Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = waterproof valve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13135 KiB  
Article
Research on Hydraulic Characteristics of Water Leakage Phenomenon of Waterproof Hammer Air Valve in Water Supply Pressure Pipeline Based on Sustainable Utilization of Water Resources in Irrigation Areas
by Yixiong Cheng, Yuan Tang, Jianhua Wu, Hua Jin, Lixia Shen and Zhiyong Sun
Sustainability 2024, 16(22), 9868; https://doi.org/10.3390/su16229868 - 12 Nov 2024
Cited by 2 | Viewed by 1229
Abstract
To investigate the causes of water leakage in the waterproof hammer air valve and its impact on sustainable water resource management, the DN100 waterproof hammer air valve was taken as the research object. By using the overset grid solution method of ANSYS Fluent [...] Read more.
To investigate the causes of water leakage in the waterproof hammer air valve and its impact on sustainable water resource management, the DN100 waterproof hammer air valve was taken as the research object. By using the overset grid solution method of ANSYS Fluent 2021 R1 software, the flow field simulation of the waterproof hammer air valve was carried out. The transient action during the ascent phase of the key structural component floating ball, and the velocity and pressure distribution of the flow field inside the air valve are analyzed. The results showed that by giving different inlet flow velocities, the normal flow velocity range for the floating ball to float up was below 35 m/s and above 50 m/s. When the inlet flow velocity was between 35 m/s and 50 m/s, the growth rate of the pressure difference above and below the floating ball increased from 1.48% to 5.79% and then decreased to 0.4%. The floating ball would not be able to float up due to excessive outlet pressure above, which would cause the DN100 waterproof hammer air valve to leak water and fail to provide water hammer protection. When the inlet flow rate is 5 m/s, the velocity and pressure inside the valve body increase with time during the upward movement of the floating ball inside the waterproof hammer air valve and tend to stabilize at 400 ms. Through the generated pressure and velocity cloud maps, it can be observed that the location of maximum pressure is at the bottom of the buoy, directly below the floating ball, and at the narrow channels on both sides of the outflow domain. The location of the maximum velocity is at the small inlet of the bottom of the buoy. When the inlet speed of the valve is constant, a large amount of water flow is blocked by the floating ball, reducing the flow velocity and forming partial backflow below the floating ball, with an obvious vortex phenomenon. A small portion of the water flow passes through the air valve at a high velocity from both ends of the channel, and the water flow below the floating ball is in an extremely unstable state under the impact of high-speed water flow, resulting in a large gradient of water flow velocity passing through the valve. The research results not only help to improve the operational efficiency of water resource management systems but also reduce unnecessary water resource waste, thereby supporting the goal of sustainable water resource management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

23 pages, 5707 KiB  
Article
Analysis of the Effectiveness of Water Hammer Protection Programs for Complex Long-Distance and High-Head Water Supply Projects
by Yuan Tang, Yixiong Cheng, Lixia Shen, Jianhua Wu, Yusheng Zhang, Qianxi Li and Lixian Yuan
Water 2024, 16(11), 1582; https://doi.org/10.3390/w16111582 - 31 May 2024
Cited by 6 | Viewed by 2428
Abstract
The purpose of this research is to solve the complex long-distance and high-lift water supply engineering accident water hammer protection problem. Taking the Zhaojinzhuang water supply project as an example, based on the method of characteristics (MOC), the water hammer of the pumping [...] Read more.
The purpose of this research is to solve the complex long-distance and high-lift water supply engineering accident water hammer protection problem. Taking the Zhaojinzhuang water supply project as an example, based on the method of characteristics (MOC), the water hammer of the pumping station under the combined action of a water hammer relief valve, hydraulic-control butterfly valve, air vessel, air valve, and other water hammer protection measures is numerically simulated and calculated, and the effectiveness of the range method is analyzed, to ensure a waterproof hammer in pump stop accidents. The results show that the main factors affecting the effect of water hammer protection under the two-stage valve-closing parameters of the hydraulic-control butterfly valve are the fast-closing angle and the slow-closing time. The arrangement of the air vessel behind the pump can effectively increase the minimum water hammer pressure in the climbing section, and with the increase of the volume of the air vessel, the pump reverse speed and the maximum positive pressure increase slightly, but the overall water hammer protection effect is better. With the increase of the moment of inertia of the motor, the maximum positive pressure and minimum negative pressure of the pipeline still do not meet the requirements of the specification, and the modification cost is relatively large. The combination of the one-stage hydraulic-control butterfly valve, the air valve, the air vessel, and the water hammer relief valve can effectively reduce the volume of the air vessel. Under the optimal method, the maximum positive pressure head is 236.61 m, and the minimum negative pressure head is −3.18 m. Compared with the original method, the maximum positive pressure head is increased by 1.18%, the minimum negative pressure head is reduced by 95.78%, the maximum reverse speed of the pump is reduced by 100%, and the maximum reverse flow of the pump is reduced by 70.27%, meeting the requirements of water hammer protection. This is a safe and economical protection method. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

18 pages, 38404 KiB  
Article
Fault Diagnosis Method of Waterproof Valves in Engineering Mixing Machinery Based on a New Adaptive Feature Extraction Model
by Rui Zhang, Jiyan Yi, Hesheng Tang, Jiawei Xiang and Yan Ren
Energies 2022, 15(8), 2796; https://doi.org/10.3390/en15082796 - 11 Apr 2022
Cited by 6 | Viewed by 2060
Abstract
Due to the complex working medium of oil in construction engineering, the waterproof valve in mixing machinery can easily cause different degrees of failure. Moreover, under adverse working conditions and complicated noise backgrounds, it is very difficult to detect the fault of waterproof [...] Read more.
Due to the complex working medium of oil in construction engineering, the waterproof valve in mixing machinery can easily cause different degrees of failure. Moreover, under adverse working conditions and complicated noise backgrounds, it is very difficult to detect the fault of waterproof valves. Thus, a fault diagnosis method is proposed, especially for the fault detection of waterproof valves as a key component in the construction of mixing machinery. This fault diagnosis method is based on a new adaptive feature extraction model, with multi-path signals to the improved deep residual shrinkage network–stacked denoising convolutional autoencoder (named DRSN–SDCAE). Firstly, the noisy vibration signals collected by the two vibration sensors are preprocessed, and then transmitted to the parallel structure improved DRSN–SDCAE for adaptive denoising and feature extraction. Finally, these results are fused through the feature fusion strategy to realize the effective fault diagnosis of the waterproof valve. The effectiveness of this method was verified through theory and experiments. The experimental results show that the proposed fault diagnosis method based on the improved DRSN–SDCAE model can automatically and effectively extract fault features from noise for fault diagnosis without relying on signal processing technology and diagnosis experiences. When compared with other intelligent fault diagnosis methods, the features extracted from multi-path inputs were more comprehensive than those extracted from single-path inputs, and contained more complete features of hidden data, which significantly improved fault diagnosis accuracy based on these fault features. The contribution of this paper is to learn fault features autonomously in signals with strong and complex noise through a deep network structure, which extends the fault diagnosis method to the field of construction machinery to improve the safe operation and maintainability of engineering machinery. Full article
(This article belongs to the Special Issue New Challenges in Electrohydraulic Control System and Energy Saving)
Show Figures

Figure 1

19 pages, 9458 KiB  
Article
Hybrid Rocket Underwater Propulsion: A Preliminary Assessment
by Heejang Moon, Seongjoo Han, Youngjun You and Minchan Kwon
Aerospace 2019, 6(3), 28; https://doi.org/10.3390/aerospace6030028 - 6 Mar 2019
Cited by 13 | Viewed by 9400
Abstract
This paper presents an attempt to use the hybrid rocket for marine applications with a 500 N class hybrid motor. A 5-port high density polyethylene (HDPE) fuel grain was used as a test-bed for the preliminary assessment of the underwater boosting device. A [...] Read more.
This paper presents an attempt to use the hybrid rocket for marine applications with a 500 N class hybrid motor. A 5-port high density polyethylene (HDPE) fuel grain was used as a test-bed for the preliminary assessment of the underwater boosting device. A rupture disc preset to burst at a given pressure was attached to the nozzle exit to prevent water intrusion where a careful hot-firing sequence was unconditionally required to avoid the wet environment within the chamber. The average thrust level around 450 N was delivered by both a ground test and an underwater test using a water-proof load cell. However, it was found that instantaneous underwater thrusts were prone to vibration, which was due in part to the wake structure downstream of the nozzle exit. Distinctive ignition curves depending on the rupture disc bursting pressure and oxidizer mass flow rate were also investigated. To assess the soft-start capability of the hybrid motor, the minimum power thrust, viewed as the idle test case, was evaluated by modulating the flow controlling valve. It was found that an optimum valve angle, delivering 16.3% of the full throttle test case, sustained the minimum thrust level. This preliminary study suggests that the throttable hybrid propulsion system can be a justifiable candidate for a short-duration, high-speed marine boosting system as an alternative to the solid underwater propulsion system. Full article
Show Figures

Figure 1

Back to TopTop