Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = wagon vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4786 KB  
Article
Influence of Temperature on the Damping Properties of Selected Viscoelastic Materials
by Lucjan Witek and Piotr Łabuński
Materials 2024, 17(23), 5832; https://doi.org/10.3390/ma17235832 - 28 Nov 2024
Viewed by 1188
Abstract
The paper presents results of experimental investigations of the influence of temperature on the effectiveness of passive vibration isolation. Two types of viscoelastic materials (butyl rubber and bituminous material) were tested. In the performed vibration analysis, the Oberst beam made out of aluminum [...] Read more.
The paper presents results of experimental investigations of the influence of temperature on the effectiveness of passive vibration isolation. Two types of viscoelastic materials (butyl rubber and bituminous material) were tested. In the performed vibration analysis, the Oberst beam made out of aluminum alloy with a damping material in a Free Layer Damping (FLD) configuration was used. The experimental modal analysis was performed using the Unholtz-Dickie UDCO TA-250 vibration system. To investigate the influence of temperature on the effectiveness of passive vibration isolation, an isothermal cooling chamber (using Peltier cells) was designed and constructed. The tests were carried out in a wide frequency range from 40 Hz to 4000 Hz, at a constant sweep rate, in a temperature range from −2 °C to 22 °C. Miniature piezoelectric acceleration sensors were used to determine the acceleration of the beam and the exciter head. The analysis of accelerations of both the object and the shaker head allowed for the determination of a Frequency Response Function (FRF) for the beam. The course of FRF was used to determine the resonance frequencies and the vibration amplitudes of the beam damped with bituminous material and butyl rubber at various temperatures. The loss factor η, calculated for each resonance using the generalized half-power method (n-dB method), was used as an indicator of damping intensity. The research results presented in this work (important from scientific point of view) also have utilitarian significance and can be used in the design of more quiet and comfortable motor vehicles, railway wagons and aircraft structures. Full article
Show Figures

Figure 1

19 pages, 15352 KB  
Article
Evaluation of Dynamics of a Freight Wagon Model with Viscous Damping
by Rafał Melnik, Seweryn Koziak, Jarosław Seńko, Ján Dižo and Jacek Caban
Appl. Sci. 2024, 14(22), 10624; https://doi.org/10.3390/app142210624 - 18 Nov 2024
Cited by 2 | Viewed by 1138
Abstract
The aim of this work was to perform a simulation analysis of the dynamics of a freight wagon with a variant vibration damping: dry friction and viscous damping. The following mathematical models of the damping characteristics are presented: the Maxwell model and the [...] Read more.
The aim of this work was to perform a simulation analysis of the dynamics of a freight wagon with a variant vibration damping: dry friction and viscous damping. The following mathematical models of the damping characteristics are presented: the Maxwell model and the Kolsch model. The differences among the types of damping were first analyzed based on the dynamic responses of the 1 DOF model. Simulation studies were then carried out in a VI-Rail environment with the use of S-curved track models comprising short straight sections connecting the curves. The track models differed in the values of curve radii, cant, and length, which made it possible to run at different speeds. The multibody model of the vehicle represents a typical two-axle freight wagon. The dynamics of the wagon model were investigated for two states: empty and laden. Standard kinematic and dynamic values were compared in order to investigate if the nature of the damping has a significant impact on the dynamic properties of a freight wagon. The analysis of the simulation study showed that replacing dry friction damping with the viscous one can generally reduce forces acting on the wheel–rail contact, which, in turn, can be related to improving the running behavior of wagons while reducing the negative impact on the track. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

46 pages, 16567 KB  
Article
Dynamic Amplification of Railway Bridges under Varying Wagon Pass Frequencies
by Aminur K. Rahman, Boulent Imam and Donya Hajializadeh
Infrastructures 2024, 9(3), 62; https://doi.org/10.3390/infrastructures9030062 - 18 Mar 2024
Cited by 2 | Viewed by 3178
Abstract
Train configurations give rise to a primary wagon pass forcing frequency and their multiples. When any one of these frequencies coincides with the natural frequency of vibration of the bridge, a resonant response can occur. This condition can amplify the dynamic response of [...] Read more.
Train configurations give rise to a primary wagon pass forcing frequency and their multiples. When any one of these frequencies coincides with the natural frequency of vibration of the bridge, a resonant response can occur. This condition can amplify the dynamic response of the bridge, leading to increased levels of displacement, stresses and acceleration. Increased stress levels on critical bridge structural elements increases the rate at which fatigue damage accumulates. Increased bridge acceleration levels can affect passenger comfort, noise levels, and can also compromise train safety. For older bridges the effects of fatigue, and being able to predict the remaining life, has become a primary concern for bridge engineers. Better understanding of the sensitivity of fatigue damage to the characteristics of the passing train will lead to more accurate remaining life predictions and can also help to identify optimal train speeds for a given train–bridge configuration. In this paper, a mathematical model which enables the dynamic response of railway bridges to be assessed for different train configurations is presented. The model is based on the well established closed from solution of the Euler–Bernoulli Beam (EBB) model, for a series of moving loads, using the inverse Laplace–Carson transform. In this work the methodology is adapted to allow different train configurations to be easily implemented into the formulation in a generalised form. A generalised equation, which captures the primary wagon pass frequency for any train configuration, is developed and verified by presenting the results of the bridge response in the frequency domain. The model, and the accuracy of the equation for predicting the primary wagon pass frequency, is verified using independently obtained measured field train–bridge response data. The main emphasis of this work is to enable the practicing engineer, railway operators and bridge asset owners, to easily and efficiently make an initial assessment of dynamic amplification, and the optimal train speeds, for a given bridge and train configuration. This is visually presented in this work using a Campbell diagram, which shows dynamic amplification and compares this with those calculated based on the design code, across a range of train speeds. The diagram is able to identify train speeds at which a resonance response can occur, and the wagon pass frequency, or its multiples, which are causing the increased dynamic amplification. The model is implemented in Matlab and demonstrated by analysing a range of short- to medium-single span simply supported plate girder railway bridges, typically found on the UK railway network, using the standard BS-5400 train configurations. The model does not consider the effects of the train mass and suspension system as this would require a non-closed form numerical solution of the problem which is not practical for the purposes of an initial assessment of the train–bridge interaction problem. Full article
Show Figures

Figure 1

17 pages, 11200 KB  
Article
Experimental Study of Wheel-to-Rail Interaction Using Acceleration Sensors for Continuous Rail Transport Comfort Evaluation
by Ioana Mihăilescu, Gabriel Popa, Emil Tudor, Ionuț Vasile and Marius Alin Gheți
Sensors 2023, 23(19), 8064; https://doi.org/10.3390/s23198064 - 25 Sep 2023
Cited by 6 | Viewed by 1877
Abstract
Rail transport comfort is ensured by predictive maintenance and continuous supervision of rail quality. Besides the specialized equipment, the authors are proposing a simple system that can be implemented on operational wagons while in service, aiming to detect irregularities in the rail and [...] Read more.
Rail transport comfort is ensured by predictive maintenance and continuous supervision of rail quality. Besides the specialized equipment, the authors are proposing a simple system that can be implemented on operational wagons while in service, aiming to detect irregularities in the rail and report them using the train’s online communication lines. The sensor itself is an acceleration sensor connected to an electronic microcontroller able to filter the inrush acceleration and send it to the diagnosis system of the wagon. This paper presents a study of real data recorded of the transversal and vertical vibrations of a standard tank wagon, measured on 2 axles and the car body, followed by the interpretation of the recorded data. Full article
(This article belongs to the Special Issue Sensors for Real-Time Condition Monitoring and Fault Diagnosis)
Show Figures

Figure 1

15 pages, 22723 KB  
Article
Squat Detection of Railway Switches and Crossings Using Point Machine Vibration Measurements
by Yang Zuo, Jan Lundberg, Taoufik Najeh, Matti Rantatalo and Johan Odelius
Sensors 2023, 23(7), 3666; https://doi.org/10.3390/s23073666 - 31 Mar 2023
Cited by 5 | Viewed by 2767
Abstract
Railway switches and crossings (S&C) are among the most important high-value components in a railway network and a failure of such an asset could result in severe network disturbance. Therefore, potential defects need to be detected at an early stage to prevent traffic-disturbing [...] Read more.
Railway switches and crossings (S&C) are among the most important high-value components in a railway network and a failure of such an asset could result in severe network disturbance. Therefore, potential defects need to be detected at an early stage to prevent traffic-disturbing downtime or even severe accidents. A squat is a common defect of S&Cs that has to be monitored and repaired to reduce such risks. In this study, a testbed including a full-scale S&C and a bogie wagon was developed. Vibrations were measured for different squat sizes by an accelerometer mounted at the point machine. A method of processing the vibration data and the speed data is proposed to investigate the possibility of detecting and quantifying the severity of a squat. One key technology used is wavelet denoising. The study shows that it is possible to monitor the development of the squat size on the rail up to around 13 m from the point machine. The relationships between the normalised peak-to-peak amplitude of the vibration signal and the squat depth were also estimated. Full article
Show Figures

Figure 1

18 pages, 12081 KB  
Article
Research on Load Reverse Engineering and Vibration Fatigue Analysis Technology of Rapid Box Wagon
by Ji Fang, Xiangwei Li, Dailin Zhang, Xueli Zhang and Wendong Shao
Materials 2022, 15(23), 8322; https://doi.org/10.3390/ma15238322 - 23 Nov 2022
Cited by 4 | Viewed by 1759
Abstract
The overall stiffness and modal frequency of the car body of a rapid box car are reduced by the design of the full-side open movable side door structure. The vibration fatigue performance of the welded structure in this car body needs to be [...] Read more.
The overall stiffness and modal frequency of the car body of a rapid box car are reduced by the design of the full-side open movable side door structure. The vibration fatigue performance of the welded structure in this car body needs to be verified. The rigid-flexible coupling model of the rapid box wagon was established first, and the model was verified by modal test data. By the application of the virtual iteration method on this model, the displacement excitation loads of this vehicle were acquired. The effectiveness of the load reverse obtaining technology was verified through the comparison between calculated data and the experimental data. Based on the rigid-flexible coupling model and the load obtained by reverse engineering, the fatigue life of the welded structure in the car body was evaluated through the modal structural stress method. The calculated results show that the car body structure obtains obvious modal vibration, which leads to short fatigue life in several weld lines. According to the application requirements of this wagon, the local improvement scheme was proposed, and the effect of the improvement program was evaluated. In this paper, a new fatigue evaluation technology based on the load reverse method of test data was proposed, which provides a theoretical basis for the structural design and program improvement of railway vehicles. Full article
(This article belongs to the Special Issue Fatigue Behavior, Lifetime Prediction and Modeling of Welding Process)
Show Figures

Figure 1

21 pages, 6383 KB  
Article
Dynamic Response Characteristics of Railway Subgrade Using a Newly-Developed Prestressed Reinforcement Structure: Case Study of a Model Test
by Qishu Zhang, Wuming Leng, Junli Dong and Fang Xu
Materials 2022, 15(19), 6651; https://doi.org/10.3390/ma15196651 - 25 Sep 2022
Cited by 6 | Viewed by 2998
Abstract
Poor subgrade conditions usually induce various subgrade diseases in railways, leading to some adverse influences. An innovative technology that involves installing a prestressed reinforcement structure (PRS) that consists of steel bars and lateral pressure plates (LPP) for subgrade was introduced to improve its [...] Read more.
Poor subgrade conditions usually induce various subgrade diseases in railways, leading to some adverse influences. An innovative technology that involves installing a prestressed reinforcement structure (PRS) that consists of steel bars and lateral pressure plates (LPP) for subgrade was introduced to improve its stress field and provide compulsive lateral deformation constraints for slope. In this study, an investigation into the dynamic acceleration responses of railway subgrade strengthened according to different PRS schemes was presented using a 1:5 scale model test, aiming to explore the effects of the axle load, the reinforcement pressure, and the loading cycles on the acceleration characteristics of the subgrade. The experimental results showed that (1) after pretension of the steel bar, prestress loss occurred due to the soil creep behavior and group anchor effect, so a moderate amount of over-tension in practices would be necessary; (2) a distinctive periodical behavior of subgrade subjected to the cyclic loads was observed, the horizontal accelerations were generally less than the vertical accelerations at the same measurement heights, and the vibration energy attenuated gradually from the shoulder to the toe along the slope; (3) in the short-term tests, the peak accelerations at all measurement points had a linear correlation with the axle load, and oppositely, it showed an approximately linear decrease with the increasing reinforcement pressure; And (4) in the long-term tests, to simulate the heavy haul wagon with a 35 t axle load, the variation in the effective acceleration with loading cycles under reinforcement pressure 100 kPa initially exhibited a decrease and subsequently tended to be stable, which is apparently less than that without reinforcement pressure. Consequently, it was demonstrated that the PRS itself and increasing reinforcement pressure can effectively mitigate the subgrade vibration, and provide an appropriate alternative to improve the dynamic performance of railway subgrade under the moving train loads. Full article
Show Figures

Figure 1

13 pages, 5801 KB  
Article
Emission of Structural Noise of Tank Wagons Due to Induced Vibrations during Wagon Operation
by Ján Ďungel, Juraj Grenčík and Peter Zvolenský
Vibration 2022, 5(3), 628-640; https://doi.org/10.3390/vibration5030037 - 14 Sep 2022
Cited by 1 | Viewed by 2088
Abstract
Railway transport is considered relatively environmentally friendly in terms of energy consumption and air pollution, but it is relatively unfriendly in terms of noise pollution. Noise and vibrations propagating to railroad surrounding areas are disturbing populations. In order to minimize this noise, legislation [...] Read more.
Railway transport is considered relatively environmentally friendly in terms of energy consumption and air pollution, but it is relatively unfriendly in terms of noise pollution. Noise and vibrations propagating to railroad surrounding areas are disturbing populations. In order to minimize this noise, legislation and regulations such as TSI NOI have been adopted and research of noise and vibrations generated by railway transport has been carried out. Such research has been carried out also by our team focused on experimental investigation of noise generated by railway wagons, in this particular case on tank wagons. We simulated the structural eigenfrequencies of both bogies and tanks using FEM models to find vibrations and corresponding noise levels generated by these vibrations. Theoretical results have been compared with results of measurements of noise generated by impact hammer and visualization of noise fields using a digital acoustic camera Soundcam. Based on the simulation and measurements, principal frequency noise domains of fundamental noise sources were determined—rolling (40–63 Hz), tank (200–1000 Hz), bogie (400–1600 Hz), and wheel (800–10,000 Hz). Measurements on the railway line under real operational conditions at two train speeds have been carried out, too, to see the actual external noise levels. Full article
Show Figures

Figure 1

18 pages, 4938 KB  
Article
Powering the WSN Node for Monitoring Rail Car Parameters, Using a Piezoelectric Energy Harvester
by Bogdan Dziadak, Mariusz Kucharek and Jacek Starzyński
Energies 2022, 15(5), 1641; https://doi.org/10.3390/en15051641 - 23 Feb 2022
Cited by 20 | Viewed by 2577
Abstract
Monitoring of railroad wagons is important for logistical processes, but above all for safety. One of the key parameters to be monitored is the temperature of the axle box and the bearings in the bogie. The problem with monitoring these parameters is the [...] Read more.
Monitoring of railroad wagons is important for logistical processes, but above all for safety. One of the key parameters to be monitored is the temperature of the axle box and the bearings in the bogie. The problem with monitoring these parameters is the harsh environment and lack of power supply. In our research, we present a power supply system for a WSN node monitoring the bogie parameters. Knowing the operating conditions, we built a power supply system using a piezoelectric energy harvester. The harvester consists of three piezoelectric elements placed on a double arm pendulum beam. The circuit was modeled in the Comsol Multiphysics environment and then built and tested in laboratory conditions. After confirming energy efficiency, the system was tested on a freight car bogie during an 8 h trip. At typical car vibration frequencies (4–10 Hz), the system is able to generate 73 uW. Combined with an energy buffer of 1000 mAh (3.7 V), it can power a WSN node (based on the nRF5340 chip) for 13 years of operation. Full article
Show Figures

Figure 1

13 pages, 3908 KB  
Article
Investigation of Noise Generated by Railway Freight Wagon Bogie Type Y25Ls(s)e-K and Proposals of Noise Reduction
by Ján Ďungel, Peter Zvolenský, Juraj Grenčík and Ján Krivda
Vehicles 2022, 4(1), 124-136; https://doi.org/10.3390/vehicles4010008 - 3 Feb 2022
Cited by 5 | Viewed by 3455
Abstract
There have been numerous attempts and investigations carried out with the objective to reduce the noise generated by railway freight wagons because noise is one of ever-present negative environmental pollution phenomena. This resulted in strong legislation requirements on noise reduction in railway transport, [...] Read more.
There have been numerous attempts and investigations carried out with the objective to reduce the noise generated by railway freight wagons because noise is one of ever-present negative environmental pollution phenomena. This resulted in strong legislation requirements on noise reduction in railway transport, in the case of freight wagons, only exterior noise is a problem. However, the extremely hard metal structures of the wagons running on hard rails naturally generate high magnitudes of acoustic energy. One big initiative, especially in Germany, seeks a solution in replacement of the cast iron brake pads with the composite one which should result in so-called “silent trains”. But braking is used only during a minor part of the train run, leaving most of the acoustic phenomena of the train run unaffected. In our research, we focused on freight bogies type Y25Ls(s)e-K that are used, including in Slovakia. We simulated the structural natural frequencies to predict vibrations and consequent sound generated by these vibrations. The idea was to localize the vibrations and propose possibilities of noise attenuation. The more realistic view about sound fields was obtained by practical measurements on a moving bogie. Measurements on the test track at a maintenance workshop were done by using a digital acoustic camera Soundcam. For attenuation of noise radiated by the bogie frame, acoustic silencers made from recycled porous fiber material have been applied to the bogie frame. To determine the acoustic difference, the material was applied only on half of the bogie, and then the measurements were carried out. The results showed a promising improvement in reduced noise radiation, which gives support for further research in this area with more precise simulations and more precise coating of the bogie frame as well as the proposal and measurement of noise-attenuating coatings of other structural parts of the freight wagons. Full article
(This article belongs to the Special Issue Future Powertrain Technologies)
Show Figures

Figure 1

14 pages, 5523 KB  
Article
Deep-Learning and Vibration-Based System for Wear Size Estimation of Railway Switches and Crossings
by Taoufik Najeh, Jan Lundberg and Abdelfateh Kerrouche
Sensors 2021, 21(15), 5217; https://doi.org/10.3390/s21155217 - 31 Jul 2021
Cited by 20 | Viewed by 4364
Abstract
The switch and crossing (S&C) is one of the most important parts of the railway infrastructure network due to its significant influence on traffic delays and maintenance costs. Two central questions were investigated in this paper: (I) the first question is related to [...] Read more.
The switch and crossing (S&C) is one of the most important parts of the railway infrastructure network due to its significant influence on traffic delays and maintenance costs. Two central questions were investigated in this paper: (I) the first question is related to the feasibility of exploring the vibration data for wear size estimation of railway S&C and (II) the second one is how to take advantage of the Artificial Intelligence (AI)-based framework to design an effective early-warning system at early stage of S&C wear development. The aim of the study was to predict the amount of wear in the entire S&C, using medium-range accelerometer sensors. Vibration data were collected, processed, and used for developing accurate data-driven models. Within this study, AI-based methods and signal-processing techniques were applied and tested in a full-scale S&C test rig at Lulea University of Technology to investigate the effectiveness of the proposed method. A real-scale railway wagon bogie was used to study different relevant types of wear on the switchblades, support rail, middle rail, and crossing part. All the sensors were housed inside the point machine as an optimal location for protection of the data acquisition system from harsh weather conditions such as ice and snow and from the ballast. The vibration data resulting from the measurements were used to feed two different deep-learning architectures, to make it possible to achieve an acceptable correlation between the measured vibration data and the actual amount of wear. The first model is based on the ResNet architecture where the input data are converted to spectrograms. The second model was based on a long short-term memory (LSTM) architecture. The proposed model was tested in terms of its accuracy in wear severity classification. The results show that this machine learning method accurately estimates the amount of wear in different locations in the S&C. Full article
(This article belongs to the Special Issue Vibration Sensor-Based Diagnosis Technologies and Systems: Part Ⅰ )
Show Figures

Figure 1

16 pages, 4800 KB  
Article
Localization of Increased Noise at Operating Speed of a Passenger Wagon
by Ján Ďungel, Peter Zvolenský, Juraj Grenčík, Lukáš Leštinský and Ján Krivda
Sustainability 2021, 13(2), 453; https://doi.org/10.3390/su13020453 - 6 Jan 2021
Cited by 8 | Viewed by 2485
Abstract
Noise generated by railway wagons in operation is produced by large numbers of noise sources. Although the railway transport is considered to be environmental friendly, especially in production of CO2 emissions, noise is one of problems that should be solved to keep [...] Read more.
Noise generated by railway wagons in operation is produced by large numbers of noise sources. Although the railway transport is considered to be environmental friendly, especially in production of CO2 emissions, noise is one of problems that should be solved to keep the railway transport competitive and sustainable in future. In the EU, there is a strong permanent legislation pressure on interior and exterior noise reduction in railway transport. In the last years in Slovakia, besides modernization of existing passenger wagons fleet as a cheaper option of transport quality improvement, quite a number of coaches have been newly manufactured, too. The new design is usually aimed at increased speed, higher travel comfort, in which reduction of noise levels is expected. However, not always the new designs meet all expectations. Noise generation and propagation is a complex system and should be treated such from the beginning. There are possibilities to simulate the structural natural frequencies to predict vibrations and sound generated by these vibrations. However, the real picture about sound fields can be obtained only by practical measurements. Simulations of the wagon’s natural frequencies and mode shapes and measurements in real operation using a digital acoustic camera Soundcam have been done, which showed that for the calculated speeds the largest share of noise from the chassis was not radiated through the floor of the wagon, as was expected, but through the ceiling of the wagon. To improve the acoustic properties of the wagon at higher speed, it was proposed to use high-volume textile insulation in the ceiling of the wagon. The paper briefly presents modern research approaches in the search for ways to reduce internal noise in selected wagons used in normal operation on the Slovak railways. Full article
(This article belongs to the Special Issue Sustainable Railway System)
Show Figures

Figure 1

21 pages, 9917 KB  
Article
Life Cycle Assessment of Railway Ground-Borne Noise and Vibration Mitigation Methods Using Geosynthetics, Metamaterials and Ground Improvement
by Sakdirat Kaewunruen and Victor Martin
Sustainability 2018, 10(10), 3753; https://doi.org/10.3390/su10103753 - 18 Oct 2018
Cited by 30 | Viewed by 6323
Abstract
Significant increase in the demand for freight and passenger transports by trains pushes the railway authorities and train companies to increase the speed, the axle load and the number of train carriages/wagons. All of these actions increase ground-borne noise and vibrations that negatively [...] Read more.
Significant increase in the demand for freight and passenger transports by trains pushes the railway authorities and train companies to increase the speed, the axle load and the number of train carriages/wagons. All of these actions increase ground-borne noise and vibrations that negatively affect people who work, stay, or reside nearby the railway lines. In order to mitigate these phenomena, many techniques have been developed and studied but there is a serious lack of life-cycle information regarding such the methods in order to make a well-informed and sustainable decision. The aim of this study is to evaluate the life-cycle performance of mitigation methods that can enhance sustainability and efficacy in the railway industry. The emphasis of this study is placed on new methods for ground-borne noise and vibration mitigation including metamaterials, geosynthetics, and ground improvement. To benchmark all of these methods, identical baseline assumptions and the life-cycle analysis over 50 years have been adopted where relevant. This study also evaluates and highlights the impact of extreme climate conditions on the life-cycle cost of each method. It is found that the anti-resonator method is the most expensive methods compared with the others whilst the use of geogrids (for subgrade stiffening) is relatively reliable when used in combination with ground improvements. The adverse climate has also played a significant role in all of the methods. However, it was found that sustainable methods, which are less sensitive to extreme climate, are associated with the applications of geosynthetic materials such as geogrids, composites, etc. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

Back to TopTop