Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = waste bioresource

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3528 KiB  
Article
Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery
by Xue-Mei Zhang, Shi-Zhong Yang, Homely Isaya Mtui and Bo-Zhong Mu
Processes 2025, 13(7), 2159; https://doi.org/10.3390/pr13072159 - 7 Jul 2025
Viewed by 397
Abstract
Recently, vegetable oil-derived monounsaturated fatty acids (MUFAs) have predominantly been utilized in producing bio-based surfactants, resulting in low bioresource utilization and high separation costs. Although polyunsaturated fatty acids (PUFAs) are abundant and often co-exist with MUFAs, bio-based surfactants synthesized from PUFA-rich feedstocks have [...] Read more.
Recently, vegetable oil-derived monounsaturated fatty acids (MUFAs) have predominantly been utilized in producing bio-based surfactants, resulting in low bioresource utilization and high separation costs. Although polyunsaturated fatty acids (PUFAs) are abundant and often co-exist with MUFAs, bio-based surfactants synthesized from PUFA-rich feedstocks have been less researched due to concerns regarding their interfacial performance. In this study, a novel series of PUFA-based zwitterionic surfactants with strong interfacial activity was synthesized from waste vegetable oils via an eco-friendly three-step process, optimized through an orthogonal experimental design. The structures and conversion rates of the surfactants were confirmed using GC-MS, LC-MS, and ESI-MS. At 0.5 g/L and 3.0 g/L (typical concentrations often used in most oil fields), the bio-based surfactants derived from waste soybean oil (PUFA-to-MUFA ratio ≈ 2.11, C18:2, and C18:1 in large contents) could reduce the interfacial tension between Daqing crude oil and simulated formation groundwater to an ultra-low level of ~10−3 mN/m. These results confirm our hypothesis that bio-based zwitterionic surfactants derived from PUFA-rich feedstocks possess excellent interfacial activity, providing a potential sustainable option to be considered for chemically enhanced oil recovery. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Graphical abstract

15 pages, 1827 KiB  
Article
Hydrothermal Pretreatment Unlocks Waste Paper’s Sugar Potential: Enhanced Enzymatic Saccharification via Lignin Removal and Cellulose Decrystallization
by Hongzhi Ma, Pin Lv, Jian Yang, Yong Liang, Shuang Wu, Juncheng Song, Xiaobin Yang and Dayi Qian
Processes 2025, 13(7), 1994; https://doi.org/10.3390/pr13071994 - 24 Jun 2025
Viewed by 472
Abstract
Waste paper, with its high cellulose and hemicellulose content, represents a promising bioresource for producing fermentable sugars in biorefining processes. In this study, five types of waste paper were analyzed for cellulose content, and tissue paper (TP), exhibiting the highest cellulose content, was [...] Read more.
Waste paper, with its high cellulose and hemicellulose content, represents a promising bioresource for producing fermentable sugars in biorefining processes. In this study, five types of waste paper were analyzed for cellulose content, and tissue paper (TP), exhibiting the highest cellulose content, was selected for hydrothermal pretreatment. Optimal pretreatment conditions were determined through single-factor experiments: 160 °C, water as the solvent, and a retention time of 50 min, corresponding to a severity factor (SF) of 3.47. Under these conditions, the reducing sugar yield from pretreated TP reached 0.61 g sugar/g paper, a 38.64% increase compared to untreated TP. The enhancement was attributed to lignin solubilization, disruption of crystalline cellulose regions, and increased specific surface area. These findings demonstrate the effectiveness of hydrothermal pretreatment in improving the enzymatic digestibility of waste paper for biorefining applications. Full article
Show Figures

Figure 1

21 pages, 280 KiB  
Article
Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management
by Abdulaziz Alharbi and Mohamed Ghonimy
Sustainability 2025, 17(10), 4722; https://doi.org/10.3390/su17104722 - 21 May 2025
Cited by 1 | Viewed by 746
Abstract
This study aimed to evaluate the environmental benefits of utilizing by-products from olive farms and olive oil mills within the framework of sustainable resource management and the reduction in agricultural waste, through an integrated circular approach that involves composting and bioenergy recovery. A [...] Read more.
This study aimed to evaluate the environmental benefits of utilizing by-products from olive farms and olive oil mills within the framework of sustainable resource management and the reduction in agricultural waste, through an integrated circular approach that involves composting and bioenergy recovery. A total of 10.7–11.2 t/ha of biomass, including pruning residues and olive pomace, was generated, with a utilization efficiency of 63.5–67.5%. The energy potential of olive biomass was highlighted through assessments that revealed a theoretical generation potential of approximately 96 GJ/ha (25–28 MW·h/ha), primarily from repurposed woody biomass and pomace. The environmental analysis showed a 50–60% reduction in greenhouse gas emissions compared to conventional disposal, due to avoided open burning, carbon stabilization via compost, and the displacement of fossil fuels. Economically, the circular strategy yielded a net benefit of ~70 $/ha, with revenues from bioenergy and compost exceeding processing costs. Soil organic matter increased from 1.3% to 1.5% after compost application, improving fertility and water retention. The waste reduction percentage reached ~65%, significantly decreasing the volume of unutilized biomass. These outcomes, confirmed through statistical and correlation analyses, demonstrate a robust model for circular agriculture that enhances energy self-sufficiency, mitigates the environmental impact, and supports economic and agronomic sustainability. The findings offer a replicable framework for transforming olive farming waste into valuable bioresources. Full article
19 pages, 1444 KiB  
Article
Valorization of Citrus Peel Byproducts: A Sustainable Approach to Nutrient-Rich Jam Production
by Monica Negrea, Ileana Cocan, Calin Jianu, Ersilia Alexa, Adina Berbecea, Mariana-Atena Poiana and Marius Silivasan
Foods 2025, 14(8), 1339; https://doi.org/10.3390/foods14081339 - 13 Apr 2025
Cited by 1 | Viewed by 2559
Abstract
The valorization of citrus peel byproducts presents a sustainable and innovative approach to reducing food waste while improving the nutritional content of fruit-based products. Citrus peels, a significant byproduct of the fruit juice industry, are abundant in bioactive compounds with recognized health benefits [...] Read more.
The valorization of citrus peel byproducts presents a sustainable and innovative approach to reducing food waste while improving the nutritional content of fruit-based products. Citrus peels, a significant byproduct of the fruit juice industry, are abundant in bioactive compounds with recognized health benefits and functional properties, making them particularly suitable for jam production. The global citrus industry generates substantial amounts of waste, with peels accounting for approximately 50% of the total fruit mass. Conventional disposal methods often result in environmental concerns and the underutilization of valuable bioresources. This study aims to investigate the potential of incorporating citrus peel into jam formulations as a means of enhancing their nutritional and functional properties. Jams were prepared using a traditional processing technique (TP) incorporating citrus peel. The experimental jam variants included pomelo peel jam (PPJ), lime peel jam (LiPJ), lemon peel jam (LePJ), clementine peel jam (CPJ), orange peel jam (OPJ), and grapefruit peel jam (GPJ). All jam samples were subjected to comprehensive analyses, including assessments of chemical composition, total soluble solids (TSSs), titrable acidity (g/100 g acid citric), macro- and microelement contents, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity using the FRAP assay. The study revealed high levels of biologically active compounds, such aspolyphenols, flavonoids, and vitamin C, in the jams, highlighting their antioxidant properties and potential health benefits. Among the jams, lemon peel jam (LePJ) exhibited the highest antioxidant activity and polyphenol content, making it a superior choice in terms of functional benefits. In terms of sensory analysis, orange peel jam (OPJ) was the most favored by consumers, demonstrating its high acceptability and potential for market success. Full article
Show Figures

Figure 1

16 pages, 4414 KiB  
Article
Construction of an Efficient Engineered Strain for Chaetoglobosin A Bioresource Production from Potato Starch Industrial Waste
by Kai Zhang, Shanshan Zhao, Zhengran Wang, Ming Cheng, Wan Wang and Qian Yang
Foods 2025, 14(5), 842; https://doi.org/10.3390/foods14050842 - 28 Feb 2025
Viewed by 952
Abstract
Chaetoglobosin A (CheA), a typical structure of the cytochalasin family, exhibits outstanding efficacy against a variety of tumor cells and plant pathogens. However, its low yield and high production cost are major obstacles limiting its wide application. In order to increase CheA yield, [...] Read more.
Chaetoglobosin A (CheA), a typical structure of the cytochalasin family, exhibits outstanding efficacy against a variety of tumor cells and plant pathogens. However, its low yield and high production cost are major obstacles limiting its wide application. In order to increase CheA yield, an engineered strain was established by overexpressing CgMfs, the gene encoding the MFS family’s efflux pump, on chassis cells lacking CgXpp1, which have been shown to act as a negative regulator of CheA biosynthesis. As expected, the engineered strain significantly boosted CheA production from 63.19 to 265.93 mg/L after incubation in PDA medium for 10 d, whereas the yield of the engineered strain was remarkably enhanced 2.93-fold compared with the wild type, following 10 d of cultivation utilizing potato starch industrial waste. The addition of metal ions had a positive effect on CheA production, with Cu2+ being the most effective and improving production to 176.92 mg/L. The optimal fermentation conditions were determined by response surface optimization, and under the optimal conditions, the engineered strain could stably produce CheA with a yield of 197.58 mg/L. This study provided the conditions for reducing production costs while increasing CheA production, as well as new strategies and insights for the production of the target compound. Full article
(This article belongs to the Special Issue Comprehensive Utilization of By-Products in Food Industry)
Show Figures

Figure 1

19 pages, 2651 KiB  
Article
Physicochemical Properties of Soluble Dietary Fiber from Passion Fruit Peel Based on Various Extraction Methods
by Ya Song, Yunxin Shi, Yuting Liu, Yue Ma, Chenwenyi Lin, Ninglang Nie, Xuqin Song and Jian Yang
Agriculture 2025, 15(1), 44; https://doi.org/10.3390/agriculture15010044 - 27 Dec 2024
Viewed by 1075
Abstract
In response to the significant waste of bioresources from passion fruit peels in the current market, aiming to enhance the economic benefits of soluble dietary fiber (SDF) derived from passion fruit peels in the food industry, this study extracted the SDF from passion [...] Read more.
In response to the significant waste of bioresources from passion fruit peels in the current market, aiming to enhance the economic benefits of soluble dietary fiber (SDF) derived from passion fruit peels in the food industry, this study extracted the SDF from passion fruit peels using six different methods and assessed how these methods affected its physicochemical properties. The results indicated that the acid-assisted extraction method (AAE-1) was the most effective at protein removal among the six methods, and the SDF derived from this method had the highest extraction yield (17.05%), cation exchange capacity (1.17 mL/g), total monosaccharide content (92.6620 µg/mg), xylose (3.2187 µg/mg), and mannose (3.7334 µg/mg). The SDF extracted by enzyme-assisted extraction method (EAE) showed the highest DPPH free radical scavenging capacity (66.67%), reducing sugar content (5.71%), oil-holding capacity (5.86 g/g), and glucose content (55.9662 µg/mg). The SDF extracted by alkali-assisted extraction method (AAE-2) provided the highest water-holding capacity (7.82 g/g), solubility (4.24 mL/g), and rhamnose content (3.0854 µg/mg). The SDF extracted by microwave-assisted extraction method (MAE) possessed the highest total sugar content (20.15%), ABTS radical scavenging capacity (65.46%), ferric ion-reducing capacity (58.83%), and galactose content (7.8912 µg/mg). The SDF extracted by hot water-assisted extraction method (HWE) of soluble fiber from passion fruit peels had the highest arabinose content (5.3775 µg/mg) and galacturonic acid content (35.6795 µg/mg), as well as the highest weight-average molecular weight (Mw) and number-average molecular weight (Mn). These findings provide a theoretical foundation for the development and utilization of passion fruit peels. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

24 pages, 1851 KiB  
Review
Food Waste to Food Security: Transition from Bioresources to Sustainability
by Prakash Kumar Sarangi, Priti Pal, Akhilesh Kumar Singh, Uttam Kumar Sahoo and Piotr Prus
Resources 2024, 13(12), 164; https://doi.org/10.3390/resources13120164 - 25 Nov 2024
Cited by 16 | Viewed by 8723
Abstract
The transition from food waste to food security is a critical component of sustainability efforts. This approach focuses on repurposing organic waste products generated throughout the food supply chain into valuable resources. Food waste, encompassing everything from agricultural residues to post-consumer waste, represents [...] Read more.
The transition from food waste to food security is a critical component of sustainability efforts. This approach focuses on repurposing organic waste products generated throughout the food supply chain into valuable resources. Food waste, encompassing everything from agricultural residues to post-consumer waste, represents a significant untapped potential that can be harnessed to enhance food security. By implementing strategies such as composting, bioconversion, and innovative recycling technologies, biowastes can be transformed into fertilizers, animal feed, and even new food products, thus closing the loop in the food system and aiding sustainable solutions for waste valorization. This transition not only addresses environmental concerns by reducing landfill waste and greenhouse gas emissions but also contributes to economic sustainability by creating new opportunities within the food production and waste management sectors. Ultimately, transforming food waste into a resource aligns with the broader goals of a circular economy, ensuring a sustainable, resilient, and food-secure future. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Figure 1

20 pages, 992 KiB  
Review
A Review of Systems Thinking Perspectives on Sustainability in Bioresource Waste Management and Circular Economy
by Shivangi Jha, Sonil Nanda, Oscar Zapata, Bishnu Acharya and Ajay K. Dalai
Sustainability 2024, 16(23), 10157; https://doi.org/10.3390/su162310157 - 21 Nov 2024
Cited by 2 | Viewed by 2836
Abstract
A plethora of sustainability-related challenges plague the modern world, among which is residue management. The significant implications of waste management on local populations and the global climate system have propelled research efforts toward residue management. Improved understanding and predictions in biomass residue management [...] Read more.
A plethora of sustainability-related challenges plague the modern world, among which is residue management. The significant implications of waste management on local populations and the global climate system have propelled research efforts toward residue management. Improved understanding and predictions in biomass residue management can help identify opportunities to advance residue management to address these complex challenges. In recent years, sustainability science has gained momentum and is viewed as the most effective approach to addressing wicked problems. For instance, the release of greenhouse gases into the atmosphere is a major contributor to climate change. This review examines how a greater knowledge of human–environment interaction and the value of ecological services could facilitate the recycling of agricultural and forestry wastes for their uses in bioenergy production and soil protection. In addition, it highlights the connection between biomass residual management and the United Nations Sustainable Development Goals, thereby strengthening the circular and ecological economy. Additionally, this review also discusses how interdisciplinary and systems thinking can contribute to the advancement of biomass residue management. This review aims to explore how the principles of sustainability science and systems thinking can help enhance the reutilization of agricultural and forest residues through biomass residue management. It also aims to assess their potential in reducing environmental and social impacts. Full article
Show Figures

Figure 1

23 pages, 2426 KiB  
Review
Biorefinery and Bioremediation Strategies for Efficient Management of Recalcitrant Pollutants Using Termites as an Obscure yet Promising Source of Bacterial Gut Symbionts: A Review
by Rongrong Xie, Blessing Danso, Jianzhong Sun, Majid Al-Zahrani, Mudasir A. Dar, Rania Al-Tohamy and Sameh S. Ali
Insects 2024, 15(11), 908; https://doi.org/10.3390/insects15110908 - 20 Nov 2024
Cited by 1 | Viewed by 1555
Abstract
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production [...] Read more.
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production because the lignin, cellulose, and hemicellulose parts stick together rigidly. This makes the structure complex, hierarchical, and resistant. Owing to these restrictions, the junk production of LCB waste has recently become a significant worldwide environmental problem resulting from inefficient disposal techniques and increased persistence. In addition, burning LCB waste, such as paddy straws, is a widespread practice that causes considerable air pollution and endangers the environment and human existence. Besides environmental pollution from LCB waste, increasing industrialization has resulted in the production of billions of tons of dyeing wastewater from several industries, including textiles, pharmaceuticals, tanneries, and food processing units. The massive use of synthetic dyes in various industries can be detrimental to the environment due to the recalcitrant aromatic structure of synthetic dyes, similar to the polymeric phenol lignin in LCB structure, and their persistent color. Synthetic dyes have been described as possessing carcinogenic and toxic properties that could be harmful to public health. Environmental pollution emanating from LCB wastes and dyeing wastewater is of great concern and should be carefully handled to mitigate its catastrophic effects. An effective strategy to curtail these problems is to learn from analogous systems in nature, such as termites, where woody lignocellulose is digested by wood-feeding termites and humus-recalcitrant aromatic compounds are decomposed by soil-feeding termites. The termite gut system acts as a unique bioresource consisting of distinct bacterial species valued for the processing of lignocellulosic materials and the degradation of synthetic dyes, which can be integrated into modern biorefineries for processing LCB waste and bioremediation applications for the treatment of dyeing wastewaters to help resolve environmental issues arising from LCB waste and dyeing wastewaters. This review paper provides a new strategy for efficient management of recalcitrant pollutants by exploring the potential application of termite gut bacteria in biorefinery and bioremediation processing. Full article
(This article belongs to the Special Issue Ecologically Important Symbioses in Insects)
Show Figures

Figure 1

40 pages, 2566 KiB  
Review
Exploring the Sustainable Utilization of Deep Eutectic Solvents for Chitin Isolation from Diverse Sources
by Rou Li, Peng-Hui Hsueh, Siti Ayu Ulfadillah, Shang-Ta Wang and Min-Lang Tsai
Polymers 2024, 16(22), 3187; https://doi.org/10.3390/polym16223187 - 16 Nov 2024
Cited by 4 | Viewed by 2468
Abstract
Deep eutectic solvents (DES) represent an innovative and environmentally friendly approach for chitin isolation. Chitin is a natural nitrogenous polysaccharide, characterized by its abundance of amino and hydroxyl groups. The hydrogen bond network in DES can disrupt the crystalline structure of chitin, facilitating [...] Read more.
Deep eutectic solvents (DES) represent an innovative and environmentally friendly approach for chitin isolation. Chitin is a natural nitrogenous polysaccharide, characterized by its abundance of amino and hydroxyl groups. The hydrogen bond network in DES can disrupt the crystalline structure of chitin, facilitating its isolation from bioresources by dissolving or degrading other components. DES are known for their low cost, natural chemical constituents, and recyclability. Natural deep eutectic solvents (NADES), a subclass of DES made from natural compounds, offer higher biocompatibility, biodegradability, and the lowest biotoxicity, making them highly promising for the production of eco-friendly chitin products. This review summarized studies on chitin isolation by DES, including reviews of biomass resources, isolation conditions (raw materials, DES compositions, solid–liquid ratios, temperature, and time), and the physicochemical properties of chitin products. Consequently, we have concluded that tailoring an appropriate DES-based process on the specific composition of the raw material can notably improve isolation efficiency. Acidic DES are particularly effective for extracting chitin from materials with high mineral content, such as crustacean bio-waste; for instance, the choline chloride-lactic acid DES achieved purity levels comparable to those of commercial chemical methods. By contrast, alkaline DES are better suited for chitin isolation from protein-rich sources, such as squid pens. DES facilitate calcium carbonate removal through H+ ion release and leverage unique hydrogen bonding interactions for efficient deproteination. Among these, potassium carbonate-glycerol DES have demonstrated optimal efficacy. Nonetheless, further comprehensive research is essential to evaluate the environmental impact, economic feasibility, and safety of DES application in chitin production. Full article
(This article belongs to the Special Issue Advanced Processing Strategy for Functional Polymer Materials)
Show Figures

Figure 1

22 pages, 1491 KiB  
Article
Unveiling the Lipid Features and Valorization Potential of Atlantic Salmon (Salmo salar) Heads
by João Pedro Monteiro, Tiago Sousa, Tânia Melo, Carla Pires, António Marques, Maria Leonor Nunes, Ricardo Calado and M. Rosário Domingues
Mar. Drugs 2024, 22(11), 518; https://doi.org/10.3390/md22110518 - 15 Nov 2024
Cited by 4 | Viewed by 2729
Abstract
The sustainable utilization of co-products derived from the salmon processing industry is crucial for enhancing the viability and decreasing the environmental footprint of both capture and aquaculture operations. Salmon (Salmo salar) is one of the most consumed fish worldwide and a [...] Read more.
The sustainable utilization of co-products derived from the salmon processing industry is crucial for enhancing the viability and decreasing the environmental footprint of both capture and aquaculture operations. Salmon (Salmo salar) is one of the most consumed fish worldwide and a major species produced in aquaculture. As such, significant quantities of salmon co-products are produced in pre-commercialization processing/steaking procedures. The present study characterized a specific co-product derived from the processing of salmon: minced salmon heads. More specifically, this work aimed to reveal the nutritional profile of this co-product, with a special focus on its lipid content, including thoroughly profiling fatty acids and fully appraising the composition in complex lipids (polar lipids and triglycerides) for the first time. The antioxidant potential of lipid extracts from this salmon co-product was also studied in order to bioprospect lipid functional properties and possibly unveil new pathways for added-value applications. Our analysis indicated that these minced salmon heads are exceptionally rich in lipids. Oleic acid is the most prevalent fatty acid in this co-product, followed by palmitic acid, stearic acid, and linoleic acid. Moreover, relevant lipid indexes inferred from the fatty acid composition of this co-product revealed good nutritional traits. Lipidome analysis revealed that triglycerides were clearly the predominant lipid class present in this co-product while phospholipids, as well as ceramides, were also present, although in minimal quantities. The bioprospecting of antioxidant activity in the lipid extracts of the minced salmon heads revealed limited results. Given the high concentration of triglycerides, minced salmon heads can constitute a valuable resource for industrial applications from the production of fish oil to biodiesel (as triglycerides can be easily converted into fatty acid methyl esters), as well as possible ingredients for cosmetics, capitalizing on their alluring emollient properties. Overall, the valorization of minced salmon heads, major co-products derived from the processing of one of the most intensively farmed fish in the world, not only offers economic benefits but also contributes to the sustainability of the salmon processing industry by reducing waste and promoting a more efficient use of marine bioresources. Full article
(This article belongs to the Special Issue Fatty Acids from Marine Organisms, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 1533 KiB  
Article
Application of Date Palm Tree Branch-Based Activated Carbon for Aqueous Toxicity Reduction
by Muhammad Vohra and Mohammad Al-Suwaiyan
Appl. Sci. 2024, 14(21), 9770; https://doi.org/10.3390/app14219770 - 25 Oct 2024
Viewed by 8282
Abstract
The Kingdom of Saudi Arabia (KSA) has millions of date palm trees for commercial scale date-fruit production. The respective industry also generates agricultural waste including date palm tree branches. This rich bio-resource can be used for several beneficial applications. The present study therefore [...] Read more.
The Kingdom of Saudi Arabia (KSA) has millions of date palm trees for commercial scale date-fruit production. The respective industry also generates agricultural waste including date palm tree branches. This rich bio-resource can be used for several beneficial applications. The present study therefore investigated the application of granular activated carbon (GAC) produced using date palm tree branches to successfully remove phenol, p-cresol, and copper from synthetic wastewater. The respective adsorption equilibrium results fitted well to the Langmuir-type adsorption isotherm. Furthermore, the pH-dependent adsorption results both for phenol and p-cresol appeared to follow an anionic-type adsorption behavior (i.e., decreasing adsorption with an increase in aqueous phase equilibrium pH). However, the pH-dependent adsorption finding for copper showed a cationic-type adsorption behavior. These adsorption trends were explained employing the pH-dependent speciation of the respective pollutants. In general, findings from the present work indicate that a high-specific-surface-area (SSABET) GAC material from the date palm tree branches can be successfully employed for aqueous phase pollution control. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

15 pages, 5282 KiB  
Article
Composite Building Materials Prepared from Bioresources: Use of Rice Husk for Autoclaved Lightweight Concrete Production
by Shao-Lin Peng, Ying-Liang Chen and Yu-Sheng Dai
J. Compos. Sci. 2024, 8(9), 359; https://doi.org/10.3390/jcs8090359 - 13 Sep 2024
Cited by 1 | Viewed by 3161
Abstract
Rice husk (RH) and straw are common agricultural wastes in Asian countries, and they are potential bioresources for building materials. RH contains a large amount of SiO2, and many studies have burnt RH to ash and then used it as a [...] Read more.
Rice husk (RH) and straw are common agricultural wastes in Asian countries, and they are potential bioresources for building materials. RH contains a large amount of SiO2, and many studies have burnt RH to ash and then used it as a silica supplement in cement and concrete. However, the combustion of RH has an additional cost and exacerbates CO2 emissions and air pollution. RH inherently has a low bulk density and porous structure; therefore, it should be possible to directly use RH as a lightweight additive in concrete. The purposes of this study were to use RH in the production of autoclaved lightweight concrete (ALC) and to examine the effects of RH on ALC properties. Four RHs with different particle sizes, i.e., >1.2 mm, 0.6–1.2 mm, 0.3–0.6 mm, and <0.3 mm, were used as lightweight additives, and the ALC specimens were prepared with 0–20 wt.% RHs by autoclaving at 189 °C for 12 h. The >0.3 mm RH was applicable to prepare the ALC specimens, and the decomposition effect of <0.3 mm RH was significant. Both the bulk density and the compressive strength of the ALC specimens decreased with increasing RH size. RH with a particle size larger than 1.2 mm seems more appropriate for ALC production than RH with a smaller particle size because of the lower bulk density and higher compressive strength. The Ca/Si ratio decreased with increasing RH size, which affected the formation of tobermorite and thus reduced the compressive strength of the ALC specimens. With a suitable water-to-solid (W/S) ratio, the use of RHs as lightweight additives can yield ALC specimens that meet the requirements of commercial products. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

18 pages, 1352 KiB  
Review
Unraveling the Valorization Potential of Pineapple Waste to Obtain Value-Added Products towards a Sustainable Circular Bioeconomy
by Sarah L. Paz-Arteaga, Edith Cadena-Chamorro, Ricardo Goméz-García, Liliana Serna-Cock, Cristóbal N. Aguilar and Cristian Torres-León
Sustainability 2024, 16(16), 7236; https://doi.org/10.3390/su16167236 - 22 Aug 2024
Cited by 6 | Viewed by 7047
Abstract
The pineapple (Ananas comosus) is one of the most commercialized tropical fruits worldwide. Its high processing and consumption generate huge quantities of organic waste and severe economic and environmental issues. Embracing the circular bioeconomy concept, this fruit waste can be applied [...] Read more.
The pineapple (Ananas comosus) is one of the most commercialized tropical fruits worldwide. Its high processing and consumption generate huge quantities of organic waste and severe economic and environmental issues. Embracing the circular bioeconomy concept, this fruit waste can be applied as a bioresource (raw material) for the obtention of a wide range of high-valued biocompounds by applying innovative and ecofriendly technologies. In this paper, we critically describe pineapple-derived waste, from their chemical composition to their functional and biological properties, as well as the latest advances on valorization technologies, particular solid and submerged fermentations. Notably, this article highlights the possibility of using pineapple waste to obtain bioactive compounds such as bromelain, phenolic compounds, and dietary fiber, which have important biological properties such as antioxidant, anticancer, antimicrobial, and prebiotic capacities. Indeed, pineapple wastes can become valued materials by using green and biotechnological technologies that allow us to maximize their potential and might avoid wastage and environmental issues. Nevertheless, it is necessary to further investigate the biomolecules present in the waste derived from different pineapple varieties and their health beneficial effects as well as emerging technologies in order to obtain a full spectrum of natural value-added compounds that industries and society demand today. Full article
Show Figures

Graphical abstract

24 pages, 3145 KiB  
Article
Cheminformatics-Guided Exploration of Synthetic Marine Natural Product-Inspired Brominated Indole-3-Glyoxylamides and Their Potentials for Drug Discovery
by Darren C. Holland, Dale W. Prebble, Mark J. Calcott, Wayne A. Schroder, Francesca Ferretti, Aaron Lock, Vicky M. Avery, Milton J. Kiefel and Anthony R. Carroll
Molecules 2024, 29(15), 3648; https://doi.org/10.3390/molecules29153648 - 1 Aug 2024
Viewed by 2692
Abstract
Marine natural products (MNPs) continue to be tested primarily in cellular toxicity assays, both mammalian and microbial, despite most being inactive at concentrations relevant to drug discovery. These MNPs become missed opportunities and represent a wasteful use of precious bioresources. The use of [...] Read more.
Marine natural products (MNPs) continue to be tested primarily in cellular toxicity assays, both mammalian and microbial, despite most being inactive at concentrations relevant to drug discovery. These MNPs become missed opportunities and represent a wasteful use of precious bioresources. The use of cheminformatics aligned with published bioactivity data can provide insights to direct the choice of bioassays for the evaluation of new MNPs. Cheminformatics analysis of MNPs found in MarinLit (n = 39,730) up to the end of 2023 highlighted indol-3-yl-glyoxylamides (IGAs, n = 24) as a group of MNPs with no reported bioactivities. However, a recent review of synthetic IGAs highlighted these scaffolds as privileged structures with several compounds under clinical evaluation. Herein, we report the synthesis of a library of 32 MNP-inspired brominated IGAs (2556) using a simple one-pot, multistep method affording access to these diverse chemical scaffolds. Directed by a meta-analysis of the biological activities reported for marine indole alkaloids (MIAs) and synthetic IGAs, the brominated IGAs 2556 were examined for their potential bioactivities against the Parkinson’s Disease amyloid protein alpha synuclein (α-syn), antiplasmodial activities against chloroquine-resistant (3D7) and sensitive (Dd2) parasite strains of Plasmodium falciparum, and inhibition of mammalian (chymotrypsin and elastase) and viral (SARS-CoV-2 3CLpro) proteases. All of the synthetic IGAs tested exhibited binding affinity to the amyloid protein α-syn, while some showed inhibitory activities against P. falciparum, and the proteases, SARS-CoV-2 3CLpro, and chymotrypsin. The cellular safety of the IGAs was examined against cancerous and non-cancerous human cell lines, with all of the compounds tested inactive, thereby validating cheminformatics and meta-analyses results. The findings presented herein expand our knowledge of marine IGA bioactive chemical space and advocate expanding the scope of biological assays routinely used to investigate NP bioactivities, specifically those more suitable for non-toxic compounds. By integrating cheminformatics tools and functional assays into NP biological testing workflows, we can aim to enhance the potential of NPs and their scaffolds for future drug discovery and development. Full article
(This article belongs to the Special Issue Recent Advances in the Organic Synthesis of Bioactive Compounds)
Show Figures

Graphical abstract

Back to TopTop