Evaluation of Dynamics of a Freight Wagon Model with Viscous Damping
Abstract
1. Introduction
2. Wagon Model
3. Vibration Damping Models
3.1. Viscous Friction—The Maxwell Model
3.2. Dry Friction—The Kolsch Model
4. Simulation Study
4.1. Conditions of the Study
- The first track: R = 150 m, cant h = 0 mm, total length = 220 m;
- The second track: R = 320 m, cant h = 110 mm, total length = 950 m.
4.2. Result of the Simulation Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Development of Functional Requirements for Sustainable and Attractive European Rail Freight. D4.1—State of the Art. FR8RAIL. 2017. Available online: https://projects.shift2rail.org/s2r_ip5_n.aspx?p=FR8RAIL (accessed on 25 September 2024).
- Freight Train Derailment at Ely West Junction, 14 August 2017. Rail Accident Investigation Branch. 2018. Available online: https://www.gov.uk/government/news/report-092018-freight-train-derailment-at-ely-west-junction (accessed on 25 September 2024).
- Gialleonardo, E.D.; Bruni, S.; True, H. Analysis of the Nonlinear Dynamics of a 2–Axle Freight Wagon in Curves. Veh. Syst. Dyn. 2014, 52, 125–141. [Google Scholar] [CrossRef]
- Heller, P. Rail Vehicles II, 1st ed.; University of West Bohemia in Pilsen: Pilsen, Czech Republic, 2019; pp. 124–126. (In Czech) [Google Scholar]
- Wu, Q.; Sun, Y.; Spiryagin, M.; Cole, C. Methodology to Optimize Wedge Suspensions of Three-Piece Bogies of Railway Vehicles. J. Vib. Control 2018, 24, 565–581. [Google Scholar] [CrossRef]
- Orlova, A.; Boronenko, Y. The Anatomy of Railway Vehicle Running Gear. In Handbook of Railway Vehicle Dynamics, 1st ed.; Iwnicki, S., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 39–81. [Google Scholar]
- Bizoń, K.; Chmielewska, A.; Chudzikiewicz, A.; Sładkowski, A.; Stelmach, A. Integrated research of multi-purpose stanchion baskets for transporting timber and containers. Transp. Probl. 2023, 18, 73–86. [Google Scholar] [CrossRef]
- Gerlici, J.; Lovska, A.; Pavliuchenkov, M. Study of the Dynamics and Strength of the Detachable Module for Long Cargoes under Asymmetric Loading Diagrams. Appl. Sci. 2024, 14, 3211. [Google Scholar] [CrossRef]
- Panchenko, S.; Gerlici, J.; Vatulia, G.; Lovska, A.; Rybin, A.; Kravchenko, O. Strength assessment of an improved design of a tank container under operating conditions. Commun. Sci. Lett. Univ. Žilina 2023, 25, B186–B193. [Google Scholar] [CrossRef]
- Vatulia, G.; Lovska, A.; Pavliuchenkov, M.; Nerubatskyi, V.; Okorokov, A.; Hordiienko, D.; Vernigora, R.; Zhuravel, I. Determining patterns of vertical load on the prototype of a removable module for long-size cargoes. East. Eur. J. Enterp. Technol. 2022, 6, 21–29. [Google Scholar] [CrossRef]
- Lovskaya, A.; Rybin, A. The study of dynamic load on a wagon platform at a shunting collision. East. Eur. J. Enterp. Technol. 2016, 3, 4–8. [Google Scholar] [CrossRef]
- Wickens, A.H.; Gilchrist, A.O.; Hobbs, A.E.W. Suspension Design for High-Performance Two-Axle Freight Vehicles. Proc. Inst. Mech. Eng. 1969, 184, 22–36. [Google Scholar] [CrossRef]
- Iwnicki, S.D.; Stichel, S.; Orlova, A.; Hecht, M. Dynamics of Railway Freight Vehicles. Veh. Syst. Dyn. 2015, 53, 995–1033. [Google Scholar] [CrossRef]
- Bakyt, G.; Abdullayev, S.; Suleyeva, N.; Yelshibekov, A.; Seidemetova, Z.; Sadvakassova, Z. Simulation of dynamic processes of interaction of car and railway track during train passage of curved sections of the track. Transp. Probl. 2020, 15, 59–70. [Google Scholar] [CrossRef]
- Dusza, M.; Golofit-Stawinska, M.; Zboinski, K. The Nonlinear Lateral Stability of a Four-Axle Freight Car with Y25 Bogies and Measures to Improve Its Faults. Appl. Sci. 2024, 14, 4545. [Google Scholar] [CrossRef]
- Gomes, V.M.G.; Correia, J.; Calçada, R.; Barbosa, R.S.; De Jesus, A.M.P. Fatigue in Trapezoidal Leaf Springs of Suspensions in Two-Axle Wagons—An Overview and Simulation. In Structural Integrity and Fatigue Failure Analysis; Lesiuk, G., Szata, M., Blazejewski, W., Jesus, A.M.P.D., Correia, J.A.F.O., Eds.; Structural Integrity; Springer International Publishing: Cham, Switzerland, 2022; Volume 25, pp. 97–114. [Google Scholar]
- Mikhailov, E.; Semenov, S.; Sapronova, S.; Tkachenko, V. On the issue of wheel flange sliding along the rail. Lect. Notes Intell. Transp. Infrastruct. 2020, 1380, 377–385. [Google Scholar] [CrossRef]
- Mikhailov, E.; Semenov, S.; Kliuiev, S.; Dižo, J.; Blatnický, M.; Gerlici, J.; Harušinec, J.; Kovtanets, M. Clarification of features of the wheel movement with a perspective constructive scheme on a rail. Appl. Sci. 2020, 10, 6758. [Google Scholar] [CrossRef]
- Lack, T.; Gerlici, J. Wheel/rail tangential contact stress evaluation by means of the modified strip method. Commun. Sci. Lett. Univ. Žilina 2014, 16, 33–39. [Google Scholar] [CrossRef]
- Lack, T.; Gerlici, J. Railway wheel and rail roughness analysis. Commun. Sci. Lett. Univ. Žilina 2009, 11, 41–48. [Google Scholar] [CrossRef]
- Lack, T.; Gerlici, J. Contact area and normal stress determination on railway wheel/rail contact. Komunikacie 2005, 7, 38–45. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, D.; Barrera, O. Mechanics Constitutive Models for Viscoelastic Solid Materials: Development and a Critical Review. Adv. Appl. Mech. 2023, 56, 189–321. [Google Scholar] [CrossRef]
- Kelly, P.A. Mechanics Lecture Notes: An introduction to Solid Mechanics. Available online: http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html (accessed on 25 September 2024).
- Huang, C.; Zeng, J. Comparison of the Maxwell Model and a Simplified Physical Model for a Railway Yaw Damper in Damping Characteristics and Vehicle Stability Assessment. Proc. Inst. Mech. Eng. F J. Rail. Rapid Transit 2022, 236, 275–287. [Google Scholar] [CrossRef]
- EN 13802:2013; Railway Applications—Suspension Components—Hydraulic dampers. European Committee for Standardization: Brussels, Belgium, 2013.
- Yang, D.; Chi, M.; Cai, W.; Wang, X. Study on Piecewise Linear Model of Anti-yaw Damper and Test Analysis. In Proceedings of the 2015 International Industrial Informatics and Computer Engineering Conference, Xi’an, China, 10–11 January 2015; pp. 1179–1184. [Google Scholar]
- Kolsch, H. On the Identification of Parameters for Structural Members Exhibiting Static Hysteresis. Mech. Res. Commun. 1994, 21, 31–40. [Google Scholar] [CrossRef]
- Dumitriu, M. Condition Monitoring of the Dampers in the Railway Vehicle Suspension Based on the Vibrations Response Analysis of the Bogie. Sensors 2022, 22, 3290. [Google Scholar] [CrossRef]
- ORE B 176; Vol. 1: Preliminary Studies and Specifications, Vol. 2: Specification for a Bogie with Improved Curving Characteristics, Vol. 3: Specifications for a Bogie with Improved Curving Characteristics For Body Tilt. Utrecht, The Netherlands, 1989.
- Jover, V.; Fischer, S. Statistical analysis of track geometry parameters on tramway line No. 1 in Budapest. Balt. J. Road Bridge Eng. 2022, 17, 75–106. [Google Scholar] [CrossRef]
- Jover, V.; Gaspar, L.; Fischer, S. Investigation of tramway line no. 1, in Budapest, based on dynamic measurements. Acta Polytech. Hung. 2022, 19, 65–76. [Google Scholar] [CrossRef]
- Chudzikiewicz, A.; Bogacz, R.; Kostrzewski, M. Using acceleration signals recorded on a railway vehicle wheelsets for rail track condition monitoring. In Proceedings of the 7th European Workshop on Structural Health Monitoring, EWSHM 2014, Nantes, France, 8–11 July 2014. [Google Scholar]
- UIC 518:2009; Testing and Approval of Railway Vehicles from the Point of View of Their Dynamic Behaviour—Safety—Track Fatigue—Running Behaviour. International Union of Railways: Paris, France, 2009.
- Dižo, J.; Blatnický, M.; Harušinec, J.; Suchánek, A. Assessment of Dynamics of a Rail Vehicle in Terms of Running Properties While Moving on a Real Track Model. Symmetry 2022, 14, 536. [Google Scholar] [CrossRef]
- Grulkowski, S.; Kędra, Z.; Koc, W.; Nowakowski, M.J. Railway Tracks, 1st ed.; Gdańsk University of Technology: Gdańsk, Poland, 2013; pp. 188–190. (In Polish) [Google Scholar]
- Kardas-Cinal, E. Statistical analysis of dynamical quantities related to running safety and ride comfort of a railway vehicle. Sci. J. Silesian Univ. Technol. Ser. Transp. 2020, 106, 63–72. [Google Scholar] [CrossRef]
- Kou, L.; Sysyn, M.; Liu, J. Influence of crossing wear on rolling contact fatigue damage of frog rail. Facta Univ. Ser. Mech. Eng. 2024, 22, 25–44. [Google Scholar] [CrossRef]
- Nozhenko, V.; Kovtanets, M.; Sergienko, O.; Prosvirova, O.; Kovtanets, T.; Boyko, G.; Semenov, S. Method for determining the linear velocity of a locomotive development. In Proceedings of the 25th International Scientific Conference Transport Means 2021, Kaunas, Lithuania, 6–8 October 2021. [Google Scholar]
- EN 14363:2016; Railway Applications—Testing for the Acceptance of Running Characteristics of Railway Vehicles—Testing of Running Behaviour and Stationary Tests. European Committee for Standardization: Brussels, Belgium, 2016.
Parameter | Value |
---|---|
Body mass—empty (laden) | 7500 kg (40,770 kg) |
Body moment of inertia Ixx—empty (laden) | 9600 kg·m2 (35,000 kg·m2) |
Body moment of inertia Iyy—empty (laden) | 85,500 kg·m2 (220,000 kg·m2) |
Body moment of inertia Izz—empty (laden) | 85,500 kg·m2 (220,000 kg·m2) |
Wheelset mass | 1925 kg |
Wheelset moment of inertia Ixx | 950 kg·m2 |
Wheelset moment of inertia Iyy | 150 kg·m2 |
Wheelset moment of inertia Izz | 950 kg·m2 |
Wheelset base | 5.2 m |
Wheel radius | 0.5 m |
Spring longitudinal stiffness kx | 12 × 106 N/m |
Spring lateral stiffness ky | 0.64 × 106 N/m |
Spring vertical stiffness kz | 1.8 × 106 N/m |
Vertical damping (one viscous damper) c | 100 × 103 Ns/m |
Parameter | Value |
---|---|
k0 | 1.8 × 106 N/m |
k1 | 100 × 106 N/m |
Fpre | 100 × 103 N |
µ | 0.14 |
M | 2 |
α, β | 0.5 |
A(x) | 1 |
M | 2 |
Measure | Vertical Direction | Lateral Direction | |
---|---|---|---|
Peak value (mm) | QN1 | 12 | 12 |
QN2 | 16 | 14 | |
Standard deviation (mm) | QN1 | 2.3 | 1.5 |
QN2 | 2.6 | 1.8 |
Scenario | Set Simulation Time (s) | Number of Steps |
---|---|---|
First track R = 150 m, v = 50 km/h | 17 | 2000 |
Second track R = 320 m, v = 80 km/h | 43 | 4300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnik, R.; Koziak, S.; Seńko, J.; Dižo, J.; Caban, J. Evaluation of Dynamics of a Freight Wagon Model with Viscous Damping. Appl. Sci. 2024, 14, 10624. https://doi.org/10.3390/app142210624
Melnik R, Koziak S, Seńko J, Dižo J, Caban J. Evaluation of Dynamics of a Freight Wagon Model with Viscous Damping. Applied Sciences. 2024; 14(22):10624. https://doi.org/10.3390/app142210624
Chicago/Turabian StyleMelnik, Rafał, Seweryn Koziak, Jarosław Seńko, Ján Dižo, and Jacek Caban. 2024. "Evaluation of Dynamics of a Freight Wagon Model with Viscous Damping" Applied Sciences 14, no. 22: 10624. https://doi.org/10.3390/app142210624
APA StyleMelnik, R., Koziak, S., Seńko, J., Dižo, J., & Caban, J. (2024). Evaluation of Dynamics of a Freight Wagon Model with Viscous Damping. Applied Sciences, 14(22), 10624. https://doi.org/10.3390/app142210624