Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (905)

Search Parameters:
Keywords = wideband systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7981 KB  
Article
A Flexible and Compact UWB MIMO Antenna with Dual-Band-Notched Double U-Shaped Slot on Mylar® Polyester Film
by Vanvisa Chutchavong, Wanchalerm Chanwattanapong, Norakamon Wongsin, Paitoon Rakluea, Maleeya Tangjitjetsada, Chawalit Rakluea, Chatree Mahatthanajatuphat and Prayoot Akkaraekthalin
Electronics 2025, 14(17), 3363; https://doi.org/10.3390/electronics14173363 - 24 Aug 2025
Abstract
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article [...] Read more.
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article discusses the development of small, high-performance MIMO UWB antennas with mutual suppression capabilities to fully use the benefits of both technologies. Additionally, the suggested antenna features a straightforward design and dual-band-notched characteristics. The antenna structure includes two radiating elements measuring 85 × 45 mm2. These elements use a rectangular patch provided by a coplanar waveguide (CPW). Double U-shaped slots are incorporated into the rectangular patch to introduce dual-band-notched properties, which help mitigate interference from WiMAX and WLAN communication systems. The antenna is fabricated on a Mylar® polyester film substrate of 0.3 mm in thickness, with a dielectric constant of 3.2. According to the measurement results, the suggested antenna functions efficiently across the frequency spectrum of 2.29 to 20 GHz, with excellent impedance matching throughout the bandwidth. Furthermore, it provides dual-band-notched coverage at 3.08–3.8 GHz for WiMAX and 4.98–5.89 GHz for WLAN. The antenna exhibits impressive performance, including favorable radiation attributes, consistent gain, and little mutual coupling (less than −20 dB). Additionally, the envelope correlation coefficient (ECC) is extremely low (ECC < 0.01) across the working bandwidth, which indicates excellent UWB MIMO performance. This paper offers an appropriate design methodology for future flexible and compact UWB MIMO systems that can serve as interference-resilient antennas for next-generation wireless applications. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

19 pages, 8015 KB  
Article
A Real-Time UWB-Based Device-Free Localization and Tracking System
by Shengxin Xu, Dongyue Lv, Zekun Zhang and Heng Liu
Electronics 2025, 14(17), 3362; https://doi.org/10.3390/electronics14173362 - 24 Aug 2025
Abstract
Device-free localization and tracking (DFLT) has emerged as a promising technique for location-aware Internet-of-Things (IoT) applications. However, most existing DFLT systems based on narrowband sensing networks suffer from reduced accuracy in indoor environments due to the susceptibility of received signal strength (RSS) measurements [...] Read more.
Device-free localization and tracking (DFLT) has emerged as a promising technique for location-aware Internet-of-Things (IoT) applications. However, most existing DFLT systems based on narrowband sensing networks suffer from reduced accuracy in indoor environments due to the susceptibility of received signal strength (RSS) measurements to multipath interference. In this paper, we propose a real-time DFLT system leveraging ultra-wideband (UWB) sensors. The system estimates target-induced shadowing using two UWB RSS measurements, which are shown to be more resilient to multipath effects compared to their narrowband counterparts. To enable real-time tracking, we further design an efficient measurement protocol tailored for UWB networks. Field experiments conducted in both indoor and outdoor environments demonstrate that our UWB-based system significantly outperforms its traditional narrowband DFLT solutions in terms of accuracy and robustness. Full article
(This article belongs to the Special Issue Technology of Mobile Ad Hoc Networks)
Show Figures

Figure 1

18 pages, 2961 KB  
Article
Office Posture Detection Using Ceiling-Mounted Ultra-Wideband Radar and Attention-Based Modality Fusion
by Wei Lu, Christopher Bird, Moid Sandhu and David Silvera-Tawil
Sensors 2025, 25(16), 5164; https://doi.org/10.3390/s25165164 - 20 Aug 2025
Viewed by 267
Abstract
Prolonged sedentary behavior in office environments is a key risk factor for musculoskeletal disorders and metabolic health issues. While workplace stretching interventions can mitigate these risks, effective monitoring solutions are often limited by privacy concerns and constrained sensor placement. This study proposes a [...] Read more.
Prolonged sedentary behavior in office environments is a key risk factor for musculoskeletal disorders and metabolic health issues. While workplace stretching interventions can mitigate these risks, effective monitoring solutions are often limited by privacy concerns and constrained sensor placement. This study proposes a ceiling-mounted ultra-wideband (UWB) radar system for privacy-preserving classification of working and stretching postures in office settings. In this study, data were collected from ten participants in five scenarios: four posture classes (seated working, seated stretching, standing working, standing stretching), and empty environment. Distance and Doppler information extracted from the UWB radar signals was transformed into modality-specific images, which were then used as inputs to two classification models: ConcatFusion, a baseline model that fuses features by concatenation, and AttnFusion, which introduces spatial attention and convolutional feature integration. Both models were evaluated using leave-one-subject-out cross-validation. The AttnFusion model outperformed ConcatFusion, achieving a testing accuracy of 90.6% and a macro F1-score of 90.5%. These findings demonstrate the effectiveness of a ceiling-mounted UWB radar combined with attention-based modality fusion for unobtrusive office posture monitoring. The approach offers a privacy-preserving solution with potential applications in real-time ergonomic assessment and integration into workplace health and safety programs. Full article
(This article belongs to the Special Issue Sensor-Based Human Activity Recognition)
Show Figures

Figure 1

15 pages, 2580 KB  
Article
The Influence of Ultra-Wideband Anchor Placement on Localization Accuracy
by Luka Kramarić, Mario Muštra and Tomislav Radišić
Sensors 2025, 25(16), 5115; https://doi.org/10.3390/s25165115 - 18 Aug 2025
Viewed by 399
Abstract
Localization of Unmanned Aerial Vehicles (UAVs) in spaces with a limited availability of Global Navigation Satellite System signals presents a challenge, and one possible solution is the usage of Ultra-Wideband (UWB) transceivers as an aid in the localization process. This paper examines the [...] Read more.
Localization of Unmanned Aerial Vehicles (UAVs) in spaces with a limited availability of Global Navigation Satellite System signals presents a challenge, and one possible solution is the usage of Ultra-Wideband (UWB) transceivers as an aid in the localization process. This paper examines the influence of placing the UWB anchors on the UAVs’ localization accuracy in indoor spaces. Different testing scenarios, with variations in the number of anchors and their relative position towards the UAV, were created. Results show that the anchor placement plays an important role and is a significant factor in achieving accurate positioning of UAVs. The error for different testing configurations was shown through the RMSE for each axis, backed up by the standard deviation. The increase in the number of UWB anchors with the combined use of an additional laser ranging sensor for altitude measurement provided the best result. The RMSE was less than 18 cm in each axis of a 3D coordinate system with the standard deviation of up to 4.41 cm. For the testing scenarios that included the usage of a laser altimeter, the RMSE for the z-axis dropped below 1 cm, with the standard deviation of under 0.3 cm. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Graphical abstract

12 pages, 823 KB  
Article
Enhancing the Resilience of ROS 2-Based Multi-Robot Systems with Kubernetes: A Case Study on UWB-Based Relative Positioning
by Jiaqiang Zhang, Xianjia Yu and Tomi Westerlund
Sensors 2025, 25(16), 5067; https://doi.org/10.3390/s25165067 - 14 Aug 2025
Viewed by 371
Abstract
ROS (Robot Operating System) has become the de facto standard in robotics research and development, with ROS 2, in particular, offering enhanced support for real-time communication, distributed systems, and scalable multi-robot applications. These capabilities have driven its widespread adoption across academia, industry, and [...] Read more.
ROS (Robot Operating System) has become the de facto standard in robotics research and development, with ROS 2, in particular, offering enhanced support for real-time communication, distributed systems, and scalable multi-robot applications. These capabilities have driven its widespread adoption across academia, industry, and the open-source community. However, deploying ROS 2 applications across heterogeneous hardware platforms remains a complex task—especially in scenarios that require tightly coordinated, multi-agent systems. In such cases, the failure of a single agent can propagate disruptions throughout the system. A representative example is Ultra-wideband (UWB)-based multi-robot relative localization, where inter-robot dependencies are essential for maintaining accurate relative positioning. While Kubernetes offers powerful features for automated deployment and orchestration, its integration with ROS 2 has not yet been thoroughly evaluated within the context of specific robotic applications. This paper addresses this gap by integrating Kubernetes with ROS 2 in a UWB-based multi-robot localization system, using UWB ranging error mitigation as a representative application. An edge cluster comprising five NVIDIA Jetson Nano devices and one laptop is orchestrated using Kubernetes, with a Jetson Nano node mounted on each robot. We deploy Long Short-Term Memory (LSTM)-based error mitigation modules on the edge nodes and systematically induce failures in various combinations of these modules. The system’s resilience and robustness are then assessed by analyzing position errors under different failure scenarios. Full article
Show Figures

Figure 1

25 pages, 3918 KB  
Article
Sensitivity Analysis of Component Parameters in Dual-Channel Time-Domain Correlated UWB Fuze Receivers Under Parametric Deviations
by Yanbin Liang, Kaiwei Wu, Bing Yang, Shijun Hao and Zhonghua Huang
Sensors 2025, 25(16), 5065; https://doi.org/10.3390/s25165065 - 14 Aug 2025
Viewed by 187
Abstract
In ultra-wideband (UWB) radio fuze architectures, the receiver serves as the core component for receiving target-reflected signals, with its performance directly determining system detection accuracy. Manufacturing tolerances and operational environments induce inherent stochastic perturbations in circuit components, causing deviations of actual parameters from [...] Read more.
In ultra-wideband (UWB) radio fuze architectures, the receiver serves as the core component for receiving target-reflected signals, with its performance directly determining system detection accuracy. Manufacturing tolerances and operational environments induce inherent stochastic perturbations in circuit components, causing deviations of actual parameters from nominal values. This consequently degrades the signal-to-noise ratio (SNR) of receiver outputs and compromises ranging precision. To overcome these limitations and identify critical sensitive components in the receiver, this study proposes the following: (1) A dual-channel time-domain correlated UWB fuze detection model; and (2) the integration of an asymmetric tolerance mathematical model for dual-channel correlated receivers with a Morris-LHS-Sobol collaborative strategy to quantify independent effects and coupling interactions across multidimensional parameter spaces. Simulation results demonstrate that integrating capacitors and resistors constitute the dominant sensitivity sources, exhibiting significantly positive synergistic effects. Physical simulation correlation and hardware circuit verification confirms that the proposed model and sensitivity analysis method outperform conventional approaches in tolerance resolution and allocation optimization, thereby advancing the theoretical characterization of nonlinear coupling effects between parameters. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

24 pages, 1735 KB  
Article
A Multi-Sensor Fusion-Based Localization Method for a Magnetic Adhesion Wall-Climbing Robot
by Xiaowei Han, Hao Li, Nanmu Hui, Jiaying Zhang and Gaofeng Yue
Sensors 2025, 25(16), 5051; https://doi.org/10.3390/s25165051 - 14 Aug 2025
Viewed by 368
Abstract
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), [...] Read more.
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), Wheel Odometry (Odom), and Ultra-Wideband (UWB). An Extended Kalman Filter (EKF) is employed to integrate IMU and Odom measurements through a complementary filtering model, while a geometric residual-based weighting mechanism is introduced to optimize raw UWB ranging data. This enhances the accuracy and robustness of both the prediction and observation stages. All evaluations were conducted in a simulated environment, including scenarios on flat plates and spherical tank-shaped steel surfaces. The proposed method maintained a maximum localization error within 5 cm in both linear and closed-loop trajectories and achieved over 30% improvement in horizontal accuracy compared to baseline EKF-based approaches. The system exhibited consistent localization performance across varying surface geometries, providing technical support for robotic operations on large steel infrastructures. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 5161 KB  
Article
Tunable Emission Properties of Sb3+/Pb2+ Co-Doped Cs7Cd3Br13 for Optical Anti-Counterfeiting Application
by Bingbing Zheng, Shuaigang Ge, Lingli Chen, Yijia Wen, Kaihuang Huang and Bingsuo Zou
Nanomaterials 2025, 15(16), 1238; https://doi.org/10.3390/nano15161238 - 13 Aug 2025
Viewed by 274
Abstract
Cd-based perovskite materials have the advantages of high emission efficiency and tunable emission, as well as broad application prospects in the field of optoelectronics. However, achieving multimode dynamic luminescence under UV light excitation in a single system is a great challenge. Here, we [...] Read more.
Cd-based perovskite materials have the advantages of high emission efficiency and tunable emission, as well as broad application prospects in the field of optoelectronics. However, achieving multimode dynamic luminescence under UV light excitation in a single system is a great challenge. Here, we successfully prepared Sb3+/Pb2+ co-doped Cs7Cd3Br13 crystals by a simple hydrothermal method. Tunable emission from orange to white and then to blue, covering the wavelength range between 370 and 800 nm, was achieved by varying the doping concentration of Pb2+ ions in Cs7Cd3Br13:0.5%Sb3+. Temperature-dependent photoluminescence (PL) spectra and density functional theory (DFT) calculations confirm that the wide-band white-light emission of Cs7Cd3Br13: Sb3+/Pb2+ crystal comes from the first self-trapped exciton (STE1) of undoped Cs7Cd3Br13 intrinsic capture state and the emission of free excitons (FEs) and STE2 induced by the confining effect and the Jahn–Teller effect by Pb2+ incorporation, as well as the Sb triplet self-trapped exciton (STE3). More specifically, the samples with the best co-doped ratio exhibit significant excitation-wavelength-dependent luminescence characteristics and can realize the conversion of the emission color from white and blue to orange. Based on the tunable emission characteristics of three emission colors, the material has good prospects in encryption and anti-counterfeiting applications. This work provides a new strategy for the application of Cd-based halides in the field of anti-counterfeiting. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

14 pages, 5264 KB  
Article
Compact Circularly Polarized Cavity-Backed Crossed-Dipole Antenna with Ultra-Wide Bandwidth for Integrated GNSS–SatCom Terminals
by Kunshan Mo, Xing Jiang, Ling Peng, Rui Fang, Qiushou Liu and Zhengde Li
Electronics 2025, 14(16), 3193; https://doi.org/10.3390/electronics14163193 - 11 Aug 2025
Viewed by 266
Abstract
As wireless systems evolve toward multiband, multifunctional convergence and high-throughput services, the demand for ultra-wideband circularly polarized (CP) antennas for multi-standard terrestrial–satellite terminals continues to grow; however, because of the dispersive nature of the three-quarter-ring phase shifter, the relative bandwidth achievable with conventional [...] Read more.
As wireless systems evolve toward multiband, multifunctional convergence and high-throughput services, the demand for ultra-wideband circularly polarized (CP) antennas for multi-standard terrestrial–satellite terminals continues to grow; however, because of the dispersive nature of the three-quarter-ring phase shifter, the relative bandwidth achievable with conventional crossed-dipole antennas rarely exceeds 100%. This paper presents a compact left-hand circularly polarized (LHCP) crossed-dipole antenna that combines a cavity-backed ground, ground-slot perturbations, and parasitic patches to simultaneously broaden the impedance and axial-ratio bandwidths. The fabricated prototype achieves an impedance bandwidth (IMBW) of 0.71–3.89 GHz (138%) and a 3 dB axial-ratio bandwidth (ARBW) of 0.98–3.27 GHz (108%), while maintaining gains above 3.5 dBic across most of the frequency range. The good agreement validates the multi-technique co-design and shows that the compact architecture (0.302 λ × 0.302 λ × 0.129 λ) breaks classical crossed-dipole limits. The antenna provides a scalable building block for wideband conformal arrays in next-generation integrated GNSS–SatCom systems. Full article
Show Figures

Figure 1

13 pages, 3394 KB  
Article
Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure
by Jiansen Ma, Weiping Cao and Xinhua Yu
Electronics 2025, 14(15), 3137; https://doi.org/10.3390/electronics14153137 - 6 Aug 2025
Viewed by 279
Abstract
In this paper, a compact wideband filtering monopole is presented for remote terrestrial omnidirectional communication systems. The presented antenna features a sleeve monopole structure integrating with two key components: the lumped parallel RLC circuits and an embedded high–low impedance structure within the sleeve [...] Read more.
In this paper, a compact wideband filtering monopole is presented for remote terrestrial omnidirectional communication systems. The presented antenna features a sleeve monopole structure integrating with two key components: the lumped parallel RLC circuits and an embedded high–low impedance structure within the sleeve section. The integrated high–low impedance structure enables the monopole to achieve excellent filtering characteristics while maintaining the monopole compactly. Meanwhile, the combination of the RLC loads and the sleeve monopole ensures wideband omnidirectional radiation performance. To validate the design, a prototype operating from 200 to 1500 MHz is fabricated and tested. The measurement results demonstrate that the monopole achieves a VSWR below 3 across the entire operating band and a measured gain exceeding 0 dB. Furthermore, the monopole exhibits satisfactory out-of-band rejection from 1700 to 4000 MHz, confirming its effective filtering capability. Full article
Show Figures

Figure 1

27 pages, 21019 KB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 - 1 Aug 2025
Viewed by 557
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

31 pages, 18320 KB  
Article
Penetrating Radar on Unmanned Aerial Vehicle for the Inspection of Civilian Infrastructure: System Design, Modeling, and Analysis
by Jorge Luis Alva Alarcon, Yan Rockee Zhang, Hernan Suarez, Anas Amaireh and Kegan Reynolds
Aerospace 2025, 12(8), 686; https://doi.org/10.3390/aerospace12080686 - 31 Jul 2025
Viewed by 472
Abstract
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, [...] Read more.
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, Weight, and Power) ultra-wideband (UWB) impulse radar with realistic electromagnetic modeling for deployment on unmanned aerial vehicles (UAVs). The system incorporates ultra-realistic antenna and propagation models, utilizing Finite Difference Time Domain (FDTD) solvers and multilayered media, to replicate realistic airborne sensing geometries. Verification and calibration are performed by comparing simulation outputs with laboratory measurements using varied material samples and target models. Custom signal processing algorithms are developed to extract meaningful features from complex electromagnetic environments and support anomaly detection. Additionally, machine learning (ML) techniques are trained on synthetic data to automate the identification of structural characteristics. The results demonstrate accurate agreement between simulations and measurements, as well as the potential for deploying this design in flight tests within realistic environments featuring complex electromagnetic interference. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

37 pages, 9111 KB  
Article
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection
by Marwa H. Sharaf, Manuel Arrebola, Khalid F. A. Hussein, Asmaa E. Farahat and Álvaro F. Vaquero
Sensors 2025, 25(15), 4670; https://doi.org/10.3390/s25154670 - 28 Jul 2025
Viewed by 476
Abstract
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, [...] Read more.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection. Full article
Show Figures

Figure 1

25 pages, 10205 KB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 393
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

23 pages, 3210 KB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 385
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop