Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = white portland cement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4761 KiB  
Article
Effect of Use of Alkaline Waste Materials as a CO2 Sink on the Physical and Mechanical Performance of Eco-Blended Cement Mortars—Comparative Study
by Ana María Moreno de los Reyes, María Victoria Paredes, Ana Guerrero, Iñigo Vegas-Ramiro, Milica Vidak Vasić and Moisés Frías
Materials 2025, 18(14), 3238; https://doi.org/10.3390/ma18143238 - 9 Jul 2025
Viewed by 359
Abstract
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline [...] Read more.
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline waste materials (white ladle furnace slag, biomass ash, and fine concrete waste fraction) that had been previously carbonated in a static reactor at predefined humidity and CO2 concentration. The mortars’ physical (total/capillary water absorption, electrical resistivity) and mechanical properties (compressive strength up to 90 d of curing) were analyzed, and their microstructures were examined using mercury intrusion porosimetry and computed tomography. The results reveal that carbonated waste materials generate a greater heat of hydration and have a lower total and capillary water absorption capacity, while the electrical resistivity and compressive strength tests generally indicate that they behave similarly to mortars not containing carbonated minerals. Mercury intrusion porosimetry (microporosity) indicates an increase in total porosity, with no clear refinement versus non-carbonated materials, while computed tomography (macroporosity) reveals a refinement of the pore structure with a significant reduction in the number of larger pores (>0.09 mm3) and intermediate pores (0.001–0.09 mm3) when carbonated residues are incorporated that varies depending on waste material. The construction and demolition waste (CCDW-C) introduced the best physical and mechanical behavior. These studies confirm the possibility of recycling carbonated waste materials as low-carbon supplementary cementitious materials (SCMs). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3587 KiB  
Article
Relations Between the Printability Descriptors of Mortar and NMR Relaxometry Data
by Mihai M. Rusu and Ioan Ardelean
Materials 2025, 18(13), 3070; https://doi.org/10.3390/ma18133070 - 27 Jun 2025
Viewed by 305
Abstract
Concrete printing technologies play a key role in the modernization of construction practices. One factor that mitigates their progress is the development of standards and characterization tools for concrete during printing. The aim of this work is to point out correlations between some [...] Read more.
Concrete printing technologies play a key role in the modernization of construction practices. One factor that mitigates their progress is the development of standards and characterization tools for concrete during printing. The aim of this work is to point out correlations between some printability descriptors of mortars and the data obtained from low-field nuclear magnetic resonance (NMR) relaxometry techniques. In this context, the superposed effects of an acrylic-based superplasticizer and calcium nitrate accelerator were investigated. The mortars under study are based on white Portland cement, fine aggregates, and silica fume at fixed ratios. Extrusion tests and visual inspection of the filaments evaluate the extrudability and the printing window. The selected compositions were also investigated via transverse T2 and longitudinal T1 NMR relaxation times. The results indicate that both additives increase the printing window of the mortar, while the accelerator induces a faster increase in specific surface area of capillary pores S/V only after 30–60 min of hydration. Some correlations were found between the printing window and the range where the transverse relaxation rates 1/T2 and the pore surface-to-volume ratios S/V increase linearly. This suggests some promising connections between NMR techniques and the study of structural buildup of cementitious materials. Full article
Show Figures

Figure 1

14 pages, 6166 KiB  
Article
1H NMR Sensor for Nondestructive Characterization of Organic and Inorganic Materials
by Floriberto Díaz-Díaz, Prisciliano F. de J. Cano-Barrita, Frank M. León-Martínez and Víktor Acevedo-Arzola
Sensors 2024, 24(23), 7692; https://doi.org/10.3390/s24237692 - 30 Nov 2024
Viewed by 1093
Abstract
Nuclear magnetic resonance relaxation of the proton spins of liquid molecules and their evolution during processes such as drying, fluid flow, and phase change of a sample can be monitored in a nondestructive way. A unilateral 1H NMR sensor made with a [...] Read more.
Nuclear magnetic resonance relaxation of the proton spins of liquid molecules and their evolution during processes such as drying, fluid flow, and phase change of a sample can be monitored in a nondestructive way. A unilateral 1H NMR sensor made with a permanent magnet array, inspired by the NMR MOUSE, with an RF coil tuned to 11.71 MHz was developed. This creates a sensitive homogeneous measuring volume parallel to the sensor surface and located 14 mm from its surface, allowing contactless measurements from the sample’s interior. As this sensitive volume is moved across the sample using a semi-automatic linear displacement mechanism with millimetric precision, spatial T2 lifetime and signal intensity 1D profiles can be obtained. To characterize the sensor’s sensitive volume, eraser samples were used. To evaluate the sensor’s ability to characterize different materials, cement paste samples containing ordinary and white Portland cement were prepared and measured at seven days of age. In addition, measurements were made on organic samples such as a Hass avocado and beef steak. Based on the results, a 1 mm spatial resolution of the sensor was achieved. The sensor was able to detect differences in T2 lifetimes in eraser specimens composed of layers of three different erasers. Also, a clear difference in T2 lifetimes and signal intensities was observed in cement pastes composed of white and ordinary Portland cement. On the other hand, it was possible to obtain signals from the peel and pulp of the avocado fruit, as well as from the fat and meat in a beef steak in a nondestructive way. The T2 lifetimes of the different materials agreed with those obtained using a commercial NMR spectrometer. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 2nd Edition)
Show Figures

Figure 1

23 pages, 6749 KiB  
Article
A Study of the Influence of Thermoactivated Natural Zeolite on the Hydration of White Cement Mortars
by Ventseslav Stoyanov, Vilma Petkova, Katerina Mihaylova and Maya Shopska
Materials 2024, 17(19), 4798; https://doi.org/10.3390/ma17194798 - 29 Sep 2024
Cited by 1 | Viewed by 1155
Abstract
One trend in the development of building materials is the partial or complete replacement of traditional materials that have a high carbon footprint with eco-friendly ecological raw materials and ingredients. In the present work, the influence of replacing cement with 10 wt% thermally [...] Read more.
One trend in the development of building materials is the partial or complete replacement of traditional materials that have a high carbon footprint with eco-friendly ecological raw materials and ingredients. In the present work, the influence of replacing cement with 10 wt% thermally activated natural zeolite on the structural and physical-mechanical characteristics of cured mortars based on white Portland cement and river sand was investigated. The phase compositions were determined by wavelength dispersive X-ray fluorescence (WD-XRF) analysis, X-ray powder diffraction (PXRD), diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS), and scanning electron microscopy (SEM), as well as thermogravimetric analysis simultaneously with differential scanning calorimetry (TG/DTG-DSC). The results show that the incorporation of zeolite increases the amount of pores accessible with mercury intrusion porosimetry by about 40%, but the measured strengths are also higher by over 13%. When these samples were aged in an aqueous environment from day 28 to day 120, the amount of pores decreased by about 10% and the compressive strength increased by nearly 15%, respectively. The microstructural analysis carried out proves that these results are due to hydration with a low content of crystal water and the realization of pozzolanic reactions that last over time. Replacing some of the white cement with thermally activated natural zeolite results in the formation of a greater variety of crystals, including new crystalline CSH and CSAH phases that allow better intergrowth and interlocking. The results of the investigations allow us to present a plausible reaction mechanism of pozzolanic reactions and of the formation of new crystal hydrate phases. This gives grounds to claim that the replacement of part of the cement with zeolite improves the corrosion resistance of the investigated building solutions against aggressive weathering. Full article
Show Figures

Figure 1

19 pages, 28912 KiB  
Article
Multifunctional Anatase–Silica Photocatalytic Material for Cements and Concretes
by Valeria Strokova, Yulia Ogurtsova, Ekaterina Gubareva, Sofya Nerovnaya and Marina Antonenko
J. Compos. Sci. 2024, 8(6), 207; https://doi.org/10.3390/jcs8060207 - 31 May 2024
Cited by 1 | Viewed by 1165
Abstract
The purpose of this research was to study the influence of multifunctional anatase–silica photocatalytic materials (ASPMs) with various photocatalytic and pozzolanic activities on the properties of white portland cement and fine-grained concrete. ASPMs were synthesized by a sol–gel method, during which the levels [...] Read more.
The purpose of this research was to study the influence of multifunctional anatase–silica photocatalytic materials (ASPMs) with various photocatalytic and pozzolanic activities on the properties of white portland cement and fine-grained concrete. ASPMs were synthesized by a sol–gel method, during which the levels of photocatalytic and pozzolanic activity were regulated by a certain amount of solvent. ASPMb, obtained with the use of a smaller amount of solvent, was characterized by increased pozzolanic activity due to the lower degree of coating of the surface of diatomite particles with titanium dioxide and the higher content of an opal–cristobalite–tridymite-phase and Bronsted acid sites. They promoted the reaction of diatomite with portlandite of cement stone and allowed significant decreases in the strength of cement–sand mortar to be avoided when replacing 15% of the cement with ASPMs. This allowed self-cleaning fine-grained concrete to be produced, which, after forced carbonization, simulating the natural aging of the product during operation, retained the ability of self-cleaning without changes. ASPMc, produced with the use of a larger amount of solvent with a more uniform distribution of titanium dioxide on the surface of diatomite, allowed fine-grained concrete with a high self-cleaning ability to be obtained, but with a lesser manifestation of the pozzolanic effect. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication and Application)
Show Figures

Figure 1

23 pages, 6179 KiB  
Article
Fabrication and Mechanical Evaluation of Eco-Friendly Geopolymeric Mortars Derived from Ignimbrite and Demolition Waste from the Construction Industry in Peru
by Fredy Alberto Huamán-Mamani, Cris Katherin Palomino-Ñaupa, María del Mar Orta Cuevas and Santiago Medina-Carrasco
Geosciences 2024, 14(3), 80; https://doi.org/10.3390/geosciences14030080 - 15 Mar 2024
Cited by 3 | Viewed by 2339
Abstract
Ignimbrite rock is a volcanic material located in the Arequipa region (Peru), and for centuries, it has been used as a construction material, giving a characteristic light pastel, white to pink color to the city of Arequipa, with white being the most common. [...] Read more.
Ignimbrite rock is a volcanic material located in the Arequipa region (Peru), and for centuries, it has been used as a construction material, giving a characteristic light pastel, white to pink color to the city of Arequipa, with white being the most common. In the present study, the potential use of three types of Arequipa raw materials (ignimbrite rock powder, calcined clay powder, and demolition mortar powder) as the main source of new binders or the manufacture of environmentally friendly mortars, without the addition of ordinary Portland cement (OPC) is discussed. In this work, an in-depth characterization of the materials used was carried out. The proposed fabrication route for geopolymeric materials was considered for the manufacture of binders and mortars using an alkaline solution of NaOH with values between 12 and 18 molar, as a trigger for the geopolymerization process. Geopolymeric mortars were obtained by adding a controlled amount of fine sand to the previously prepared mixture of binder raw material and an alkaline solution. Conventional OPC and geopolymeric mortars manufactured under the same conditions were mechanically evaluated by uniaxial compression tests at a constant compression rate of 0.05 mm/min and under normal conditions of temperature and atmosphere, where the most optimal values were obtained for 15 molar alkaline solutions of ignimbrite without the addition of aggregates, with values of compressive strength of 42 MPa and a modulus elastic of 30 GPa. The results revealed a significant increase in the maximum strength and modulus of elasticity values when the volumetric fractions of OPC are completely replaced with geopolymeric binders in the study conditions of this work, demonstrating the enormous potential of the ignimbrite rock and construction waste studied, as raw material of alternative mortar binders without the addition of OPC. With this work, the ignimbrite rock, of great value in the region and also found in other areas of the Earth’s geography, was characterized and valued, in addition to the calcined clay and demolition mortar of the region. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Graphical abstract

21 pages, 10550 KiB  
Article
Assessment of Photocatalytic Nano-TiO2 Mortars’ Behavior When Exposed to Simulated Indoor Conditions of Glazed Buildings
by Roberta Picanço Casarin, Jéssica Deise Bersch, Joana Maia, Angela Borges Masuero and Denise Carpena Coitinho Dal Molin
Buildings 2023, 13(9), 2250; https://doi.org/10.3390/buildings13092250 - 5 Sep 2023
Cited by 2 | Viewed by 1610
Abstract
The application of nano-TiO2 as a photocatalytic agent in buildings’ internal surfaces has recently attracted attention to mitigate microorganism growth, soiling, and contamination in indoor environments. This work aimed at comparing the Rhodamine B (RhB) dye degradation efficiency of three different mortar [...] Read more.
The application of nano-TiO2 as a photocatalytic agent in buildings’ internal surfaces has recently attracted attention to mitigate microorganism growth, soiling, and contamination in indoor environments. This work aimed at comparing the Rhodamine B (RhB) dye degradation efficiency of three different mortar compositions subjected to simulated internal radiation, in which nano-TiO2 (10 wt% of binder mass) was dispersed by ultrasonic and mechanical methods. Mortar specimens were produced with white Portland cement, hydrated lime, sand, and water in different volume proportions of 1:1:6 (cement:lime:sand), 1:3 (cement:sand), and 1:4 (cement:sand). The first stage of the research evaluated samples exposed to the natural outdoor environment and proved the efficiency of specimens’ photoactivity when covered by a glass layer. The second and principal phase of the study simulated indoor conditions in glazed buildings through artificial weathering in which the composition of 1:1:6 was mechanically dispersed and exhibited the highest global color change (ΔE) values for RhB staining. The main finding of the study was that the mortars exposed to simulated indoor conditions presented high ΔE grades, classified as easily perceived by the human eye. This demonstrates the photocatalytic efficiency in an internal building environment that receives radiation through a glass surface. Full article
Show Figures

Figure 1

21 pages, 8158 KiB  
Article
Quartz Powder Valorisation in White Self-Compacting Concrete: Mortar Level Study
by Ana Mafalda Matos, Lino Maia and Joana Sousa Coutinho
Appl. Sci. 2023, 13(13), 7652; https://doi.org/10.3390/app13137652 - 28 Jun 2023
Cited by 2 | Viewed by 2057
Abstract
Quartz powder (QP) from mining exploration has increased, and valorisation solutions are sought. QP incorporation in structural concrete is an exciting strategy for the growth and sustainable development of the concrete industry, waste management and environmental protection. This work addresses the valorisation of [...] Read more.
Quartz powder (QP) from mining exploration has increased, and valorisation solutions are sought. QP incorporation in structural concrete is an exciting strategy for the growth and sustainable development of the concrete industry, waste management and environmental protection. This work addresses the valorisation of QP from a Portuguese company on powder-type self-compacting concrete for architectural and structural purposes, combining the light colour of quartz with white cement. As such, QP was used as a partial cement replacement, acting as a filler on self-compacting white mortars (SCWM) and pastes (SCWP). Firstly, the QP was characterised by chemical, physical and morphological properties. Afterwards, SCWM with 10% of the white Portland cement with QP were produced and, with 10% cement replacement by limestone fillers, commercially available, for comparison purposes. The following engineering properties were evaluated, flowability and viscosity, electrical resistivity, porosity and mechanical strength. In equivalent pastes samples, the heat of hydration was accessed. Finally, an architectonic element prototype was produced using SCWM-QP, and colour and aesthetics were evaluated. All SCWM reached adequate deformability and viscosity for self-compaction. In the hardened state, compressive strength, electrical resistivity and water-permeable porosity presented similar results for mortars incorporating quartz powder and limestone fillers. The isothermal calorimetry in equivalent pastes revealed a slight desacceleration of hydration for SCWP incorporating QP. The major findings of this study confirm the feasibility of SCWM with QP, meeting the required performance while reducing resource depletion in the concrete industry and adding value to a by-product. Full article
(This article belongs to the Special Issue Durability of Advanced Cement and Concrete Materials)
Show Figures

Figure 1

17 pages, 5504 KiB  
Article
Assessing the Rheological, Mechanical, and Photocatalytic Properties of Niobium Oxide-Incorporated White Cement Pastes
by Laura Silvestro, Caroline Maroli, Brenda Koch, Artur Spat Ruviaro, Geannina Lima, Mariane Kempka, Camila Fabiano de Freitas Marin, Daniela Zambelli Mezalira and Philippe Jean Paul Gleize
Materials 2023, 16(11), 4090; https://doi.org/10.3390/ma16114090 - 31 May 2023
Viewed by 1499
Abstract
Niobium oxide (Nb2O5) is a semiconductor that exhibits photocatalytic properties, making it potentially valuable in addressing air pollution, self-cleaning, and self-disinfection in cement-based materials (CBMs). Therefore, this study aimed to evaluate the impact of different Nb2O5 [...] Read more.
Niobium oxide (Nb2O5) is a semiconductor that exhibits photocatalytic properties, making it potentially valuable in addressing air pollution, self-cleaning, and self-disinfection in cement-based materials (CBMs). Therefore, this study aimed to evaluate the impact of different Nb2O5 concentrations on various parameters, including rheological characteristics, hydration kinetics (measured using isothermal calorimetry), compressive strength, and photocatalytic activity, specifically in the degradation of Rhodamine B (RhB) in white Portland cement pastes. The incorporation of Nb2O5 increased the yield stress and viscosity of the pastes by up to 88.9% and 33.5%, respectively, primarily due to the larger specific surface area (SSA) provided by Nb2O5. However, this addition did not significantly affect the hydration kinetics or the compressive strength of the cement pastes after 3 and 28 days. Tests focusing on the degradation of RhB in the cement pastes revealed that the inclusion of 2.0 wt.% of Nb2O5 was insufficient to degrade the dye when exposed to 393 nm UV light. However, an interesting observation was made concerning RhB in the presence of CBMs, as it demonstrated a degradation mechanism that was not dependent on light. This phenomenon was attributed to the production of superoxide anion radicals resulting from the interaction between the alkaline medium and hydrogen peroxide. Full article
Show Figures

Figure 1

16 pages, 3555 KiB  
Article
Modifying Water–Frost Resistance and Mechanical Properties of Lime Mortar Using Siliceous and Fluidised Bed Fly Combusted Ashes Activated with Cement
by Dominik Logoń, Janusz Kobaka and Jacek Domski
Materials 2023, 16(8), 3013; https://doi.org/10.3390/ma16083013 - 11 Apr 2023
Cited by 5 | Viewed by 2095
Abstract
The research focuses on pozzolanic additives, which are compatible with traditional lime mortars, and enable the modification of the rheological, physical and mechanical properties of tested composites. It was noted that lime mortars with fluidised bed fly ash require sand without impurities to [...] Read more.
The research focuses on pozzolanic additives, which are compatible with traditional lime mortars, and enable the modification of the rheological, physical and mechanical properties of tested composites. It was noted that lime mortars with fluidised bed fly ash require sand without impurities to avoid possible ettringite crystallisation. The work presents siliceous fly ash and fluidised bed combustion fly ash to modify the frost resistance and mechanical properties of traditional lime mortars with and without the addition of cement. The results show better effects using fluidised bed ash. Traditional Portland cement CEM I 42.5R was used to activate ash and increase the results. The possibility of a significant improvement of properties is indicated with a hybrid addition to the lime binder of 15–30% ash (siliceous or fluidised bed ash) and 15–30% cement. Changing the class and type of cement provides an additional opportunity to alter the properties of the composites. For architectural reasons relating to colour, the suitability of lighter fluidised bed ash instead of darker siliceous ash and of white Portland cement instead of the traditional grey cement can be used. The proposed mortars can be the basis for future modifications with admixtures and additives, e.g., metakaolin, polymers, fibres, slag, glass powder and impregnating agents. Full article
Show Figures

Figure 1

20 pages, 6169 KiB  
Article
Foam Glass Granule Usage in Tile Glue Mixtures That Use a Reduced Portland Cement Amount
by Ramune Zurauskiene and Lijana Navickiene
Materials 2023, 16(3), 1269; https://doi.org/10.3390/ma16031269 - 2 Feb 2023
Cited by 3 | Viewed by 2065
Abstract
In the last few years, ceramic tiles and tiles from natural rock with higher measurements were used. A huge amount of tile glue is used for high-measurement tile gluing due to a special gluing technology, which is characterized by a thicker glue layer. [...] Read more.
In the last few years, ceramic tiles and tiles from natural rock with higher measurements were used. A huge amount of tile glue is used for high-measurement tile gluing due to a special gluing technology, which is characterized by a thicker glue layer. Due to this, a higher and higher amount of tile glue is used up during decorating. Regular tile glue mixture uses up to about 50–60% cement (according to mixture mass). In carried-out experiments, a lower amount of cement was used in tile glue mixture production (30%). Additionally, 5%, 10%, 15%, 20% and 25% of sand was replaced with small foam glass granules. These granules are made from glass waste. By using foam glass granules, lighter tile glue mixtures were produced, while reducing the cement amount can lower energy usage and CO2 emissions into the atmosphere. The main properties of tile glue were investigated as follows: flow of mixture, density, compressive strength, bending strength, tensile-adhesive strength, slip and water absorption. The properties obtained during the research prove that newly produced tile glue mixtures fulfill all requirements given to these types of mixtures. A total of 25% of foam glass granule from filler mass can be used in tile glue production. Full article
Show Figures

Figure 1

12 pages, 5732 KiB  
Article
Analyzing the Effects of Calcium Nitrate over White Portland Cement: A Multi-Scale Approach
by Mihai Marius Rusu, Adriana Vulpoi, Cristian Vilau, Cristian Mircea Dudescu, Petru Păşcuţă and Ioan Ardelean
Materials 2023, 16(1), 371; https://doi.org/10.3390/ma16010371 - 30 Dec 2022
Cited by 5 | Viewed by 2082
Abstract
Calcium nitrate is considered a promising accelerator in cement-based composites, with high potential in 3D printing and cold cement concreting. The effect induced by the composition of calcium nitrate tetrahydrate (CN) accelerator into white Portland cement is evaluated here from three perspectives: (1) [...] Read more.
Calcium nitrate is considered a promising accelerator in cement-based composites, with high potential in 3D printing and cold cement concreting. The effect induced by the composition of calcium nitrate tetrahydrate (CN) accelerator into white Portland cement is evaluated here from three perspectives: (1) Fresh cement paste properties in terms of setting time and slump, (2) mechanical properties of hardened cement samples at 7 and 28 days and (3) material characteristics in terms of structure and porosity that further link the presence of the accelerator with the macroscopic performances. The compressive and flexural strength of the hardened samples, evaluated after 7 and 28 days of hydration, indicate a non-monotonous trend with CN concentration. Crystalline phase composition is investigated using X-ray diffraction (XRD). The morphology and texture are analyzed at the flexure interface by visual inspection and electron microscopy. Complementary, the porous features are investigated by NMR-relaxometry on dry and cyclohexane-filled samples. The studies confirm that CN promotes changes in the composition and morphology of hydrates, while a trend of increase in capillary porosity is outlined as well. This competition between multiscale effects may be quantified by NMR and complementary techniques to further clarify the mechanical behavior of such composites. Full article
(This article belongs to the Special Issue Confined Concrete and Its Application in Structural Engineering)
Show Figures

Figure 1

13 pages, 5007 KiB  
Article
Preparation and Color Performance of White Ultra-High-Performance Concrete with Large Fraction of Quaternary Binders
by Rui Ma, Ziyang Tian, Wei Zhang, Lei Chen, Jinyu Zong, Yi Ding and Daosheng Sun
Materials 2022, 15(24), 8895; https://doi.org/10.3390/ma15248895 - 13 Dec 2022
Cited by 6 | Viewed by 2806
Abstract
White ultra-high-performance concrete (WUHPC) performed outstanding mechanical, durability, and aesthetical properties, which was preferred in infrastructure to avoid the secondary painting, decrease the maintenance, and prolong the service life. Supplementary cementitious materials (SCMs) were often used in WUHPC to reduce the environment impacts [...] Read more.
White ultra-high-performance concrete (WUHPC) performed outstanding mechanical, durability, and aesthetical properties, which was preferred in infrastructure to avoid the secondary painting, decrease the maintenance, and prolong the service life. Supplementary cementitious materials (SCMs) were often used in WUHPC to reduce the environment impacts and material costs. In this study, limestone powder (LP), metakaolin (MK), and silica fume (SF) were used as SCMs to largely substitute white Portland cement (WPC) to prepare WUHPC, the effects of substituted ratio on flowability, strength, and whiteness were studied, and the hydration products were also analyzed by quantitative-XRD method and SEM. The whiteness was calculated in chromatic space CIELAB by measuring tristimulus values of L, a*, and b*, and the controlled factor on whiteness was also investigated. As the results, the WUHPC with compressive strength exceeded 150 MPa and whiteness over 90 was prepared with WPC substitution of 35~65%. The SF improved the flowability and strength about 10% due to its filling and ball effect, while the irregular particle sharp and non-uniform size distribution of MK caused the reversed development. The increased dosage of raw materials with higher L value, such as LP and MK, made the WUHPC whiter. The hydration products with varied SCMs ratio were in the same category by different content. It was supposed that CaCO3 and C-S-H gel in hydration products caused higher whiteness, while C3S, CaMg(CO3)2, and SiO2 were against the whiteness. The results proved that with a large fraction of SCMs, the WUHPC with high strength and good appearance were prepared, and the whiteness of WUHPC were both controlled by the raw materials and the content of hydration products. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 4469 KiB  
Article
Quantification of the Hardened Cement Paste Content in Fine Recycled Concrete Aggregates by Means of Salicylic Acid Dissolution
by Zengfeng Zhao, Jianzhuang Xiao, Denis Damidot, Sébastien Rémond, David Bulteel and Luc Courard
Materials 2022, 15(9), 3384; https://doi.org/10.3390/ma15093384 - 9 May 2022
Cited by 9 | Viewed by 2789
Abstract
Adherent hardened cement paste attached to recycled concrete aggregates (RCA) generally presents a higher porosity than natural aggregates, which induces a lower porosity in the properties of RCA. The characterization of the adherent hardened cement paste content (HCPC) in the fine [...] Read more.
Adherent hardened cement paste attached to recycled concrete aggregates (RCA) generally presents a higher porosity than natural aggregates, which induces a lower porosity in the properties of RCA. The characterization of the adherent hardened cement paste content (HCPC) in the fine RCA would promote better applications of RCA in concrete, but the determination of HCPC in fine RCA is not well established. A simple method based on salicylic acid dissolution was specifically developed to quantify the HCPC in RCA, especially for RCA containing limestone aggregates. The results demonstrated that the soluble fraction in salicylic acid (SFSA) was equal to the HCPC for white cement and slightly lower for grey Portland cement, which was also confirmed by a theoretical approach using modelling the hydration of cement paste with the chemical equations and the stoichiometric ratios. The physical and mechanical properties of RCA (e.g., water absorption) were strongly correlated to the SFSA. For industrial RCA, SFSA did not give the exact value of HCPC, but it was sufficient to correlate HCPC with the other properties of RCA. The water absorption could be estimated with good accuracy for very fine RCA (laboratory-manufactured RCA or industrial RCA) by extrapolating the relationship between water absorption and HCPC, which is very important for concrete formulation. Full article
(This article belongs to the Special Issue Utilisation of Recycled Materials and By-Products in Concrete)
Show Figures

Figure 1

18 pages, 3594 KiB  
Article
Carbon Emission and Cost Analysis of Using Hybrid Fibre White Topping Overlays—A Road Rehabilitation Feasibility Study
by Lujain Kuruvachalil, Malindu Sandanayake, Ramya Kumanayake and Radhakrishna
Future Transp. 2022, 2(1), 263-280; https://doi.org/10.3390/futuretransp2010014 - 3 Mar 2022
Cited by 4 | Viewed by 3237
Abstract
White topping is a popular road rehabilitation technique that uses Portland cement concrete overlay on top of any existing bituminous pavement. However, this often results in additional cost and carbon emission escalations which complicates market useability of the product. The current study aims [...] Read more.
White topping is a popular road rehabilitation technique that uses Portland cement concrete overlay on top of any existing bituminous pavement. However, this often results in additional cost and carbon emission escalations which complicates market useability of the product. The current study aims at comparing carbon emission and manufacturing cost of concrete topping mixes with three different fibre types. The study optimises the benefits and promotes the use of effective materials in sustainable road rehabilitation. Samples with polyolefin-twisted (F2) fibres indicated least carbon emission escalation while the sample with polypropylene (F3) exhibited least cost escalation with 0.75% and 7.17% from the control sample respectively. A multi-objective genetic optimisation study was conducted to identify the mix designs with least carbon emission and production cost escalations. Sensitivity analysis illustrated that transport distance is a critical contributing factor for production cost while carbon emission is highly sensitive to emission factors for transport and cement production. These results indicate the importance of considering locally available materials and clean energy for production processes. Future research can be focused on exploring the long-term environmental and economic benefits including the durability characteristics to benchmark the sustainable benefits of using waste fibre materials in the mix. Full article
Show Figures

Figure 1

Back to TopTop