Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = waves in polar low situations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 15859 KiB  
Article
The Analysis of the Extreme Cold in North America Linked to the Western Hemisphere Circulation Pattern
by Mohan Shen and Xin Tan
Atmosphere 2025, 16(7), 781; https://doi.org/10.3390/atmos16070781 - 26 Jun 2025
Viewed by 235
Abstract
The Western Hemisphere (WH) circulation pattern was discovered in recent years through Self-Organizing Maps (SOMs) clustering of the Northern Hemisphere 500 hPa geopotential height during winter. For example, the extremely cold wave that occurred in North America during 2013–14 is associated with WH [...] Read more.
The Western Hemisphere (WH) circulation pattern was discovered in recent years through Self-Organizing Maps (SOMs) clustering of the Northern Hemisphere 500 hPa geopotential height during winter. For example, the extremely cold wave that occurred in North America during 2013–14 is associated with WH circulation anomalies. We discussed the extremely cold weather conditions within the WH pattern during the winter season from 1979 to 2023. The variations of cold air in North America during the WH pattern have been demonstrated using the NCEP/NCAR reanalysis datasets. By defining WH events and North American extremely cold events, we have identified a connection between the two. In extremely cold events, linear winds are the key factor driving the temperature drop, as determined by calculating temperature advection. The ridge in the Gulf of Alaska serves as an early signal for this cold weather. The WH circulation anomaly triggers an anomalous ridge in the Gulf of Alaska region, leading to trough anomalies downstream over North America. This results in the southward movement of cold air from the polar regions, causing cooling in the mid-to-northern parts of North America. With the maintenance of the stationary wave in the North Pacific (NP), the anomalous trough over North America can be deepened, driving cold air into the continent. Influenced by the low pressure over Greenland and the storm track, the cold anomalies are concentrated in the central and northern parts of North America. This cold air situation persists for approximately two weeks. The high-level patterns of the WH pattern in both the 500 hPa height and the troposphere level have been identified using SOM. This cold weather is primarily a tropospheric phenomenon with limited correlation to stratospheric activities. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 4267 KiB  
Review
Marine Operations in the Norwegian Sea and the Ice-Free Part of the Barents Sea with Emphasis on Polar Low Pressures
by Ove Tobias Gudmestad
Water 2024, 16(22), 3313; https://doi.org/10.3390/w16223313 - 18 Nov 2024
Viewed by 1255
Abstract
The Arctic Seas are attractive for shipping, fisheries, and other marine activities due to the abundant resources of the Arctic. The shrinking ice cover allows for the opening of activities in increasingly larger areas of the Arctic. This paper evaluates the possibility of [...] Read more.
The Arctic Seas are attractive for shipping, fisheries, and other marine activities due to the abundant resources of the Arctic. The shrinking ice cover allows for the opening of activities in increasingly larger areas of the Arctic. This paper evaluates the possibility of executing all-year complex marine activities, here termed “marine operations”, in the Norwegian Sea and the ice-free part of the Barents Sea. The approach used during the preparation of this review paper is to identify constraints to marine operations so users can be aware of the limitations of performing such operations. The weather conditions in the Norwegian Sea and the Barents Sea are well known, and these seas are considered representative of ice-free or partly ice-free Arctic Seas with considerable marine activities. Similar conditions could be expected for other Arctic Seas during periods without ice cover. Marine operations require safe and stable working conditions for several days. The characteristics of marine operations are discussed, and the particulars of the Norwegian Sea and the Barents Sea physical environments are highlighted. Emphasis is on the wind and wave conditions in unpredictable polar low-pressure situations. Furthermore, situations with fog are discussed. The large uncertainties in forecasting the initiation and the tracks of polar lows represent the main concern for executing marine operations all year. Improvements in forecasting the occurrence and the path of polar lows would extend the weather window when marine operations could be carried out. Discussions of the potential for similar conditions in the wider Arctic Seas during ice-free periods are presented. Full article
Show Figures

Figure 1

12 pages, 7491 KiB  
Article
Resonance Control of VO2 Thin-Film-Based THz Double-Split Rectangular Metamaterial According to Aspect Ratio
by Eui Su Lee and Han-Cheol Ryu
Photonics 2022, 9(12), 966; https://doi.org/10.3390/photonics9120966 - 10 Dec 2022
Viewed by 1684
Abstract
The resonance characteristics of a double-split rectangular metamaterial based on a vanadium dioxide (VO2) thin film were controlled according to the aspect ratio of the rectangle in the terahertz (THz) frequency region. The VO2 thin film line was etched between [...] Read more.
The resonance characteristics of a double-split rectangular metamaterial based on a vanadium dioxide (VO2) thin film were controlled according to the aspect ratio of the rectangle in the terahertz (THz) frequency region. The VO2 thin film line was etched between the double-split rectangular gaps so that the resonance band could be switched by varying the characteristics of the VO2 thin film. When the VO2 thin film is in an insulator state, the rectangle is separated and resonates individually; thus, it resonates in the high-frequency band. When the VO2 thin film changes from an insulator to a conductor with a change in the temperature, the divided rectangles are electrically connected to operate as a single resonator, and the resonant frequency shifts to a low-frequency band. Varying the aspect ratio of the rectangle changes the resonant frequency and resonance strength of the double-split rectangular metamaterial. If the aspect ratio is increased by fixing the width of the unit cell of the metamaterial and adjusting the height, the resonant frequency is lowered in all situations, regardless of the state of the VO2 thin film and the polarization of the incident THz wave. The resonant frequency and resonance strength of the double-split rectangular metamaterial proposed in this paper could be controlled stably through a change in only the aspect ratio, not the overall unit cell size. The proposed double-split rectangular metamaterial based on an etched VO2 thin film is expected to be essential for THz tag, sensing, and wireless communication applications. Full article
Show Figures

Figure 1

11 pages, 3032 KiB  
Article
Multi-Band High-Efficiency Multi-Functional Polarization Controller Based on Terahertz Metasurface
by Huaijun Chen, Wenxia Zhao, Xuejian Gong, Lianlian Du, Yunshan Cao, Shilong Zhai and Kun Song
Nanomaterials 2022, 12(18), 3189; https://doi.org/10.3390/nano12183189 - 14 Sep 2022
Cited by 14 | Viewed by 2691
Abstract
Electromagnetic metasurfaces with excellent electromagnetic wave regulation properties are promising for designing high-performance polarization control devices, while the application prospect of electromagnetic metasurfaces is limited because of the current development situations of the complex structure, low conversion efficiency, and narrow working bandwidth. In [...] Read more.
Electromagnetic metasurfaces with excellent electromagnetic wave regulation properties are promising for designing high-performance polarization control devices, while the application prospect of electromagnetic metasurfaces is limited because of the current development situations of the complex structure, low conversion efficiency, and narrow working bandwidth. In this work, we design a type of reflective terahertz metasurface made of a simple structure that can achieve multiple polarization modulation with high efficiency. It is shown that the presented metasurface can realize ultra-broadband, cross-polarization conversion with the relative working bandwidth reaching 94% and a conversion efficiency of over 90%. In addition, the proposed metasurface can also efficiently accomplish different polarization conversion functions, such as linear-to-linear, linear-to-circular, or circular-to-linear polarization conversion in multiple frequency bands. Due to the excellent properties, the designed metasurface can be used as a high-efficiency multi-functional polarization modulation device, and it has important application value in terahertz imaging, communication, biological detection, and other fields. Full article
(This article belongs to the Special Issue Metasurfaces for Photonic Devices: Theory and Applications)
Show Figures

Figure 1

Back to TopTop