Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = willows evapotranspiration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 18123 KiB  
Article
A Monte Carlo Model for WWTP Effluent Flow Treatment through Enhanced Willow Evapotranspiration
by Aristoteles Tegos
Hydrology 2024, 11(9), 134; https://doi.org/10.3390/hydrology11090134 - 26 Aug 2024
Viewed by 2046
Abstract
The effectiveness of using enhanced evapotranspiration rates of willow plantation is a modern environmentally friendly practice for advanced treatment of effluent WWTP flow. The key idea is that through advanced willow evapotranspiration rates, a significant proportion of the effluent flow can be transferred [...] Read more.
The effectiveness of using enhanced evapotranspiration rates of willow plantation is a modern environmentally friendly practice for advanced treatment of effluent WWTP flow. The key idea is that through advanced willow evapotranspiration rates, a significant proportion of the effluent flow can be transferred into the atmosphere through the physical process of evapotranspiration. This study further discusses the concept in a real-world problem using a wide dataset consisting of a recent PET monthly remote dataset namely RASPOTION, monthly recorded rainfall gauge, and experimental willow evapotranspiration surveys across Ireland, to identify the monthly cropping pattern. A Monte Carlo water balance model has been developed for the period 2003–2016. The model was applied in an existing willow plantation at Donard WWTP co. Wicklow, Ireland to identify the exceedance probability of willow plantation runoff against estimated low flows (i.e., Q95, Q99) at the adjacent small tributary. In this case study, any failure which can lead to river quality deterioration was not assessed. The overall framework aims to provide new insights considering the multiple sources of uncertainty (i.e., monthly willow cropping pattern and WWTP effluent flow) in associated environmental engineering problems. Full article
(This article belongs to the Special Issue Forest Hydrometeorology)
Show Figures

Figure 1

17 pages, 3321 KiB  
Article
Transpiration Water Consumption by Salix matsudana and Populus simonii and Water Use Patterns at Different Developmental Stages on Sandy Land
by Qiaoting Zhai, Li Xu, Tiegang Zhang, Jianying Guo, Haibo Gao, Rui Jiao and Bo Yang
Water 2023, 15(24), 4255; https://doi.org/10.3390/w15244255 - 12 Dec 2023
Cited by 1 | Viewed by 1765
Abstract
Moisture plays a pivotal role in the establishment of vegetation in sandy areas, underscoring the need to comprehend the water utilization strategies employed by established trees for the judicious use of water resources. Despite this significance, there exists a research gap concerning the [...] Read more.
Moisture plays a pivotal role in the establishment of vegetation in sandy areas, underscoring the need to comprehend the water utilization strategies employed by established trees for the judicious use of water resources. Despite this significance, there exists a research gap concerning the water uptake patterns and consumption disparities between the dominant trees, namely the dry willow (Salix matsudana) and small-leafed poplar (Populus simonii), in the Mu Us sandy region. Consequently, our study sought to investigate the water utilization patterns and transpiration water consumption of these two plants. This was achieved through the analysis of hydrogen and oxygen isotope compositions in xylem water, soil water, and groundwater, coupled with the assessment of stem flow rates of tree trunks. The findings reveal that both Salix matsudana and Populus simonii exhibited variations in soil water content with soil depth, characterized by an initial increase followed by a subsequent decrease. During the months of July, August, and September, both species demonstrated the ability to absorb water from multiple sources concurrently. Specifically, Salix matsudana and Populus simonii predominantly utilized middle and shallow soil water sources in July and September, respectively. However, in August, both species primarily relied on shallow soil water for absorption. Over the period from July to September, the sap flow rate of Salix matsudana surpassed that of Populus simonii by 1888.2 mL·h−1 to 2499.04 mL·h−1, representing a 1.5 to 2.2 times increase. This underscores the necessity for Salix matsudana to draw water from middle and deep soil layers to compensate for shallow water deficits. In summary, schemes for the establishment of vegetation in sandy areas should consider the dynamic nature of water uptake and evapotranspiration, emphasizing the importance of regulating these processes for efficient water conservation and utilization. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Conservation)
Show Figures

Figure 1

20 pages, 85180 KiB  
Article
Estimating Canopy-Scale Evapotranspiration from Localized Sap Flow Measurements
by James Solum and Bwalya Malama
Water 2022, 14(11), 1812; https://doi.org/10.3390/w14111812 - 4 Jun 2022
Cited by 3 | Viewed by 2808
Abstract
The results reported in this work are based in part on measurements of sap flow in a few select trees on a representative riparian forest plot coupled with a forest-wide randomized sampling of tree sapwood area in a watershed located along the Pacific [...] Read more.
The results reported in this work are based in part on measurements of sap flow in a few select trees on a representative riparian forest plot coupled with a forest-wide randomized sampling of tree sapwood area in a watershed located along the Pacific coast in Santa Cruz County, California. These measurements were upscaled to estimate evapotranspiration (ET) across the forest and to quantify groundwater usage by dominant phreatophyte vegetation. Canopy cover in the study area is dominated by red alder (Alnus rubra) and arroyo willow (Salix lasiolepis), deciduous phreatophyte trees from which a small sample was selected for instrumentation with sap flow sensors on a single forest plot. These localized sap flow measurements were then upscaled to the entire riparian forest to estimate forest ET using data from a survey of sapwood area on six plots scattered randomly across the entire forest. The estimated canopy-scale ET was compared to reference ET and NDVI based estimates. The results show positive correlation between sap flow based estimates and those of the other two methods, though over the winter months, sap flow-based ET values were found to significantly underestimate ET as predicted by the other two methods. The results illustrate the importance of ground-based measurements of sap flow for calibrating satellite based methods and for providing site-specific estimates and to better characterize the ET forcing in groundwater flow models. Full article
(This article belongs to the Topic Water Management in the Era of Climatic Change)
Show Figures

Figure 1

26 pages, 17206 KiB  
Article
Using Remote Sensing to Estimate Scales of Spatial Heterogeneity to Analyze Evapotranspiration Modeling in a Natural Ecosystem
by Ayman Nassar, Alfonso Torres-Rua, Lawrence Hipps, William Kustas, Mac McKee, David Stevens, Héctor Nieto, Daniel Keller, Ian Gowing and Calvin Coopmans
Remote Sens. 2022, 14(2), 372; https://doi.org/10.3390/rs14020372 - 13 Jan 2022
Cited by 16 | Viewed by 5015
Abstract
Understanding the spatial variability in highly heterogeneous natural environments such as savannas and river corridors is an important issue in characterizing and modeling energy fluxes, particularly for evapotranspiration (ET) estimates. Currently, remote-sensing-based surface energy balance (SEB) models are applied [...] Read more.
Understanding the spatial variability in highly heterogeneous natural environments such as savannas and river corridors is an important issue in characterizing and modeling energy fluxes, particularly for evapotranspiration (ET) estimates. Currently, remote-sensing-based surface energy balance (SEB) models are applied widely and routinely in agricultural settings to obtain ET information on an operational basis for use in water resources management. However, the application of these models in natural environments is challenging due to spatial heterogeneity in vegetation cover and complexity in the number of vegetation species existing within a biome. In this research effort, small unmanned aerial systems (sUAS) data were used to study the influence of land surface spatial heterogeneity on the modeling of ET using the Two-Source Energy Balance (TSEB) model. The study area is the San Rafael River corridor in Utah, which is a part of the Upper Colorado River Basin that is characterized by arid conditions and variations in soil moisture status and the type and height of vegetation. First, a spatial variability analysis was performed using a discrete wavelet transform (DWT) to identify a representative spatial resolution/model grid size for adequately solving energy balance components to derive ET. The results indicated a maximum wavelet energy between 6.4 m and 12.8 m for the river corridor area, while the non-river corridor area, which is characterized by different surface types and random vegetation, does not show a peak value. Next, to evaluate the effect of spatial resolution on latent heat flux (LE) estimation using the TSEB model, spatial scales of 6 m and 15 m instead of 6.4 m and 12.8 m, respectively, were used to simplify the derivation of model inputs. The results indicated small differences in the LE values between 6 m and 15 m resolutions, with a slight decrease in detail at 15 m due to losses in spatial variability. Lastly, the instantaneous (hourly) LE was extrapolated/upscaled to daily ET values using the incoming solar radiation (Rs) method. The results indicated that willow and cottonwood have the highest ET rates, followed by grass/shrubs and treated tamarisk. Although most of the treated tamarisk vegetation is in dead/dry condition, the green vegetation growing underneath resulted in a magnitude value of ET. Full article
(This article belongs to the Special Issue Remote Sensing-Based Evapotranspiration Models)
Show Figures

Figure 1

19 pages, 4460 KiB  
Article
Water Needs of Willow (Salix L.) in Western Poland
by Daniel Liberacki, Joanna Kocięcka, Piotr Stachowski, Roman Rolbiecki, Stanisław Rolbiecki, Hicran A. Sadan, Anna Figas, Barbara Jagosz, Dorota Wichrowska, Wiesław Ptach, Piotr Prus, Ferenc Pal-Fam and Ariel Łangowski
Energies 2022, 15(2), 484; https://doi.org/10.3390/en15020484 - 11 Jan 2022
Cited by 13 | Viewed by 2509
Abstract
Willows are one of the plants which can be used to produce biomass for energy purposes. Biomass production is classified as a renewable energy source. Increasing the share of renewable sources is one of the priority actions for European Union countries due to [...] Read more.
Willows are one of the plants which can be used to produce biomass for energy purposes. Biomass production is classified as a renewable energy source. Increasing the share of renewable sources is one of the priority actions for European Union countries due to the need to reduce greenhouse gas emissions. To achieve the best possible growth of the willow and increase its biomass for fuel, it is crucial to provide optimal water conditions for its growth. The aim of the study was to determine the water requirements of willows under the conditions of the western Polish climate and to verify whether this area is potentially favourable for willow cultivation. The novelty of this paper lies in its multi-year climatic analysis in the context of willow water needs for the area of three voivodships: Lubusz, Lower Silesian, and West Pomeranian. This is one of the few willow water-needs analyses for this region which considers the potential for widespread willow cultivation and biomass production in western Poland. Reference evapotranspiration (ETo) was determined by the Blaney-Criddle equation and then, using plant coefficients, water needs for willow were determined. Calculations were carried out for the growing season lasting from 21 May to 31 October. The estimated water needs during the vegetation season amounted on average to 408 mm for the West Pomeranian Voivodeship, 405 mm for the Lubusz Voivodeship, and 402 mm for the Lower Silesian Voivodeship. The conducted analysis of variance (ANOVA) showed that these needs do not differ significantly between the voivodeships. Therefore, it can be concluded that the water requirements of willows in western Poland do not differ significantly, and the whole region shows similar water conditions for willow cultivation. Furthermore, it was found that water needs are increasing from decade to decade, making rational water management necessary. This is particularly important in countries with limited water resources, such as Poland. Correctly determining the water requirements of willow and applying them to the cultivation of this plant should increase the biomass obtained. With appropriate management, willow cultivation in Poland can provide an alternative energy source to coal. Full article
(This article belongs to the Special Issue Energy Sources from Agriculture and Rural Areas)
Show Figures

Graphical abstract

20 pages, 1554 KiB  
Article
The Life Cycle Environmental Performance of On-Site or Decentralised Wastewater Treatment Systems for Domestic Homes
by John Gallagher and Laurence W. Gill
Water 2021, 13(18), 2542; https://doi.org/10.3390/w13182542 - 16 Sep 2021
Cited by 10 | Viewed by 3939 | Correction
Abstract
There is little knowledge regarding the environmental sustainability of domestic on-site or decentralised wastewater treatment systems (DWWTS). This study evaluated six unique life cycle environmental impacts for different DWTTS configurations of five conventional septic tank systems, four packaged treatment units, and a willow [...] Read more.
There is little knowledge regarding the environmental sustainability of domestic on-site or decentralised wastewater treatment systems (DWWTS). This study evaluated six unique life cycle environmental impacts for different DWTTS configurations of five conventional septic tank systems, four packaged treatment units, and a willow evapotranspiration system. Similar freshwater eutrophication (FE), dissipated water (DW), and mineral and metal (MM), burdens were noted between the packaged and conventional system configurations, with the packaged systems demonstrating significantly higher impacts of between 18% and 56% for climate change (CC), marine eutrophication (ME), and fossils (F). At a system level, higher impacts were observed in systems requiring (i) three vs. two engineered treatment stages, (ii) a larger soil percolation trench area, and (iii) pumping of effluent. The evapotranspiration system presented the smallest total environmental impacts (3.0–10.8 lower), with net benefits for FE, ME, and MM identified due to the biomass (wood) production offsetting these burdens. Further analysis highlighted the sensitivity of results to biomass yield, operational demands (desludging or pumping energy demands), and embodied materials, with less significant impacts for replacing mechanical components, i.e., pumps. The findings highlighted the variation in environmental performance of different DWTTS configurations and indicated opportunities for design improvements to reduce their life cycle impacts. Full article
(This article belongs to the Special Issue On-Site Wastewater Treatment)
Show Figures

Figure 1

21 pages, 2257 KiB  
Article
Short-Rotation Willows as a Wastewater Treatment Plant: Biomass Production and the Fate of Macronutrients and Metals
by Darja Istenič and Gregor Božič
Forests 2021, 12(5), 554; https://doi.org/10.3390/f12050554 - 29 Apr 2021
Cited by 15 | Viewed by 3552
Abstract
Evapotranspirative willow systems (EWS) are zero-discharge wastewater treatment plants that produce woody biomass and have no discharge to surface or groundwater bodies. The influence of wastewater on the growth of three clones of Salix alba (‘V 093’, ‘V 051’ and ‘V 160’) and [...] Read more.
Evapotranspirative willow systems (EWS) are zero-discharge wastewater treatment plants that produce woody biomass and have no discharge to surface or groundwater bodies. The influence of wastewater on the growth of three clones of Salix alba (‘V 093’, ‘V 051’ and ‘V 160’) and the distribution of macronutrients and metals in a pilot EWS receiving primary treated municipal wastewater was studied under a sub-Mediterranean climate. The influent wastewater, shoot number, stem height, and biomass production at coppicing were monitored in two consecutive two-year rotations. Soil properties and the concentrations of macronutrients and metals in soil and woody biomass were analyzed after the first rotation. S. alba clones in EWS produced significantly more woody biomass compared to controls. ‘V 052’ produced the highest biomass yield in both rotations (38–59 t DM ha−1) and had the highest nitrogen and phosphorus uptake (48% and 45%) from wastewater. Nitrogen and phosphorus uptake into the harvestable woody biomass was significantly higher in all clones studied compared to other plant-based wastewater treatment plants, indicating the nutrient recovery potential of EWS. The indigenous white willow clone ‘V 160’ had the lowest biomass yield but absorbed more nutrients from wastewater compared to ‘V 093’. Wastewater composition and load were consistent with the nutrient requirements of the willows; however, an increase in salinity was observed after only two years of operation, which could affect EWS efficiency and nutrient recovery in the long term. Full article
Show Figures

Figure 1

13 pages, 574 KiB  
Article
Willows Used for Phytoremediation Increased Organic Contaminant Concentrations in Soil Surface
by Maxime Fortin Faubert, Dominic Desjardins, Mohamed Hijri and Michel Labrecque
Appl. Sci. 2021, 11(7), 2979; https://doi.org/10.3390/app11072979 - 26 Mar 2021
Cited by 14 | Viewed by 4902
Abstract
The Salix genus includes shrub species that are widely used in phytoremediation and various other phytotechnologies due to their advantageous characteristics, such as a high evapotranspiration (ET) rate, in particular when cultivated in short rotation intensive culture (SRIC). Observations made in past field [...] Read more.
The Salix genus includes shrub species that are widely used in phytoremediation and various other phytotechnologies due to their advantageous characteristics, such as a high evapotranspiration (ET) rate, in particular when cultivated in short rotation intensive culture (SRIC). Observations made in past field studies suggest that ET and its impact on soil hydrology can also lead to increases in soil pollutant concentrations near shrubs. To investigate this, sections of a mature willow plantation (seven years old) were cut to eliminate transpiration (Cut treatment). Soil concentrations of polychlorinated biphenyls (PCBs), aliphatic compounds C10–C50, polycyclic aromatic hydrocarbons (PAHs) and five trace elements (Cd, Cr, Cu, Ni and Zn) were compared between the Cut and the uncut plots (Salix miyabeana ‘SX61’). Over 24 months, the results clearly show that removal of the willow shrubs limited the contaminants’ increase in the soil surface, as observed for C10–C50 and of 10 PAHs under the Salix treatment. This finding strongly reinforces a hypothesis that SRIC of willows may facilitate the migration of contaminants towards their roots, thus increasing their concentration in the surrounding soil. Such a “pumping effect” in a high-density willow crop is a prominent characteristic specific to field studies that can lead to counterintuitive results. Although apparent increases of contaminant concentrations contradict the purification benefits usually pursued in phytoremediation, the possibility of active phytoextraction and rhizodegradation is not excluded. Moreover, increases of pollutant concentrations under shrubs following migration suggest that decreases would consequently occur at the source points. Some reflections on interpreting field work results are provided. Full article
Show Figures

Figure 1

23 pages, 2050 KiB  
Article
Upflow Evapotranspiration System for the Treatment of On-Site Wastewater Effluent
by Sean Curneen and Laurence Gill
Water 2015, 7(5), 2037-2059; https://doi.org/10.3390/w7052037 - 6 May 2015
Cited by 11 | Viewed by 6882
Abstract
Full-scale willow evapotranspiration systems fed from the base with septic tank or secondary treated domestic effluent from single houses have been constructed and instrumented in Ireland in order to investigate whether the technology could provide a solution to the problem of on-site effluent [...] Read more.
Full-scale willow evapotranspiration systems fed from the base with septic tank or secondary treated domestic effluent from single houses have been constructed and instrumented in Ireland in order to investigate whether the technology could provide a solution to the problem of on-site effluent disposal in areas with low permeability subsoils. Continuous monitoring of rainfall, reference evapotranspiration, effluent flows and water level in the sealed systems revealed varying evapotranspiration rates across the different seasons. No system managed to achieve zero discharge in any year remaining at maximum levels for much of the winter months, indicating some loss of water by lateral exfiltration at the surface. Water sampling and analysis however, showed that the quality of any surface overflow from the systems was similar to rainfall runoff. The performance results have then been used to formulate design guidelines for such systems in Ireland’s temperate maritime climate. The effect of varying different combinations of design parameters (plan area, soil depth, etc.) has been evaluated with respect to the simulated number of overflow days over a five-year period using a water balance model. Design guidelines have then been based upon minimising the amount of runoff, in conjunction with other practical and financial considerations. Full article
Show Figures

Figure 1

Back to TopTop