may coincide with elevated RAGE expression in the lung parenchyma. Full article
Show Figures

Figure 1

9 pages, 2101 KiB  
Article
Serpentine and Vermiform Are Produced Autonomously to Fulfill Their Function in Drosophila Wings
by Xubo Zhang, Yanan Ji, Bernard Moussian, Shumin Yang, Jianzhen Zhang, Tingting Zhang and Min Zhang
Insects 2023, 14(5), 406; https://doi.org/10.3390/insects14050406 - 23 Apr 2023
Cited by 3 | Viewed by 1870
Abstract
Group I chitin deacetylases (CDAs), CDA1 and CDA2, play an essential role in cuticle formation and molting in the process of insect wing development. A recent report showed that trachea are able to take up a secreted CDA1 (serpentine, serp) [...] Read more.
Group I chitin deacetylases (CDAs), CDA1 and CDA2, play an essential role in cuticle formation and molting in the process of insect wing development. A recent report showed that trachea are able to take up a secreted CDA1 (serpentine, serp) produced in the fat body to support normal tracheal development in the fruit fly Drosophila melanogaster. However, whether CDAs in wing tissue were produced locally or derived from the fat body remains an open question. To address this question, we applied tissue-specific RNAi against DmCDA1 (serpentine, serp) and DmCDA2 (vermiform, verm) in the fat body or the wing and analyzed the resulting phenotypes. We found that repression of serp and verm in the fat body had no effect on wing morphogenesis. RT-qPCR showed that RNAi against serp or verm in the fat body autonomously reduced their expression levels of serp or verm in the fat body but had no non-autonomous effect on the expression in wings. Furthermore, we showed that inhibition of serp or verm in the developing wing caused wing morphology and permeability deficiency. Taken together, the production of Serp and Verm in the wing was autonomous and independent of the fat body. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

15 pages, 2913 KiB  
Article
Cuticle Protein LmACP19 Is Required for the Stability of Epidermal Cells in Wing Development and Morphogenesis of Locusta migratoria
by Xiaoming Zhao, Ti Shao, Yazhi Su, Jing Zhang, Xin Gou, Weimin Liu and Jianzhen Zhang
Int. J. Mol. Sci. 2022, 23(6), 3106; https://doi.org/10.3390/ijms23063106 - 13 Mar 2022
Cited by 3 | Viewed by 2549
Abstract
Insect wing consists of a double layer of epidermal cells that produce and secrete the dorsal and ventral cuticular components. It is important for the stability of epidermal cells during wing development and morphogenesis, but its specific gene expression and physiological function during [...] Read more.
Insect wing consists of a double layer of epidermal cells that produce and secrete the dorsal and ventral cuticular components. It is important for the stability of epidermal cells during wing development and morphogenesis, but its specific gene expression and physiological function during this process remain unclear. In our previous work, a wing cuticle protein gene LmACP19 was identified in Locusta migratoria based on transcriptomic data. Here, we report on its roles in wing development and morphogenesis. LmACP19 encodes a chitin-binding protein belonging to RR-2 subfamily of CPR family, which is highly homologous to CP19-like proteins in other insect species. RT-qPCR analysis revealed that LmACP19 is highly expressed in wing pads of fifth-instar nymphs, and its encoded protein is located in two layers of epidermal cells but not in the cuticle. Suppression of LmACP19 by RNA interference led to abnormal wing pad and wing morphogenesis with curved, unclosed, and wrinkled phenotypes during nymph-to-nymph and nymph-to-adult transition, respectively. Furthermore, deficiency of LmACP19 affected arrangement of epidermal cells, resulting in apoptosis. Our results indicate that LmACP19 is indispensable for wing development and normal morphological structure by maintaining the stability of epidermal cells during L. migratoria molting. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 7569 KiB  
Review
Significant Roles of Notch O-Glycosylation in Cancer
by Weiwei Wang, Tetsuya Okajima and Hideyuki Takeuchi
Molecules 2022, 27(6), 1783; https://doi.org/10.3390/molecules27061783 - 9 Mar 2022
Cited by 10 | Viewed by 5510
Abstract
Notch signaling, which was initially identified in Drosophila wing morphogenesis, plays pivotal roles in cell development and differentiation. Optimal Notch pathway activity is essential for normal development and dysregulation of Notch signaling leads to various human diseases, including many types of cancers. In [...] Read more.
Notch signaling, which was initially identified in Drosophila wing morphogenesis, plays pivotal roles in cell development and differentiation. Optimal Notch pathway activity is essential for normal development and dysregulation of Notch signaling leads to various human diseases, including many types of cancers. In hematopoietic cancers, such as T-cell acute lymphoblastic leukemia, Notch plays an oncogenic role, while in acute myeloid leukemia, it has a tumor-suppressive role. In solid tumors, such as hepatocellular carcinoma and medulloblastoma, Notch may have either an oncogenic or tumor-suppressive role, depending on the context. Aberrant expression of Notch receptors or ligands can alter the ligand-dependent Notch signaling and changes in trafficking can lead to ligand-independent signaling. Defects in any of the two signaling pathways can lead to tumorigenesis and tumor progression. Strikingly, O-glycosylation is one such process that modulates ligand–receptor binding and trafficking. Three types of O-linked modifications on the extracellular epidermal growth factor-like (EGF) repeats of Notch receptors are observed, namely O-glucosylation, O-fucosylation, and O-N-acetylglucosamine (GlcNAc) modifications. In addition, O-GalNAc mucin-type O-glycosylation outside the EGF repeats also appears to occur in Notch receptors. In this review, we first briefly summarize the basics of Notch signaling, describe the latest information on O-glycosylation of Notch receptors classified on a structural basis, and finally describe the regulation of Notch signaling by O-glycosylation in cancer. Full article
(This article belongs to the Special Issue New Insights into Protein Glycosylation)
Show Figures

Figure 1

19 pages, 2077 KiB  
Review
To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis
by Han Leng Ng, Elizabeth Quail, Mark N. Cruickshank and Daniela Ulgiati
Biomolecules 2021, 11(6), 849; https://doi.org/10.3390/biom11060849 - 7 Jun 2021
Cited by 8 | Viewed by 5295
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch [...] Read more.
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development. Full article
(This article belongs to the Special Issue Notch Signalling and Cell Fate)
Show Figures

Figure 1

25 pages, 2938 KiB  
Article
The Fractal Geometry of the Nymphalid Groundplan: Self-Similar Configuration of Color Pattern Symmetry Systems in Butterfly Wings
by Joji M. Otaki
Insects 2021, 12(1), 39; https://doi.org/10.3390/insects12010039 - 6 Jan 2021
Cited by 11 | Viewed by 4780
Abstract
The nymphalid groundplan is an archetypical color pattern of nymphalid butterflies involving three major symmetry systems and a discal symmetry system, which share the basic morphogenesis unit. Here, the morphological and spatial relationships among these symmetry systems were studied based on cross-species comparisons [...] Read more.
The nymphalid groundplan is an archetypical color pattern of nymphalid butterflies involving three major symmetry systems and a discal symmetry system, which share the basic morphogenesis unit. Here, the morphological and spatial relationships among these symmetry systems were studied based on cross-species comparisons of nymphalid hindwings. Based on findings in Neope and Symbrenthia, all three major symmetry systems can be expressed as bands, spots, or eyespot-like structures, suggesting equivalence (homology) of these systems in developmental potential. The discal symmetry system can also be expressed as various structures. The discal symmetry system is circularly surrounded by the central symmetry system, which may then be surrounded by the border and basal symmetry systems, based mainly on findings in Agrias, indicating a unified supersymmetry system covering the entire wing. The border symmetry system can occupy the central part of the wing when the central symmetry system is compromised, as seen in Callicore. These results suggest that butterfly color patterns are hierarchically constructed in a self-similar fashion, as the fractal geometry of the nymphalid groundplan. This self-similarity is likely mediated by the serial induction of organizers, and symmetry breaking of the system morphology may be generated by the collision of opposing signals during development. Full article
(This article belongs to the Special Issue Butterfly Wing Color Patterns)
Show Figures

Figure 1

19 pages, 575 KiB  
Review
SUMOylation in Drosophila Development
by Matthew Smith, Wiam Turki-Judeh and Albert J. Courey
Biomolecules 2012, 2(3), 331-349; https://doi.org/10.3390/biom2030331 - 25 Jul 2012
Cited by 25 | Viewed by 9563
Abstract
Small ubiquitin-related modifier (SUMO), an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a [...] Read more.
Small ubiquitin-related modifier (SUMO), an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development. Full article
(This article belongs to the Special Issue Protein SUMOylation)
Show Figures

Graphical abstract

Back to TopTop