CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Phylogenetic Tree
2.3. Analysis of SfAntp Expression Profile
2.4. Phenotypic Changes Caused by SfAntp Mutation
2.5. Expression Changes of SfAntp Mutant Related Genes
3. Results
3.1. Phylogenetic Analysis of SfAntp
3.2. SfAntp Expression Profile Analysis
3.2.1. Expression Profile Analysis of SfAntp at Different Developmental Stages
3.2.2. Expression Analysis of SfAntp in Different Tissues of Male and Female Adults
3.3. Phenotypic Changes Caused by SfAntp Mutation
3.4. Expression Changes of SfAntp Mutant Related Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kebede, M.; Shimalis, T. Out-break, distribution and management of fall armyworm, Spodoptera frugiperda JE Smith in Africa: The status and prospects. Acad. Agric. J. 2018, 3, 551–568. [Google Scholar]
- Sparks, A.N. A review of the biology of the fall armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar]
- Griebler, M.; Westerlund, S.A.; Hoffmann, K.H.; Meyering-Vos, M. RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. J. Insect Physiol. 2008, 54, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E. New crop pest takes Africa at lightning speed. Science 2017, 356, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Sharanabasappa, S.D.; Kalleshwaraswamy, C.M.; Asokan, R.; Mahadeva Swamy, H.M.; Maruthi, M.S.; Pavithra, H.B.; Hegbe, K.; Navi, S.; Prabhu, S.Y.; Goergen, G.E. First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 2018, 24, 23–29. [Google Scholar]
- Jiang, Y.; Liu, J.; Zhu, X. Analysis of occurrence dynamics and future trend of Spodoptera frugiperda invasion in China. China Plant Prot. 2019, 39, 33–35. [Google Scholar]
- Wu, K. Control strategies of Spodoptera frugiperda in China. Plant Prot. 2020, 46, 1–5. [Google Scholar]
- Carroll, S.B. Homeotic genes and the evolution of arthropods and chordates. Nature 1995, 376, 479–485. [Google Scholar] [CrossRef]
- Schneuwly, S.; Klemenz, R.; Gehring, W.J. Redesigning the body plan of Drosophila by ectopic expressionof the homoeotic gene Antennapedia. Nature 1987, 325, 816–818. [Google Scholar] [CrossRef]
- Uhl, J.D.; Arya, Z.; Brian, G.; Angelike, S. A Hox transcription factor collective binds a highly conserved Distal-less cis-regulatory module to generate robust transcriptional outcomes. PLoS Genet. 2016, 12, e1005981. [Google Scholar] [CrossRef]
- Carroll, S.B.; DiNardo, S.; O’Farrell, P.H.; White, R.; Scott, M. Temporal and spatial relationships between segmentation and homeotic gene expression in Drosophila embryos: Distributions of the fushi tarazu, engrailed, Sex combs reduced, Antennapedia, and Ultrabithorax proteins. Genes Dev. 1988, 2, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Marco, R.V.; Diana, R.P.; Martha, V. Antennapedia: The complexity of a master developmental transcription factor. Genesis 2023, e23561. [Google Scholar] [CrossRef]
- Mlodzik, M.; Fjose, A.; Gehring, W.J. Molecular structure and spatial expression of a homeobox gene from the labial region of the Antennapedia-complex. EMBO J. 1988, 7, 2569–2578. [Google Scholar] [CrossRef] [PubMed]
- Wakimoto, B.T.; Kaufman, T.C. Analysis of larval segmentation in lethal genotypes associated with the Antennapedia gene complex in Drosophila melanogaster. Dev. Biol. 1981, 81, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Struhl, G. Genes controlling segmental specification in the Drosophila thorax. Proc. Natl. Acad. Sci. USA 1982, 79, 7380–7384. [Google Scholar] [CrossRef] [PubMed]
- Poliacikova, G.; Maurel-Zaffran, C.; Graba, Y.; Saurin, A.J. Hox Proteins in the regulation of muscle development. Front. Cell Dev. Biol. 2021, 9, 731996. [Google Scholar] [CrossRef] [PubMed]
- Plaza, S.; Prince, F.; Jaeger, J.; Kloter, U.; Flister, S.; Benassayag, C.; Cribbs, D.; Gehring, W. Molecular basis for the inhibition of Drosophila eye development by Antennapedia. EMBO J. 2001, 20, 802–811. [Google Scholar] [CrossRef]
- Sprecher, S.G.; Müller, M.; Kammermeier, L.; Miller, D.F.; Kaufman, T.C.; Reichert, H.; Hirth, F. Hox gene cross-regulatory interactions in the embryonic brain of Drosophila. Mech. Dev. 2004, 121, 527–536. [Google Scholar] [CrossRef]
- Chen, P.; Tong, X.L.; Li, D.D.; Fu, M.Y.; He, S.Z.; Hu, H.; Xiang, Z.H.; Lu, C.; Dai, F.Y. Antennapedia is involved in the development of thoracic legs and segmentation in the silkworm, Bombyx mori. Heredity 2013, 111, 182–188. [Google Scholar] [CrossRef]
- Deutsch, J. Hox and wings. Bioessays 2005, 27, 673–675. [Google Scholar] [CrossRef]
- Beeman, R.W.; Stuart, J.J.; Haas, M.S.; Denell, R.E. Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Dev. Biol. 1989, 133, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Khadjeh, S.; Turetzek, N.; Pechmann, M.; Schwager, E.E.; Wimmer, E.A.; Damen, W.G.; Prpic, N.-M. Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc. Natl. Acad. Sci. USA 2012, 109, 4921–4926. [Google Scholar] [CrossRef] [PubMed]
- Emmons, R.B.; Duncan, D.; Duncan, I. Regulation of the Drosophila distal antennal determinant spineless. Dev. Biol. 2007, 302, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Estella, C.; Mann, R.S. Logic of Wg and Dpp induction of distal and medial fates in the Drosophila leg. Development 2008, 135, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xu, Y.Q.; Jin, D.C.; Guo, J.J.; Yi, T.C. Role of the Hox genes, Sex combs reduced, Fushi tarazu and Antennapedia, in leg development of the spider mite Tetranychus urticae. Int. J. Mol. Sci. 2023, 24, 10391. [Google Scholar] [CrossRef] [PubMed]
- Saenko, S.V.; Marialva, M.S.; Beldade, P. Involvement of the conserved Hox gene Antennapedia in the development and evolution of a novel trait. EvoDevo 2011, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Abzhanov, A.; Kaufman, T.C. Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol. Dev. 2000, 2, 271–283. [Google Scholar] [CrossRef]
- Ronshaugen, M.; McGinnis, N.; McGinnis, W. Hox protein mutation and macroevolution of the insect body plan. Nature 2002, 415, 914–917. [Google Scholar] [CrossRef]
- Di-Poi, N.; Montoya-Burgos, J.I.; Miller, H.; Pourquie, O.; Milinkovitch, M.C.; Duboule, D. Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature 2010, 464, 99–103. [Google Scholar] [CrossRef]
- Mansfield, J.H.; Abzhanov, A. Hox expression in the American alligator and evolution of archosaurian axial patterning. J. Exp. Zool. Part B Mol. Dev. Evol. 2010, 314, 629–644. [Google Scholar] [CrossRef]
- Fang, C.Y.; Xin, Y.Q.; Sun, T.; Monteiro, A.; Ye, Z.F.; Dai, F.Y.; Lu, C.; Tong, X.L. The Hox gene Antennapedia is essential for wing development in insects. Development 2022, 149, dev199841. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Monteiro, A. Hox genes are essential for the development of eyespots in Bicyclus anynana butterflies. Genetics 2021, 217, iyaa005. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence (5′-3′) | Primer Purpose |
---|---|---|
SfAntp-sgF-1 | GAAATTAATACGACTCACTATAGATGCCAGACATGAGGAACGGGTTTTAGAGCTAGAAATAGCAAG | Preparation of sgRNA templates |
SfAntp-sgF-2 | GAAATTAATACGACTCACTATAGTATGGCGCTGTGCCACAACAGTTTTAGAGCTAGAAATAGCAAG | Preparation of sgRNA templates |
Sf-sgRNA-R | AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC | Preparation of sgRNA templates |
SfAntp-F | GATGAGCGCCAATAACTGCG | Identification of somatic mutations |
SfAntp-R | TTTGAGATGGACTGTCGGGC | Identification of somatic mutations |
Antp-F | ACAACCACCTCCACAACAGCC | RT-qPCR |
Antp-R | ATCCTTCTCCTCCGCGTCA | RT-qPCR |
Lab-F | GACTCAGGTCAAGATATGGTTCCA | RT-qPCR |
Lab-R | CCCTTCTTTGATCCGCTTCTTT | RT-qPCR |
Pb-F | GCGGGAGCCCCACATC | RT-qPCR |
Pb-R | CTGTTGATAAAGCCGGTTTCG | RT-qPCR |
Dfd-F | GACACCGCATCACCTTCACA | RT-qPCR |
Dfd-R | AAGCAGAGCCGGGTCCAT | RT-qPCR |
Scr | GCACAAGATGGCATCGATGA | RT-qPCR |
Scr | GGGTGGCCGTACGGATTC | RT-qPCR |
Ubx-F | GGGCTCAGGACTAGGTGCACTA | RT-qPCR |
Ubx-R | TTCCTGGACTGGAGGACTCACT | RT-qPCR |
Abd-A-F | AGTTCCACCACCAGAATTTGTTC | RT-qPCR |
Abd-A-R | TCCCAGTCCGCCAGACA | RT-qPCR |
Abd-B-F | TTCCTCTTTAACGCTTAC | RT-qPCR |
Abd-B-R | AGTTCTTCTTGTTCTTCAT | RT-qPCR |
Dac-F | GGCGGGCTGCACACA | RT-qPCR |
Dac-R | GCACACCAGCGGCACTATG | RT-qPCR |
Dll-F | CCAGTCTCGGCCTCACACA | RT-qPCR |
Dll-R | ACTGCGGCGGTTTTGGA | RT-qPCR |
Hth-F | TCCACCCCCGATGTCAGA | RT-qPCR |
Hth-R | TCACCGCTCCACCGTATGA | RT-qPCR |
Exd-F | CAACACGCAAGAGGAGGA | RT-qPCR |
Exd-R | GCCAACTTCGCACGGTAG | RT-qPCR |
CPG24 | ATGAAGTTTTTGGTTGTATTGGTCG | RT-qPCR |
CPG24 | CATAAATTCCTCTCTTCTCCTGCTT | RT-qPCR |
CPG9 | TCTGGACACCATCATCAAATTG | RT-qPCR |
CPG9 | GCTGTGCTCCTTCTTCACGTAC | RT-qPCR |
GAPDH-F | GAAGTCAAGTCCGTGGAGATG | RT-qPCR |
GAPDH-R | GACCTGTGAAGTCG | RT-qPCR |
Gene | Cas9 Protein/sgRNA1/sgRNA2 Concentration (ng/μL) | Number of Injections | Number of Hatching |
---|---|---|---|
Antp | 600/300/300 | 441 | 67 (15.19%) |
ddH2O | - | 300 | 203 (67.67%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhao, T.; Liu, X.; Li, T.; He, L.; Wang, Q.; Wang, L.; Zhou, L. CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda. Insects 2024, 15, 16. https://doi.org/10.3390/insects15010016
Wang C, Zhao T, Liu X, Li T, He L, Wang Q, Wang L, Zhou L. CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda. Insects. 2024; 15(1):16. https://doi.org/10.3390/insects15010016
Chicago/Turabian StyleWang, Congke, Te Zhao, Xiaolong Liu, Tianliang Li, Leiming He, Qinqin Wang, Li Wang, and Lin Zhou. 2024. "CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda" Insects 15, no. 1: 16. https://doi.org/10.3390/insects15010016
APA StyleWang, C., Zhao, T., Liu, X., Li, T., He, L., Wang, Q., Wang, L., & Zhou, L. (2024). CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda. Insects, 15(1), 16. https://doi.org/10.3390/insects15010016