Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,422)

Search Parameters:
Keywords = wasted sludge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4822 KB  
Review
Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies
by Babar Azeem
Appl. Sci. 2025, 15(20), 10954; https://doi.org/10.3390/app152010954 (registering DOI) - 12 Oct 2025
Abstract
The rising demand for sustainable agriculture and circular resource management has intensified interest in converting wastewater sludge into value-added products. This review explores the transformation of sewage sludge into slow- and controlled-release fertilizers (CRFs), with a focus on biochar production and encapsulation technologies. [...] Read more.
The rising demand for sustainable agriculture and circular resource management has intensified interest in converting wastewater sludge into value-added products. This review explores the transformation of sewage sludge into slow- and controlled-release fertilizers (CRFs), with a focus on biochar production and encapsulation technologies. Sewage sludge is rich in essential macronutrients (N, P, K), micronutrients, and organic matter, making it a promising feedstock for agricultural applications. However, its use is constrained by challenges including compositional variability, presence of heavy metals, pathogens, and emerging contaminants such as microplastics and PFAS (Per- and Polyfluoroalkyl Substances). The manuscript discusses a range of stabilization and conversion techniques, such as composting, anaerobic digestion, pyrolysis, hydrothermal carbonization, and nutrient recovery from incinerated sludge ash. Special emphasis is placed on coating and encapsulation technologies that regulate nutrient release, improve fertilizer efficiency, and reduce environmental losses. The role of natural, synthetic, and biodegradable polymers in enhancing release mechanisms is analyzed in the context of agricultural performance and soil health. While these technologies offer environmental and agronomic benefits, large-scale adoption is hindered by technical, economic, and regulatory barriers. The review highlights key challenges and outlines future perspectives, including the need for advanced coating materials, improved contaminant mitigation strategies, harmonized regulations, and field-scale validation of CRFs. Overall, the valorisation of sewage sludge into CRFs presents a viable strategy for nutrient recovery, waste minimization, and sustainable food production. With continued innovation and policy support, sludge-based fertilizers can become a critical component of the green transition in agriculture. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

26 pages, 7654 KB  
Article
Enhancement of Poly(Lactic Acid) Fire Retardancy Through the Incorporation of Sludge Residue as a Synergistic Additive
by Jimena de la Vega, Antonio Vázquez-López and De-Yi Wang
Polymers 2025, 17(20), 2717; https://doi.org/10.3390/polym17202717 - 10 Oct 2025
Viewed by 118
Abstract
The escalating global challenge of waste production underscores the urgency for innovative waste management solutions. Sewage sludge, a byproduct derived from anaerobic digesters of wastewater treatment, was investigated as a flame-retardant synergist in Poly(Lactic Acid) (PLA). Micronized sludge was combined with ammonium polyphosphate [...] Read more.
The escalating global challenge of waste production underscores the urgency for innovative waste management solutions. Sewage sludge, a byproduct derived from anaerobic digesters of wastewater treatment, was investigated as a flame-retardant synergist in Poly(Lactic Acid) (PLA). Micronized sludge was combined with ammonium polyphosphate (APP) at different ratios. The formulation containing (4:1) APP:Sludge exhibited enhanced flame retardancy compared to APP alone, achieving higher Limiting Oxygen Index (LOI) values and a V-0 rating in the UL-94 test. Cone calorimeter analysis further confirmed that the sludge contributed to reducing heat release and smoke generation. SEM–EDS analysis indicated that microcrystals, mainly composed of phosphorus and calcium oxides from APP and sludge, likely acted as protective barriers against heat transfer. In addition, filament extrusion demonstrated that sludge incorporation is compatible with 3D printing. This approach preserved structural integrity, sustainably utilized sewage sludge, and reduced reliance on commercial flame retardants. Integrating sludge as a synergist offers a promising solution for waste management and safer, more sustainable flame-retardant materials, supporting a circular economy. Full article
(This article belongs to the Special Issue Novel Developments in Flame-Retardant Polymeric Materials)
Show Figures

Graphical abstract

15 pages, 6333 KB  
Article
Design of New Eco-Cementitious Material Based on Foundry Slag and Lime Sludge
by Camila Lopes Eckert, Lucio Rosso Neto, Carlos Henrique Borgert, Júlio Preve Machado, Felipe Fardin Grillo, José Roberto de Oliveira, Matheus Vinicius Gregory Zimmermann, Mateus Milanez, Tchesare Andreas Keller, Tiago Elias Allievi Frizon, Bernardo Araldi da Silva, Agenor De Noni Junior and Eduardo Junca
Minerals 2025, 15(10), 1059; https://doi.org/10.3390/min15101059 - 8 Oct 2025
Viewed by 181
Abstract
Foundry slag has different characteristics from blast furnace slag, such as its high SiO2 content and low basicity (CaO/SiO2 < 1), which prevent it from being used as a cementitious component. Lime slurry is a waste product with a high CaO [...] Read more.
Foundry slag has different characteristics from blast furnace slag, such as its high SiO2 content and low basicity (CaO/SiO2 < 1), which prevent it from being used as a cementitious component. Lime slurry is a waste product with a high CaO content and can be used to increase the basicity of the mixture. The aim of this study is to obtain new supplementary, eco-cementitious material composed of foundry slag and lime sludge. The compositions were designed with binary basicity (molar ratio of CaO/SiO2) ranging from 1.0 to 1.4. Clinker was replaced with the proposed material in the range of 6–34 wt% and the performance of the different cement compositions was tested. The results showed that replacing 20 wt% of clinker with the new eco-cementitious material with binary basicity of 1.2 resulted in cement with the same mechanical strength as the reference cement. The new material reacted with free CaO to generate additional calcium silicate hydrate. The initial setting time of the cement containing the new eco-cementitious material was 240 min, acting as hydration reaction retardant. The technical feature of the new eco-cementitious material allows the use of both wastes in cement composition, contributing to the requirements of circular economy. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

14 pages, 2887 KB  
Article
Cost-Effective Carbon Dioxide Removal via CaO/Ca(OH)2-Based Mineralization with Concurrent Recovery of Value-Added Calcite Nanoparticles
by Seungyeol Lee, Chul Woo Rhee and Gyujae Yoo
Sustainability 2025, 17(19), 8875; https://doi.org/10.3390/su17198875 - 4 Oct 2025
Viewed by 396
Abstract
The rapid rise in atmospheric CO2 concentrations has intensified the need for scalable, sustainable, and economically viable carbon sequestration technologies. This study introduces a cost-effective CaO/Ca(OH)2-based mineralization process that not only enables efficient CO2 removal but also allows the [...] Read more.
The rapid rise in atmospheric CO2 concentrations has intensified the need for scalable, sustainable, and economically viable carbon sequestration technologies. This study introduces a cost-effective CaO/Ca(OH)2-based mineralization process that not only enables efficient CO2 removal but also allows the simultaneous recovery of high-purity calcite nanoparticles as value-added products. The process involves hydrating CaO, followed by controlled carbonation under optimized CO2 flow rates, temperature conditions, and and additive use, yielding nanocrystalline calcite with an average particle size of approximately 100 nm. Comprehensive characterization using X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy confirmed a polycrystalline structure with exceptional chemical purity (99.9%) and rhombohedral morphology. Techno-economic analysis further demonstrated that coupling CO2 sequestration with nanoparticle production can markedly improve profitability, particularly when utilizing CaO/Ca(OH)2-rich industrial residues such as steel slags or lime sludge as feedstock. This hybrid, multi-revenue strategy—integrating carbon credits, nanoparticle sales, and waste valorization—offers a scalable pathway aligned with circular economy principles, enhancing both environmental and economic performance. Moreover, the proposed system can be applied to CO2-emitting plants and facilities, enabling not only effective carbon dioxide removal and the generation of carbon credits, but also the production of calcite nanoparticles for diverse applications in agriculture, manufacturing, and environmental remediation. These findings highlight the potential of CaO/Ca(OH)2-based mineralization to evolve from a carbon management technology into a platform for advanced materials manufacturing, thereby contributing to global decarbonization efforts. Full article
Show Figures

Graphical abstract

29 pages, 7735 KB  
Article
Preparation of Ecological Refractory Bricks from Phosphate Washing By-Products
by Mariem Hassen, Raja Zmemla, Mouhamadou Amar, Abdalla Gaboussa, Nordine Abriak and Ali Sdiri
Appl. Sci. 2025, 15(19), 10647; https://doi.org/10.3390/app151910647 - 1 Oct 2025
Viewed by 273
Abstract
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using [...] Read more.
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermal analysis (TGA-DTA). Bricks were formulated by substituting phosphate sludge with clay and diatomite, then activated with potassium silicate solution to produce geopolymeric materials. Specific formulations exhibited mechanical performance ranging from 7 MPa to 26 MPa, highlighting the importance of composition and minimal water absorption values of approximately 17.8% and 7.7%. The thermal conductivity of the bricks was found to be dependent on the proportions of diatomite and clay, reflecting their insulating potential. XRD analysis indicated the formation of an amorphous aluminosilicate matrix, while FTIR spectra confirmed the development of new chemical bonds characteristic of geopolymerization. Thermal analysis revealed good stability of the materials, with mass losses mainly related to dehydration and dehydroxylation processes. Environmental assessments showed that most samples are inert or non-hazardous, though attention is required for those with elevated chromium content. Overall, these findings highlight the viability of incorporating phosphate sludge into fired brick production, offering a sustainable solution for waste valorization in accordance with the circular economy. Full article
Show Figures

Figure 1

26 pages, 4070 KB  
Article
Evaluation of Paper Mill Sludge Using Bioindicators: Response of Soil Microorganisms and Plants
by Adam Pochyba, Dagmar Samešová, Juraj Poništ, Michal Sečkár, Jarmila Schmidtová, Marián Schwarz and Darina Veverková
Sustainability 2025, 17(19), 8788; https://doi.org/10.3390/su17198788 - 30 Sep 2025
Viewed by 324
Abstract
The growing demand for sustainable waste management practices has prompted interest in the land application of paper sludge as an alternative to landfilling and incineration. This study evaluates the environmental potential of paper sludge derived from recycled hygienic paper production by investigating its [...] Read more.
The growing demand for sustainable waste management practices has prompted interest in the land application of paper sludge as an alternative to landfilling and incineration. This study evaluates the environmental potential of paper sludge derived from recycled hygienic paper production by investigating its effects on soil respiration, seed germination, and seedling development. A comprehensive set of respirometric tests using the OxiTop® system assessed microbial activity in soil amended with various concentrations of paper sludge (1–100%). Concurrently, bioassays using Lepidium sativum L. and Pisum sativum L. seeds examined the phytotoxicity and physiological response during germination. The results show that low to moderate sludge concentrations (1–20%) stimulated microbial activity and enhanced germination parameters, with a germination index (GI) up to 150% at 1%. However, higher concentrations (>40%) led to oxygen depletion, microbial stress, and decreased plant growth, indicating potential phytotoxicity and the need for application thresholds. For certain intermediate concentrations (e.g., 30–40%), a delay of approximately 21 days before sowing is recommended to allow microbial communities to stabilize and avoid initial stress conditions for plants. This study demonstrates that controlled application of paper sludge in soil systems can serve as a viable and sustainable disposal method, supporting circular economy principles and reducing the environmental burden of paper industry by-products. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

22 pages, 3323 KB  
Review
Development and Application Prospects of Biomass-Based Organic Binders for Pellets Compared with Bentonite
by Yu Liu, Wenguo Liu, Zile Peng, Jingsong Wang, Qingguo Xue and Haibin Zuo
Materials 2025, 18(19), 4553; https://doi.org/10.3390/ma18194553 - 30 Sep 2025
Viewed by 293
Abstract
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, [...] Read more.
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, exhibiting favorable overall environmental benefits. Increasing their proportion in the furnace is one of the important measures the steel industry can take to reduce carbon emissions. Binders play a critical role in the pelletizing process, and their properties directly influence pellet quality, thereby affecting the subsequent blast furnace smelting process. Compared with traditional bentonite, organic binders have become a potential alternative material due to their environmental friendliness, renewability, and ability to significantly reduce silica and alumina impurities in pellets while improving the iron grade. This work systematically elucidates the mechanism of organic binders, which primarily rely on the chemical adsorption of carboxyl groups and the hydrogen bonding of hydroxyl groups to enhance pellet strength, and then provides three typical examples of organic binders: lignosulfonate, carboxymethyl cellulose (CMC), and carboxymethyl starch (CMS). The common characteristic of these organic binders is that they are derived from renewable biomass through chemical modification, which is a derivative of biomass with renewable and abundant resources. However, the main problem with organic binders is that they burn and decompose at high temperatures. Current research has achieved technological breakthroughs in pellet quality by combining LD sludge, low-iron oxides, and nano-CaCO3, including improved iron grade, reduced reduction swelling index (RSI), and enhanced preheating/roasting strength. Future studies should focus on optimizing the molecular structure of organic binders by increasing the degree of substitution of functional groups and the overall degree of polymerization. This approach aims to replace traditional bentonite while exploring applications of composite industrial solid wastes, effectively addressing the high-temperature strength loss issues in organic binders and providing strong support for the steel industry to achieve the green and low-carbon goals. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

16 pages, 2232 KB  
Article
Sustainable Phosphorus and Protein Recovery from Different Organic Wastes: Process Optimization and Struvite Precipitation Potential
by Lucía Valverde-Vozmediano, Encarnación Martínez-Sabater, Manuel M. Jordán, Ernesto Santateresa, José Antonio Sáez-Tovar, Matias B. Vanotti, María Ángeles Bustamante and Raúl Moral
Agronomy 2025, 15(10), 2305; https://doi.org/10.3390/agronomy15102305 - 29 Sep 2025
Viewed by 336
Abstract
Currently, researchers are exploring alternative phosphorus sources for agricultural production that are more sustainable than rock phosphate. In this context, the recovery of phosphorus from organic wastes as struvite can constitute an important tool for promoting circular economy practices and reducing the risk [...] Read more.
Currently, researchers are exploring alternative phosphorus sources for agricultural production that are more sustainable than rock phosphate. In this context, the recovery of phosphorus from organic wastes as struvite can constitute an important tool for promoting circular economy practices and reducing the risk of phosphorus contamination through eutrophication. Struvite recovery has been widely developed using different organic wastes with high concentrations of N and P, such as industrial, municipal and animal wastes, mainly in the form of effluents. However, little information is available concerning phosphorus recovery in the form of struvite from sewage sludge samples, these processes being mainly based on chemical procedures. Therefore, the main aim of this work was to study phosphorus recovery from three sewage sludge samples from different wastewater treatment plants (SS1, SS2 and SS3), in comparison with the solid fraction of pig manure (M), through an optimized bioacidification process, as well as to evaluate the potential for struvite precipitation from the recovered P-rich supernatants. Protein recovery through alkaline treatment of the remaining precipitates was also studied. The results obtained showed the feasibility of the optimized bioacidification process for P recovery, especially in the samples M and SS3, which showed the highest P recovery yields (65.7% and 69%, respectively) and the best results regarding struvite formation. In addition, the protein recovery efficiency of the remaining solid residues ranged from 59.3% to 67.4%, without showing a clear influence of the type of organic waste used. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

18 pages, 2955 KB  
Article
Synergistic Role of Low-Strength Ultrasound and Co-Digestion in Anaerobic Digestion of Swine Wastewater
by Changgee Lee, Jaehun Gwon, Min-Sang Kim, Taehwan Lee, Uijeong Han, Yeongmi Park, Hongmok Jo and Si-Kyung Cho
Appl. Sci. 2025, 15(19), 10548; https://doi.org/10.3390/app151910548 - 29 Sep 2025
Viewed by 180
Abstract
Swine manure poses significant challenges for anaerobic digestion due to its low carbon-to-nitrogen (C/N) ratio and elevated ammonia concentrations, both of which restrict methane generation. This study investigated the impact of integrating low-intensity ultrasound with co-digestion of piggery wastewater and food waste leachate. [...] Read more.
Swine manure poses significant challenges for anaerobic digestion due to its low carbon-to-nitrogen (C/N) ratio and elevated ammonia concentrations, both of which restrict methane generation. This study investigated the impact of integrating low-intensity ultrasound with co-digestion of piggery wastewater and food waste leachate. Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors were employed under four operational conditions to evaluate anaerobic digestion performance, track shifts in microbial community structure, and assess the abundance of antibiotic resistance genes (ARGs). Co-digestion significantly enhanced methane production, yielding 1.3–3.2 times more than manure alone, while low-intensity ultrasound further increased methane yields by approximately 36–44% at high loading rates. Moreover, coupling low-intensity ultrasound with co-digestion led to the most rapid recovery following an overloading shock. Unexpectedly, ultrasound treatment alone increased the expression of certain ARGs (tetG, sul1, ermB) and the Integrase gene (intI1), while co-digestion led to a reduction in these genetic markers. These findings clearly indicate that the concurrent application of co-digestion and low-intensity ultrasound achieved the highest methane yield, the fastest recovery after organic overloading, and greater suppression of specific ARGs. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends, 2nd Edition)
Show Figures

Figure 1

27 pages, 7616 KB  
Article
Synergistic and Environmental Impacts of Industrial Solid Waste and Cement Clinker in Shield Muck Solidification: A Case Study in Shijiazhuang City
by Jinming Jia, Fumin Ren, Kaichen Bai, Ma Li, Si Han, Junshi Liu, Zhang Lei and Mingming Tan
Sustainability 2025, 17(19), 8743; https://doi.org/10.3390/su17198743 - 29 Sep 2025
Viewed by 307
Abstract
Traditional landfill disposal of muck uses a significant amount of land and pollutes the environment, while current solidification methods heavily depend on energy-intensive cement. This study introduces a novel approach for synergistically solidifying muck using cement, fly ash, and steel slag, aiming to [...] Read more.
Traditional landfill disposal of muck uses a significant amount of land and pollutes the environment, while current solidification methods heavily depend on energy-intensive cement. This study introduces a novel approach for synergistically solidifying muck using cement, fly ash, and steel slag, aiming to utilize waste resources and achieve low-carbon disposal. Experimental optimization identified the optimal ratio (cement:fly ash:steel slag = 2:2:1). The findings indicate that cement is crucial for early strength, while industrial waste materials enhance long-term performance through continued reactions. At a total solidifying agent content of 4–6%, the material exhibits optimal mechanical properties and durability, with only a 4% strength loss after 12 dry–wet cycles. Microscopic analysis indicates that several gels and polymers with cementing properties are produced, collectively enhancing the material’s structure. Additionally, this material effectively immobilizes heavy metals, including chromium, lead, arsenic, and cadmium, with leaching concentrations that are well below safety thresholds. This approach provides a dependable and eco-friendly method for large-scale disposal of construction waste muck and industrial solid waste, offering significant potential for engineering applications. Further studies could investigate additional solid waste types and formulations suitable for high-moisture materials like sludge. Full article
Show Figures

Figure 1

18 pages, 4083 KB  
Article
Hydrogen Production Through Methane Decomposition over Waste-Derived Carbon-Based Catalysts
by Seyed Mohamad Rasool Mirkarimi, Andrea Salimbeni, Samir Bensaid, Viviana Negro and David Chiaramonti
Energies 2025, 18(19), 5162; https://doi.org/10.3390/en18195162 - 28 Sep 2025
Viewed by 239
Abstract
Catalytic methane decomposition (CMD) is an environmentally friendly method of hydrogen production that, unlike other conventional processes, such as steam methane reforming, partial oxidation of methane, and dry reforming of methane, can convert methane into hydrogen with a simultaneous generation of solid carbon [...] Read more.
Catalytic methane decomposition (CMD) is an environmentally friendly method of hydrogen production that, unlike other conventional processes, such as steam methane reforming, partial oxidation of methane, and dry reforming of methane, can convert methane into hydrogen with a simultaneous generation of solid carbon without CO2 emissions. This study mainly focused on the application of carbon-based catalysts derived from biomass and biowaste for the CMD process. For this purpose, eight catalysts were produced from three carbon materials (wood, sewage sludge, and digestate) through the subsequent processes of pyrolysis, leaching, and physical activation. The comparison of catalysts prepared from the slow pyrolysis of biowaste and wood indicated that carbon materials with a lower ash content achieved a higher initial methane conversion (wood char > digestate char > sewage sludge char). For feedstocks with a high initial ash content, such as digestate and sewage sludge chars, an improvement in the catalytic activity was observed after ash removal through the leaching process with HNO3. In addition, physical activation through CO2 fluxing led to an enhancement in the BET surface area of these catalysts, and consequently to a growth in methane conversion. The initial methane conversion was assessed for all chars under operating conditions of 900 °C, a gas hourly space velocity (GHSV) of 3 L/g/h, and a CH4:N2 ratio of 1:9, and it was 65.9, 59.1, and 42.6% v/v, respectively, for chars derived from wood, sewage sludge, and digestate; these values increased to almost 80% v/v when these chars were upgraded by chemical leaching and physical activation. Full article
(This article belongs to the Collection Feature Papers in Bio-Energy)
Show Figures

Graphical abstract

15 pages, 3292 KB  
Article
Enhanced Electro-Dewatering of Sludge Through Inorganic Coagulant Pre-Conditioning
by Xiaoyin Yang, Song Huang, Yusong Zhang, Hanjun Wu, Yabin Ma and Bingdi Cao
Separations 2025, 12(10), 262; https://doi.org/10.3390/separations12100262 - 26 Sep 2025
Viewed by 185
Abstract
Sludge electro-dewatering technology is an attractive dewatering technology, but its application is limited by high energy consumption and filter cloth clogging caused by the dissolution of extracellular polymeric substances (EPSs). Thus, the addition of inorganic coagulants is expected to enhance the electro-dewatering efficiency [...] Read more.
Sludge electro-dewatering technology is an attractive dewatering technology, but its application is limited by high energy consumption and filter cloth clogging caused by the dissolution of extracellular polymeric substances (EPSs). Thus, the addition of inorganic coagulants is expected to enhance the electro-dewatering efficiency of waste activated sludge (WAS). In this study, we evaluated the effects of the three typical inorganic coagulants (HPAC, PAC, and FeCl3) on sludge electro-dewatering behavior. The results show that the electro-dewatering rate at the cathode was increased with the raising of the inorganic coagulants dosage, and FeCl3 exhibited the best effect on the improvement of sludge electro-dewatering among the three inorganic coagulants. The zeta potential of the sludge flocs and the electro-osmotic effect were raised with the increasing of the inorganic coagulants dosage. The sludge floc conditioned by FeCl3 is more compact than HPAC and PAC. Moreover, the dissolved EPS content reduced in the sludge electro-dewatering process when inorganic coagulant was added. In comparison to increasing ionic strength, the compression of extracellular polymeric substances (EPSs) plays a more critical role in enhancing the electro-dewatering process of sludge. The addition of inorganic coagulants also reduced the energy consumption during water removal in the electro-dewatering process. Full article
Show Figures

Graphical abstract

19 pages, 1180 KB  
Article
From Waste to Functional Feed Ingredient: Biochemical and SHK-1 Cell Line Evaluation of Black Soldier Fly Larvae for Aquaculture Nutrition
by Julio Camperio, Jorge Parodi, Pamela Olivares-Ferretti, Jorge A. Suarez and Daniel D. Benetti
Antioxidants 2025, 14(10), 1172; https://doi.org/10.3390/antiox14101172 - 26 Sep 2025
Viewed by 422
Abstract
Black Soldier Fly Larvae Meal (BSFLM) has gained attention as a sustainable feed ingredient in aquaculture, yet its functional properties at the cellular level remain underexplored. This study evaluated the antioxidative and proliferative effects of BSFLM derived from larvae fed different waste-based substrates [...] Read more.
Black Soldier Fly Larvae Meal (BSFLM) has gained attention as a sustainable feed ingredient in aquaculture, yet its functional properties at the cellular level remain underexplored. This study evaluated the antioxidative and proliferative effects of BSFLM derived from larvae fed different waste-based substrates (Kitchen Waste (KW); Agricultural Waste (AW); Aquaculture Sludge (AS); Aquaculture Offal (AO); Mix (MX)), using the Atlantic salmon (Salmo salar) SHK-1 cell line as an in vitro model. BSFLM treatments were assessed through four assays: oxidative stress mitigation under H2O2 exposure, baseline cellular proliferation, proliferation under protein-standardized conditions, and recovery from serum starvation. Each assay was carried out in three independent experiments with three replicates per treatment, and changes in coloration were quantified using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). The results showed that BSFLM from plant-based substrates, particularly MX and KW diets, significantly (p < 0.05) improved cell viability across all assays. Under oxidative stress, MX (121.1% ± 5.9) and AW (119.9% ± 6.1) treatments maintained viability levels comparable to Vitamin C (119.3% ± 3.8) (250 ppm of DSM Stay-C) and the control (137.5% ± 11.6). In proliferation assays, MX (207.6% ± 16.3) and KW (196.3% ± 11.1) outperformed animal-based treatments AO (122.6% ± 4.4) and AS (113.1% ± 3.7), and these effects persisted under protein-standardized conditions, although the statistical significance was reduced. In the recovery from serum starvation assay, cells treated with MX (45.5% ± 1.9) and KW (42.0% ± 0.4) exhibited markedly higher viability than AS (15.5% ± 1.9) and AO (14.8% ± 2.2). The biochemical composition of BSFL reared on different substrates, including proximate, amino acid, fatty acid, and polyphenol profiles, was analyzed to contextualize the observed cellular responses. These findings highlight the superior functional properties of BSFLM derived from plant-based substrates and support its potential use as a targeted functional feed ingredient in aquaculture feed formulations. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes)
Show Figures

Figure 1

22 pages, 11691 KB  
Article
Sustainable Integrated Approach to Waste Treatment in Automotive Industry: Solidification/Stabilization, Valorization, and Techno-Economic Assessment
by Marija Štulović, Dragana Radovanović, Zoran Anđić, Nela Vujović, Jelena Ivanović, Sanja Jevtić and Željko Kamberović
Sustainability 2025, 17(19), 8553; https://doi.org/10.3390/su17198553 - 23 Sep 2025
Viewed by 481
Abstract
An integrated approach to waste management is based on efficient and safe methods for waste prevention, recycling, and safe waste treatment. In accordance with these principles, in this study, non-hazardous aluminosilicate waste (dust and sand) was used in the solidification/stabilization (S/S) treatment of [...] Read more.
An integrated approach to waste management is based on efficient and safe methods for waste prevention, recycling, and safe waste treatment. In accordance with these principles, in this study, non-hazardous aluminosilicate waste (dust and sand) was used in the solidification/stabilization (S/S) treatment of hazardous waste (coating, emulsion, and sludge) from the automotive industry. Also, the oily component of the waste was valorized and investigated for energy recovery through co-incineration. The two S/S processes were proposed and their sustainability was assessed by utilizing all types of waste generated in the same plant, obtaining stabilized material suitable for safe disposal and oil phases for further valorization, and by techno-economic analysis. The efficiency of the S/S processes was evaluated by measuring unconfined compressive strength, hydraulic conductivity, density, and the EN 12457-4 standard leaching test of S/S products, along with XRD, SEM-EDS, and TG-DTG analyses. The possibility of using the oil phase was assessed based on its calorific value. The techno-economic assessment compared the investments, operating costs, and potential savings of both treatment scenarios. The results show that an integrated approach enables safe waste immobilization and resource recovery, contributing to environmental protection and economic benefits. Full article
Show Figures

Figure 1

18 pages, 1809 KB  
Article
Utilization of Waste Marble Sludge in Self-Compacting Concrete: A Study on Partial Replacement of Cement and Fine Aggregates
by Hadi Bahmani, Hasan Mostafaei, Reza Mohamad Momeni and Sayyed Mehran Khoshoei
Sustainability 2025, 17(19), 8523; https://doi.org/10.3390/su17198523 - 23 Sep 2025
Viewed by 331
Abstract
This study presents a novel approach to the development of self-compacting concrete (SCC) by partially replacing both cement and fine aggregate (sand) with waste marble sludge (WMS), a byproduct of the marble industry. The research aims to evaluate the feasibility of incorporating this [...] Read more.
This study presents a novel approach to the development of self-compacting concrete (SCC) by partially replacing both cement and fine aggregate (sand) with waste marble sludge (WMS), a byproduct of the marble industry. The research aims to evaluate the feasibility of incorporating this industrial waste into SCC to enhance sustainability without compromising performance. To assess the fresh and hardened properties of the proposed mixtures, a comprehensive experimental program was conducted. Tests included slump flow, T50, and V-funnel for evaluating workability, as well as measurements of specific gravity, compressive strength, flexural strength, Brazilian tensile strength, and water absorption at 28 days of curing. The results demonstrated that the mix containing 5% cement replacement and 20% sand replacement with marble sludge exhibited the highest mechanical performance, achieving a compressive strength of 48.2 MPa, tensile strength of 3.9 MPa, and flexural strength of 4.4 MPa. Furthermore, increasing the percentage of cement replacement led to enhanced flowability, as evidenced by an increase in slump flow diameter and a reduction in V-funnel flow time, indicating improved workability. Overall, the findings suggest that controlled incorporation of WMS can produce SCC with desirable mechanical and rheological properties, offering a promising pathway for sustainable concrete production. In addition to the technical performance, a carbon footprint analysis was conducted to examine the environmental benefits of marble sludge utilization. The mixture with 10% cement and 20% sand replacement exhibited the lowest carbon footprint, while the 7.5% replacement level provided the best balance between strength and sustainability. Full article
(This article belongs to the Special Issue Carbon Capture, Utilization, and Storage (CCUS) for Clean Energy)
Show Figures

Figure 1

Back to TopTop