Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = vsiRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3601 KB  
Article
Investigating Apple Rubbery Wood Virus 2: HTS-Based Detection in Hungary and Involvement of sRNA-Based Regulation Processes During Its Infection
by Almash Jahan and Éva Várallyay
Viruses 2025, 17(10), 1394; https://doi.org/10.3390/v17101394 - 20 Oct 2025
Viewed by 618
Abstract
Pomme fruits are propagated vegetatively, thereby facilitating frequent viral transmission. The causative agent of apple rubbery wood disease, apple rubbery wood virus 2 (ARWV2), can infect apple and pear. The branches of ARWV2-infected, symptomatic trees are flexible due to the decreased lignification of [...] Read more.
Pomme fruits are propagated vegetatively, thereby facilitating frequent viral transmission. The causative agent of apple rubbery wood disease, apple rubbery wood virus 2 (ARWV2), can infect apple and pear. The branches of ARWV2-infected, symptomatic trees are flexible due to the decreased lignification of the xylem. In this research, we reanalysed our small RNA (sRNA) HTS datasets to survey the presence of ARWV2 in Hungary. Validation of HTS using RT-PCR revealed infection in several cultivars. The following RT-PCR-based survey revealed the infection of 17 trees, including not only apple, but also pears, one quince, and a rootstock, without showing any rubbery wood symptoms. Analysis of the sRNA datasets allowed us to profile the sRNA pattern of ARWV2-infected and non-infected trees, and characterise the differential expression pattern of vsiRNAs, sRNAs, and miRNAs targeting the lignin biosynthetic pathway. The results confirmed that the gene-expression changes in the genes that regulate lignification cannot be directly correlated with the presence of the virus, which can explain its frequent latent presence. The variable titre and sequence of the virus, and mixed-infection status of the trees, make its reliable diagnostics challenging, which could be achieved as a result of further research. Full article
(This article belongs to the Special Issue Emerging and Reemerging Plant Viruses in a Changing World)
Show Figures

Graphical abstract

14 pages, 4597 KB  
Article
Exogenous Application of IR-Specific dsRNA Inhibits Infection of Cucumber Green Mottle Mosaic Virus in Watermelon
by Yanhui Wang, Liming Liu, Yongqiang Fan, Yanli Han, Zhiling Liang, Yanfei Geng, Fengnan Liu, Qinsheng Gu, Baoshan Kang and Chaoxi Luo
Agronomy 2025, 15(10), 2332; https://doi.org/10.3390/agronomy15102332 - 2 Oct 2025
Viewed by 964
Abstract
Cucumber green mottle mosaic virus (CGMMV) represents a serious threat in the production of watermelon. Small RNAs facilitate a mechanism known as RNA interference (RNAi), which regulates gene expression. RNAi technology employs foreign double-stranded RNAs (dsRNAs) to target and reduce the expression levels [...] Read more.
Cucumber green mottle mosaic virus (CGMMV) represents a serious threat in the production of watermelon. Small RNAs facilitate a mechanism known as RNA interference (RNAi), which regulates gene expression. RNAi technology employs foreign double-stranded RNAs (dsRNAs) to target and reduce the expression levels of specific genes in plants by interfering with their mRNAs. In this study, watermelon plants were treated with dsRNAs of CGMMV MET, IR, and HEL fragments that had been generated in E. coli HT115. We investigated variations in several factors, including viral accumulation, virus-derived small interfering RNAs (vsiRNAs), and symptom severity. MET-dsRNA, IR-dsRNA and HEL-dsRNA dramatically decreased the symptoms of CGMMV in plants in the growth chamber test. Plants treated with viral-derived dsRNA showed a considerable decrease in both virus titers and vsiRNA levels. We also explored the mobility of spray-on dsRNA-derived long dsRNA and discovered that it could be identified in both inoculated leaves and the systemic leaves. IR-dsRNA outperformed MET-dsRNA and HEL-dsRNA in dsRNA therapy. Illumina sequencing of small RNAs from watermelon plants treated with IR-dsRNA and those that were not treated showed that the decreased accumulation of vsiRNAs was consistent with interference with CGMMV infection in systemic leaves. dsRNA-treated plants showed a higher level of 24-nt viral siRNA and lower level of 22-nt viral siRNA accumulation, while 22-nt viral siRNA predominated in untreated plants, indicating that dsRNA treatment improved DCL3 activity. In conclusion, our research provides deeper insights into the mechanism of antiviral RNA interference and confirms the effectiveness of applying dsRNA locally to enhance plant antiviral activity. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

28 pages, 3103 KB  
Article
First Complete Genome Sequence of Palo Verde Broom Emaravirus, Virus-Derived siRNA Signatures, and Phytohormone-Metabolite Profiling of Witches’ Broom-Affected Palo Verde Trees
by Raphael O. Adegbola, Muhammad Ilyas, Dinusha C. Maheepala, Ursula K. Schuch and Judith K. Brown
Viruses 2025, 17(8), 1122; https://doi.org/10.3390/v17081122 - 15 Aug 2025
Cited by 1 | Viewed by 1173
Abstract
Witches’ broom disease of blue palo verde (Parkinsonia florida) was reported more than sixty years ago. Characteristic symptoms consist of dense clusters of shortened, brittle branches and stunted leaves. The suspect causal agent has been identified as palo verde broom virus [...] Read more.
Witches’ broom disease of blue palo verde (Parkinsonia florida) was reported more than sixty years ago. Characteristic symptoms consist of dense clusters of shortened, brittle branches and stunted leaves. The suspect causal agent has been identified as palo verde broom virus (PVBV), genus, Emaravirus, family, Fimoviridae. Here, the first complete PVBV genome sequence was determined, and virus small interfering RNAs (vsiRNAs), primary metabolites, and phytohormone profiles were characterized from infected palo verde leaves, adventitious shoots, flowers, and seeds. Based on pairwise distances, PVBV RNAs 1–4 shared 54–65% nucleotide identity and 19–51% amino acid similarity, respectively, with other emaraviruses, while PVBV RNA 5 shared no sequence homology with any emaravirus. The 21–24-nt virus-derived vsiRNAs, indicative of post-transcriptional gene silencing (PTGS), represented nearly the entire PVBV genome in flowers, leaves, seeds, and adventitious shoots; however, PVBV RNA 3 and RNA 4 were most heavily targeted in all plant parts. Evidence that six major phytohormones were altered in PVBV-infected compared to virus-free trees indicated that emaravirus-infected trees mount classical defense responses to virus infection and/or eriophyid mite infestations. Detection of PVBV RNA genome segments 1–5, accumulation of predominantly 21-nt vsiRNAs, homologous to the PVBV genome and transcripts, and altered levels of phytohormones and metabolites in PVBV-infected trees strongly implicate PVBV as the causal agent of witches’ broom disease. Full article
Show Figures

Figure 1

18 pages, 2584 KB  
Article
Disease Tolerance in ‘Anaheim’ Pepper to PepGMV-D Strain Involves Complex Interactions Between the Movement Protein Putative Promoter Region and Unknown Host Factors
by Cecilia Hernández-Zepeda and Judith K. Brown
Viruses 2025, 17(2), 268; https://doi.org/10.3390/v17020268 - 15 Feb 2025
Viewed by 3858
Abstract
Pepper golden mosaic virus (PepGMV) is a bipartite begomovirus of pepper and tomato from North America. In ‘Anaheim’ pepper plants PepGMV-Mo strain (Mo) causes systemic yellow foliar mosaic symptoms, while PepGMV-D strain (D) causes distortion of 1st–6th expanding leaves, and asymptomatic infection of [...] Read more.
Pepper golden mosaic virus (PepGMV) is a bipartite begomovirus of pepper and tomato from North America. In ‘Anaheim’ pepper plants PepGMV-Mo strain (Mo) causes systemic yellow foliar mosaic symptoms, while PepGMV-D strain (D) causes distortion of 1st–6th expanding leaves, and asymptomatic infection of subsequently developing leaves, like other known ‘recovery’ phenotypes. Infections established with DNA-A Mo and D components expressing red-shifted green fluorescent protein in place of coat protein and in situ hybridization, showed PepGMV-Mo localized to phloem and mesophyll cells, while -D was mesophyll restricted. Alignment of PepGMV-Mo and -D DNA-B components revealed three indels upstream of the BC1 gene that encodes the movement protein (MP). To determine if this non-coding region (*BC1) D-strain MP putative promoter contributed to ‘recovery’, plants were inoculated with chimeric DNA-B Mo/D components harboring reciprocally exchanged *BC1, and wild-type DNA-A Mo and D components. Symptoms were reminiscent but not identical to wild-type -Mo or -D infection, respectively, suggesting ‘recovery’ cannot be attributed solely to the *BC1. Both BC1 and D*BC1 were targeted by post-transcriptional gene silencing; however, ‘recovered’ leaves accumulated fewer transcripts and 21–24 nt vsiRNAs. Thus, inefficient in planta movement of PepGMV-D is associated with a non-pepper-adapted ‘defective’ BC1 that facilitates hyper-efficient PTGS, leading to BC1 transcript degradation that in turn limits virus spread, thereby recapitulating disease ‘tolerance’. Full article
(This article belongs to the Special Issue Plant Virus Interactions with Hosts: Mechanisms and Applications)
Show Figures

Figure 1

11 pages, 1537 KB  
Communication
Genetic Characterization of Two Novel Insect-Infecting Negative-Sense RNA Viruses Identified in a Leaf Beetle, Aulacophora indica
by Meng-Nan Chen, Zhuang-Xin Ye, Ke-Hui Feng, Jing-Na Yuan, Jian-Ping Chen, Chuan-Xi Zhang, Jun-Min Li and Qian-Zhuo Mao
Insects 2024, 15(8), 615; https://doi.org/10.3390/insects15080615 - 15 Aug 2024
Cited by 1 | Viewed by 1988
Abstract
Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue [...] Read more.
Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue while feeding, often creating openings that can act as entry points for plant pathogens. In this study, we have identified two new negative-sense RNA viruses infecting the leaf beetle Aulacophora indica, an important member of the Chrysomelidae family. These recently discovered viruses belong to the viral families Nyamiviridae and Chuviridae and have been preliminarily named Aulacophora indica nyami-like virus 1 (AINlV1) and Aulacophora indica chu-like virus 1 (AIClV1), respectively. The complete genomic sequences of these viruses were obtained using rapid amplification of cDNA ends (RACE) techniques. Detailed analysis of their genomic structures has confirmed their similarity to other members within their respective families. Furthermore, analysis of virus-derived small interfering RNA (vsiRNA) demonstrated a high abundance and typical vsiRNA pattern of AINlV1 and AIClV1, offering substantial evidence to support their classification as ISVs. This research enhances our understanding of viral diversity within insects. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

11 pages, 1682 KB  
Article
Discovery of Two Novel Viruses of the Willow-Carrot Aphid, Cavariella aegopodii
by Gaoyang Jiao, Zhuangxin Ye, Kehui Feng, Chuanxi Zhang, Jianping Chen, Junmin Li and Yujuan He
Viruses 2024, 16(6), 919; https://doi.org/10.3390/v16060919 - 5 Jun 2024
Cited by 3 | Viewed by 1794
Abstract
The advancement of bioinformatics and sequencing technology has resulted in the identification of an increasing number of new RNA viruses. This study systematically identified the RNA virome of the willow-carrot aphid, Cavariella aegopodii (Hemiptera: Aphididae), using metagenomic sequencing and rapid amplification of cDNA [...] Read more.
The advancement of bioinformatics and sequencing technology has resulted in the identification of an increasing number of new RNA viruses. This study systematically identified the RNA virome of the willow-carrot aphid, Cavariella aegopodii (Hemiptera: Aphididae), using metagenomic sequencing and rapid amplification of cDNA ends (RACE) approaches. C. aegopodii is a sap-sucking insect widely distributed in Europe, Asia, North America, and Australia. The deleterious effects of C. aegopodii on crop growth primarily stem from its feeding activities and its role as a vector for transmitting plant viruses. The virome includes Cavariella aegopodii virga-like virus 1 (CAVLV1) and Cavariella aegopodii iflavirus 1 (CAIV1). Furthermore, the complete genome sequence of CAVLV1 was obtained. Phylogenetically, CAVLV1 is associated with an unclassified branch of the Virgaviridae family and is susceptible to host antiviral RNA interference (RNAi), resulting in the accumulation of a significant number of 22nt virus-derived small interfering RNAs (vsiRNAs). CAIV1, on the other hand, belongs to the Iflaviridae family, with vsiRNAs ranging from 18 to 22 nt. Our findings present a comprehensive analysis of the RNA virome of C. aegopodii for the first time, offering insights that could potentially aid in the future control of the willow-carrot aphid. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

12 pages, 1424 KB  
Communication
Identification and Characterization of Three Novel Solemo-like Viruses in the White-Backed Planthopper, Sogatella furcifera
by Jing-Na Yuan, Zhuang-Xin Ye, Meng-Nan Chen, Peng-Peng Ren, Chao Ning, Zong-Tao Sun, Jian-Ping Chen, Chuan-Xi Zhang, Jun-Min Li and Qianzhuo Mao
Insects 2024, 15(6), 394; https://doi.org/10.3390/insects15060394 - 28 May 2024
Cited by 5 | Viewed by 2066
Abstract
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice [...] Read more.
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host’s siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs’ hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

15 pages, 2429 KB  
Article
Inhibitory Effect of Prickly Ash (Zanthoxylum bungeanum) Seed Kernel Oil on Lipid Metabolism of Grass Carp (Ctenopharyngodon idellus) in High-Fat Diet
by Ping Wang, Ziling Zhu, Qinglai Xu, Yangfen Xing, Mingyue Zhang and Jishu Zhou
Fishes 2024, 9(4), 123; https://doi.org/10.3390/fishes9040123 - 29 Mar 2024
Cited by 2 | Viewed by 2309
Abstract
To investigate the effect of prickly ash (Zanthoxylum bungeanum) seed kernel oil (PASO) on the lipid metabolism of grass carp (Ctenopharyngodon idellus) under a high-fat diet, PASO were added into two lipid-level (4 g/kg and 8 g/kg) diets to [...] Read more.
To investigate the effect of prickly ash (Zanthoxylum bungeanum) seed kernel oil (PASO) on the lipid metabolism of grass carp (Ctenopharyngodon idellus) under a high-fat diet, PASO were added into two lipid-level (4 g/kg and 8 g/kg) diets to form four isonitrogenous diets: soybean oil (SO), PASO, high-fat soybean oil (HSO), and high-fat prickly ash seed oil (HPASO). A total of 216 healthy grass carp (9.43 ± 0.82 g) were randomly divided into four groups and fed with the four diets, respectively, for 56 days. The result showed that the viscerosomatic index (VSI) and the content of the crude lipid in the hepatopancreas and muscle was significantly higher by oil levels (p < 0.05). The linolenic acid content in the body of the fish significantly increased in PASO and HPASO compared to that in SO and HSO (p < 0.05). The fatty acid composition of the hepatopancreas, intraperitoneal fat, and muscle in four dietary groups was significantly similar to the fatty acid composition in the diets (p < 0.05). More significant fat infiltration and nuclear translocation in the hepatopancreas of fish was found in the HSO group but was decreased in the HPASO group. The adipocyte size in the intraperitoneal fat tissue in the PASO group was significantly lower than that in the SO group (p < 0.05). The relative mRNA expression of the lipogenesis-related genes ppar-γ, cebp-α, and srebp-1c was significantly down-regulated in the PASO group compared with the SO group (p < 0.05), and the mRNA expression of lipolysis-related genes ppar-α and cpt-1 were significantly up-regulated in the PASO group (p < 0.05). In conclusion, dietary PASO showed the function of reducing lipid accumulation in the fish. This reduction might be attributed to the inhibition of the lipogenesis-related genes and the stimulation of the lipolysis-related genes, which were probably modulated by the high content of linolenic acid in PASO. Full article
(This article belongs to the Special Issue The Metabolism and Function of Lipids and Fatty Acids in Fishes)
Show Figures

Figure 1

20 pages, 8974 KB  
Article
Comparative Analysis of Hepatopancreas RNA-Seq of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Different Starch Diets
by Jingjing Zhang, Xue Guo, Zhen Han, Letian Qu, Teng Xia, Xiangning Chen, Jianhe Xu, Zhujin Ding, Chaoqing Wei and Hanliang Cheng
Fishes 2023, 8(10), 495; https://doi.org/10.3390/fishes8100495 - 3 Oct 2023
Cited by 3 | Viewed by 2285
Abstract
This study aimed to explore the effects of different starch source diets on the growth performance and hepatopancreas RNA-seq of grass carp. Juvenile grass carp (initial body weight of 39.4 ± 1.6 g) were fed diets containing 25% corn (CO), potato (PO), and [...] Read more.
This study aimed to explore the effects of different starch source diets on the growth performance and hepatopancreas RNA-seq of grass carp. Juvenile grass carp (initial body weight of 39.4 ± 1.6 g) were fed diets containing 25% corn (CO), potato (PO), and wheat (WH) starch for 8 weeks, respectively. The weight gain ratio (WGR) was significantly lower, whereas the visceral somatic index (VSI) and feed conversion ratio (FCR) were significantly higher in the CO group than those in the PO and WH groups. These indicators did not significantly differ between the PO and WH groups. Hepatopancreas RNA-seq analysis showed that 536, 514, and 647 differentially expressed genes (DEGs) were screened out in the comparisons of PO vs. WH, PO vs. CO, and CO vs. WH. The DEGs were mainly enriched in the several known pathways involved in steroid biosynthesis, cell cycle, fatty acid metabolism, and fat digestion and absorption according to Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The major DEGs related to lipid and carbohydrate metabolism were analyzed, in which lipogenesis-related DEGs (fasn, acc1, scd1, elovl6, and me1), fat digestion and absorption-related DEGs (fabp7, apoa1, apoa4, and pla2), and glycometabolism-related DEGs (gk, g6pd, and pepck) were down-regulated in the PO group compared with those in the CO and WH groups. Conversely, steroid synthesis-related DEGs (hmgcs, fdft1, sqle, lss, cyp51, msmo1, nsdhl, ugt, cyp1b1, and cyp7a1) were up-regulated in the PO group. These results indicate that the long-term PO ingestion could modulate hepatic lipid metabolism by reducing fatty acid biosynthesis and increasing bile acid biosynthesis. PO may be healthier in contrast to CO alone, which may not be suitable as a starch source in grass carp diet. Full article
(This article belongs to the Special Issue Application of Transcriptomics in Fish)
Show Figures

Figure 1

16 pages, 3142 KB  
Article
BdCV1-Encoded P3 Silencing Suppressor Identification and Its Roles in Botryosphaeria dothidea, Causing Pear Ring Rot Disease
by Shanshan Li, Haodong Zhu, Ying He, Ni Hong, Guoping Wang and Liping Wang
Cells 2023, 12(19), 2386; https://doi.org/10.3390/cells12192386 - 29 Sep 2023
Cited by 3 | Viewed by 2141
Abstract
Pear ring rot disease is an important branch disease, caused by Botryosphaeria dothidea. With the discovery of fungal viruses, the use of their attenuated properties for biological control provides a new strategy for the biological control of fungal disease. RNA silencing is [...] Read more.
Pear ring rot disease is an important branch disease, caused by Botryosphaeria dothidea. With the discovery of fungal viruses, the use of their attenuated properties for biological control provides a new strategy for the biological control of fungal disease. RNA silencing is a major antiviral defense mechanism in plants, insects, and fungi. Viruses encode and utilize RNA silencing suppressors to suppress host defenses. Previous studies revealed that Botryosphaeria dothidea chrysovirus 1 (BdCV1) exhibited weak pathogenicity and could activate host gene silencing by infecting B. dothidea. The aim of our study was to investigate whether BdCV1 can encode a silencing suppressor and what effect it has on the host. In this study, the capability of silencing inhibitory activity of four BdCV1-encoded proteins was analyzed, and the P3 protein was identified as a BdCV1 RNA silencing suppressor in the exotic host Nicotiana benthamiana line 16c. In addition, we demonstrated that P3 could inhibit local silencing, block systemic RNA silencing, and induce the necrosis reaction of tobacco leaves. Furthermore, overexpression of P3 could slow down the growth rate and reduce the pathogenicity of B. dothidea, and to some extent affect the expression level of RNA silencing components and virus-derived siRNAs (vsiRNAs). Combined with transcriptomic analysis, P3 had an effect on the gene expression and biological process of B. dothidea. The obtained results provide new theoretical information for further study of interaction between BdCV1 P3 as a potential silencing suppressor and B. dothidea. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

14 pages, 3312 KB  
Article
Analysis of Virus-Derived siRNAs in Strawberry Plants Co-Infected with Multiple Viruses and Their Genotypes
by Igor Koloniuk, Alena Matyášová, Sára Brázdová, Jana Veselá, Jaroslava Přibylová, Eva Várallyay and Jana Fránová
Plants 2023, 12(13), 2564; https://doi.org/10.3390/plants12132564 - 6 Jul 2023
Cited by 3 | Viewed by 2745
Abstract
Plants can be infected with multiple viruses. High-throughput sequencing tools have enabled numerous discoveries of multi-strain infections, when more than one viral strain or divergent genomic variant infects a single plant. Here, we investigated small interfering RNAs (siRNAs) in a single strawberry plant [...] Read more.
Plants can be infected with multiple viruses. High-throughput sequencing tools have enabled numerous discoveries of multi-strain infections, when more than one viral strain or divergent genomic variant infects a single plant. Here, we investigated small interfering RNAs (siRNAs) in a single strawberry plant co-infected with several strains of strawberry mottle virus (SMoV), strawberry crinkle virus (SCV) and strawberry virus 1 (StrV-1). A range of plants infected with subsets of the initial viral species and strains that were obtained by aphid-mediated transmission were also evaluated. Using high-throughput sequencing, we characterized the small RNA fractions associated with different genotypes of these three viruses and determined small RNA hotspot regions in viral genomes. A comparison of virus-specific siRNA (vsiRNA) abundance with relative viral concentrations did not reveal any consistent agreement. Strawberry mottle virus strains exhibiting considerable variations in concentrations were found to be associated with comparable quantities of vsiRNAs. Additionally, by estimating the specificity of siRNAs to different viral strains, we observed that a substantial pool of vsiRNAs could target all SMoV strains, while strain-specific vsiRNAs predominantly targeted rhabdoviruses, SCV and StrV-1. This highlights the intricate nature and potential interference of the antiviral response within a single infected plant when multiple viruses are present. Full article
(This article belongs to the Special Issue Research on Fruit Viruses and Phytoplasmas)
Show Figures

Figure 1

17 pages, 1119 KB  
Review
Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant–Virus–Vector Tritrophic Communication
by Emilyn E. Matsumura and Richard Kormelink
Plants 2023, 12(6), 1411; https://doi.org/10.3390/plants12061411 - 22 Mar 2023
Cited by 4 | Viewed by 3533
Abstract
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their [...] Read more.
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their mobile nature and rapid generation suggest sRNAs as potential key modulators of intercellular and interspecies communication in plant-pathogen–pest interactions. Plant endogenous sRNAs can act in cis to regulate plant innate immunity against pathogens, or in trans to silence pathogens’ messenger RNAs (mRNAs) and impair virulence. Likewise, pathogen-derived sRNAs can act in cis to regulate expression of their own genes and increase virulence towards a plant host, or in trans to silence plant mRNAs and interfere with host defense. In plant viral diseases, virus infection alters the composition and abundance of sRNAs in plant cells, not only by triggering and interfering with the plant RNA silencing antiviral response, which accumulates virus-derived small interfering RNAs (vsiRNAs), but also by modulating plant endogenous sRNAs. Here, we review the current knowledge on the nature and activity of virus-responsive sRNAs during virus–plant interactions and discuss their role in trans-kingdom modulation of virus vectors for the benefit of virus dissemination. Full article
(This article belongs to the Special Issue Effects of Small RNA on Plant-Pathogen Interactions)
Show Figures

Figure 1

12 pages, 3296 KB  
Article
Interference of Small RNAs in Fusarium graminearum through FgGMTV1 Infection
by Shuangchao Wang, Shaojian Ruan, Mingming Zhang, Jianhua Nie, Clement Nzabanita and Lihua Guo
J. Fungi 2022, 8(12), 1237; https://doi.org/10.3390/jof8121237 - 22 Nov 2022
Cited by 7 | Viewed by 2444
Abstract
Small RNA (sRNA) plays a central role in RNA silencing in fungi. The genome of Fusarium graminearum gemytripvirus 1 (FgGMTV1) is comprised of three DNA segments: DNA-A, DNA-B, and DNA-C. DNA-A and DNA-B are associated with fungal growth and virulence reduction. To elucidate [...] Read more.
Small RNA (sRNA) plays a central role in RNA silencing in fungi. The genome of Fusarium graminearum gemytripvirus 1 (FgGMTV1) is comprised of three DNA segments: DNA-A, DNA-B, and DNA-C. DNA-A and DNA-B are associated with fungal growth and virulence reduction. To elucidate the role of RNA silencing during the interactions of fungi and viruses, the sRNA profiles of F. graminearum in association with FgGMTV1 were established, using an FgGMTV1-free library (S-S), a library for infection with the DNA-A and DNA-B segments (S-AB), and a library for infection with the DNA-A, DNA-B, and DNA-C segments (S-ABC). A large amount of virus-derived sRNA (vsiRNA) was detected in the S-AB and S-ABC libraries, accounting for 9.9% and 13.8% of the total sRNA, respectively, indicating that FgGMTV1 triggers host RNA silencing. The total numbers of sRNA reads differed among the three libraries, suggesting that FgGMTV1 infection interferes with host RNA silencing. In addition, the relative proportions of the different sRNA lengths were altered in the S-AB and S-ABC libraries. The genome distribution patterns of the mapping of vsiRNA to DNA-A and DNA-B in the S-AB and S-ABC libraries were also different. These results suggest the influence of DNA-C on host RNA silencing. Transcripts targeted by vsiRNAs were enriched in pathways that included flavin adenine dinucleotide binding, protein folding, and filamentous growth. Full article
(This article belongs to the Special Issue Mycoviruses: Emerging Investigations on Virus-Fungal Host Interaction)
Show Figures

Figure 1

15 pages, 2066 KB  
Article
Similar Characteristics of siRNAs of Plant Viruses Which Replicate in Plant and Fungal Hosts
by Tianxing Pang, Jianping Peng, Ruiling Bian, Yu Liu, Dong Zhang, Ida Bagus Andika and Liying Sun
Biology 2022, 11(11), 1672; https://doi.org/10.3390/biology11111672 - 17 Nov 2022
Cited by 4 | Viewed by 2723
Abstract
RNA silencing is a host innate antiviral mechanism which acts via the synthesis of viral-derived small interfering RNAs (vsiRNAs). We have previously reported the infection of phytopathogenic fungi by plant viruses such as cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV). Furthermore, [...] Read more.
RNA silencing is a host innate antiviral mechanism which acts via the synthesis of viral-derived small interfering RNAs (vsiRNAs). We have previously reported the infection of phytopathogenic fungi by plant viruses such as cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV). Furthermore, fungal RNA silencing was shown to suppress plant virus accumulation, but the characteristics of plant vsiRNAs associated with the antiviral response in this nonconventional host remain unknown. Using high-throughput sequencing, we characterized vsiRNA profiles in two plant RNA virus–fungal host pathosystems: CMV infection in phytopathogenic fungus Rhizoctonia solani and TMV infection in phytopathogenic fungus Fusarium graminearum. The relative abundances of CMV and TMV siRNAs in the respective fungal hosts were much lower than those in the respective experimental plant hosts, Nicotiana benthamiana and Nicotiana tabacum. However, CMV and TMV siRNAs in fungi had similar characteristics to those in plants, particularly in their size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini of vsiRNAs. The abundance of TMV siRNAs largely decreased in F. graminearum mutants with a deletion in either dicer-like 1 (dcl1) or dcl2 genes which encode key proteins for the production of siRNAs and antiviral responses. However, deletion of both dcl1 and dcl2 restored TMV siRNA accumulation in F. graminearum, indicating the production of dcl-independent siRNAs with no antiviral function in the absence of the dcl1 and dcl2 genes. Our results suggest that fungal RNA silencing recognizes and processes the invading plant RNA virus genome in a similar way as in plants. Full article
(This article belongs to the Special Issue Recent Advances in Molecular Plant Pathology)
Show Figures

Figure 1

11 pages, 1415 KB  
Article
The Characterization of Three Novel Insect-Specific Viruses Discovered in the Bean Bug, Riptortus pedestris
by Chunyun Guo, Zhuangxin Ye, Biao Hu, Shiqi Shan, Jianping Chen, Zongtao Sun, Junmin Li and Zhongyan Wei
Viruses 2022, 14(11), 2500; https://doi.org/10.3390/v14112500 - 11 Nov 2022
Cited by 7 | Viewed by 2332
Abstract
Insect-specific virus (ISV) is one of the most promising agents for the biological control of insects, which is abundantly distributed in hematophagous insects. However, few ISVs have been reported in Riptortus pedestris (Fabricius), one of the major pests threatening soybeans and causing great [...] Read more.
Insect-specific virus (ISV) is one of the most promising agents for the biological control of insects, which is abundantly distributed in hematophagous insects. However, few ISVs have been reported in Riptortus pedestris (Fabricius), one of the major pests threatening soybeans and causing great losses in yield and quality. In this work, field Riptortus pedestris was collected from six soybean-producing regions in China, and their virome was analyzed with the metatranscriptomic approach. Altogether, seven new insect RNA viruses were identified, three of which had complete RNA-dependent RNA polymerase (RdRp) and nearly full-length genome sequences, which were named Riptortus pedestris alphadrosrha-like virus 1 (RpALv1), Riptortus pedestris alphadrosrha-like virus 2 (RpALv2) and Riptortus pedestris almendra-like virus (RiALv). The three identified novel ISVs belonged to the family Rhabdoviridae, and phylogenetic tree analysis indicated that they were clustered into new distinct clades. Interestingly, the analysis of virus-derived small-interfering RNAs (vsiRNAs) indicated that only RiALv-derived siRNAs exhibited 22 nt length preference, whereas no clear 21 or 22 nt peaks were observed for RpALv1 and RpALv2, suggesting the complexity of siRNA-based antiviral immunity in R. pedestris. In conclusion, this study contributes to a better understanding of the microenvironment in R. pedestris and provides viral information for the development of potential soybean insect-specific biocontrol agents. Full article
(This article belongs to the Special Issue Diversity of RNA Viruses in Arthropod)
Show Figures

Figure 1

Back to TopTop