Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = vortex core resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7542 KiB  
Article
Flow-Induced Vibration Stability in Pilot-Operated Control Valves with Nonlinear Fluid–Structure Interaction Analysis
by Lingxia Yang, Shuxun Li and Jianjun Hou
Actuators 2025, 14(8), 372; https://doi.org/10.3390/act14080372 - 25 Jul 2025
Viewed by 135
Abstract
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the [...] Read more.
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the valve, supported by experiment validation of the fluid model. To account for nonlinear structural effects such as contact and damping, a coupled fluid–structure interaction approach incorporating nonlinear perturbation analysis was applied to evaluate the dynamic response of the valve core assembly under fluid excitation. The results indicate that flow separation, re-circulation, and vortex shedding within the throttling region are primary contributors to structural vibrations. A comparative analysis of stability coefficients, modal damping ratios, and logarithmic decrements under different valve openings revealed that the valve core assembly remains relatively stable overall. However, critical stability risks were identified in the lower-order modal frequency range at 50% and 70% openings. Notably, at a 70% opening, the first-order modal frequency of the valve core assembly closely aligns with the frequency of fluid excitation, indicating a potential for critical resonance. This research provides important insights for evaluating and enhancing the vibration stability and operational safety of control valves under complex flow conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

20 pages, 4029 KiB  
Study Protocol
Four-Dimensional Flow MRI for Cardiovascular Evaluation (4DCarE): A Prospective Non-Inferiority Study of a Rapid Cardiac MRI Exam: Study Protocol and Pilot Analysis
by Jiaxing Jason Qin, Mustafa Gok, Alireza Gholipour, Jordan LoPilato, Max Kirkby, Christopher Poole, Paul Smith, Rominder Grover and Stuart M. Grieve
Diagnostics 2024, 14(22), 2590; https://doi.org/10.3390/diagnostics14222590 - 18 Nov 2024
Viewed by 1475
Abstract
Background: Accurate measurements of flow and ventricular volume and function are critical for clinical decision-making in cardiovascular medicine. Cardiac magnetic resonance (CMR) is the current gold standard for ventricular functional evaluation but is relatively expensive and time-consuming, thus limiting the scale of clinical [...] Read more.
Background: Accurate measurements of flow and ventricular volume and function are critical for clinical decision-making in cardiovascular medicine. Cardiac magnetic resonance (CMR) is the current gold standard for ventricular functional evaluation but is relatively expensive and time-consuming, thus limiting the scale of clinical applications. New volumetric acquisition techniques, such as four-dimensional flow (4D-flow) and three-dimensional volumetric cine (3D-cine) MRI, could potentially reduce acquisition time without loss in accuracy; however, this has not been formally tested on a large scale. Methods: 4DCarE (4D-flow MRI for cardiovascular evaluation) is a prospective, multi-centre study designed to test the non-inferiority of a compressed 20 min exam based on volumetric CMR compared with a conventional CMR exam (45–60 min). The compressed exam utilises 4D-flow together with a single breath-hold 3D-cine to provide a rapid, accurate quantitative assessment of the whole heart function. Outcome measures are (i) flow and chamber volume measurements and (ii) overall functional evaluation. Secondary analyses will explore clinical applications of 4D-flow-derived parameters, including wall shear stress, flow kinetic energy quantification, and vortex analysis in large-scale cohorts. A target of 1200 participants will enter the study across three sites. The analysis will be performed at a single core laboratory site. Pilot Results: We present a pilot analysis of 196 participants comparing flow measurements obtained by 4D-flow and conventional 2D phase contrast, which demonstrated moderate–good consistency in ascending aorta and main pulmonary artery flow measurements between the two techniques. Four-dimensional flow underestimated the flow compared with 2D-PC, by approximately 3 mL/beat in both vessels. Conclusions: We present the study protocol of a prospective non-inferiority study of a rapid cardiac MRI exam compared with conventional CMR. The pilot analysis supports the continuation of the study. Study Registration: This study is registered with the Australia and New Zealand Clinical Trials Registry (Registry number ACTRN12622000047796, Universal Trial Number: U1111-1270-6509, registered 17 January 2022—Retrospectively registered). Full article
Show Figures

Figure 1

10 pages, 2499 KiB  
Article
3D-Printed SMC Core Alternators: Enhancing the Efficiency of Vortex-Induced Vibration (VIV) Bladeless Wind Turbines
by Enrique González-González, David J. Yáñez, Arturo Hidalgo, Susana Del Pozo and Susana Lagüela
Appl. Sci. 2024, 14(13), 5512; https://doi.org/10.3390/app14135512 - 25 Jun 2024
Cited by 1 | Viewed by 1848
Abstract
This study investigates the application of soft magnetic composite (SMC) materials in alternator core manufacturing for bladeless wind turbines operating under the principle of vortex-induced vibration (VIV), employing additive manufacturing (AM) technologies. Through a comparative analysis of alternator prototypes featuring air, SMC, and [...] Read more.
This study investigates the application of soft magnetic composite (SMC) materials in alternator core manufacturing for bladeless wind turbines operating under the principle of vortex-induced vibration (VIV), employing additive manufacturing (AM) technologies. Through a comparative analysis of alternator prototypes featuring air, SMC, and iron cores, the investigation aims to evaluate the performance of SMC materials as an alternative to the most commonly used material (iron) in VIV BWT, by assessing damping, resonance frequency, magnetic hysteresis, and energy generation. Results indicate that while alternators with iron cores exhibit superior energy generation (peaking at 3830 mV and an RMS voltage of 1019 mV), those with SMC cores offer a promising compromise with a peak voltage of 1150 mV and RMS voltage of 316 mV, mitigating eddy current losses attributed to magnetic hysteresis. Notably, SMC cores achieve a damping rate of 60%, compared to 67% for air cores and 59% for iron cores, showcasing their potential to enhance the efficiency and sustainability of bladeless wind turbines (BWTs). Furthermore, the adaptability of AM in optimizing designs and accommodating intricate shapes presents significant advantages for future advancements. This study underscores the pivotal role of innovative materials and manufacturing processes in driving progress towards more efficient and sustainable renewable energy solutions. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

15 pages, 24941 KiB  
Article
Torsional Optical Fiber Stress Analysis and Vortex-Induced Vibration Study of Three-Core Submarine Cable
by Haotian Tan, Yanpeng Hao, Peng Zhang, Qishun Li, Wanxing Tian, Linhao Chen, Lin Yang and Licheng Li
J. Mar. Sci. Eng. 2023, 11(8), 1589; https://doi.org/10.3390/jmse11081589 - 14 Aug 2023
Cited by 3 | Viewed by 1946
Abstract
Due to current scouring, submarine cables are prone to be exposed, suspended, and even vortex-induced vibration, which is not conducive to the safe operation of the power grid. In this contribution, the finite element simulation model of a 35 kV three-core optical fiber [...] Read more.
Due to current scouring, submarine cables are prone to be exposed, suspended, and even vortex-induced vibration, which is not conducive to the safe operation of the power grid. In this contribution, the finite element simulation model of a 35 kV three-core optical fiber composite submarine cable with a suspended span length of 9.5 m is established. The natural frequency of the model is obtained through modal analysis. Then the vortex-induced vibration is simulated by the fluid–structure coupling method, and the stress distribution and change law of the torsional optical fiber is extracted. The results show that in the submarine cable, there appears to be a beating vibration and locking phenomena respectively, under two flow velocities. The transverse vibration amplitude of the latter increases significantly due to a resonance state. When the flow direction is perpendicular to the submarine cable, the stress distribution of the torsional optical fiber at the initial moment and at the 1/2 T moment of a vibration cycle approximately represents a mirror image relationship. In addition, the frequency of the stress change is the same as the frequency of the vortex-induced vibration, which can judge whether the vortex-induced vibration occurs. Moreover, the vortex-induced vibration range can be determined by the maximum stress change location. Full article
Show Figures

Figure 1

11 pages, 2312 KiB  
Article
Nutation Excitations in the Gyrotropic Vortex Dynamics in a Circular Magnetic Nanodot
by Zukhra Gareeva and Konstantin Guslienko
Nanomaterials 2023, 13(3), 461; https://doi.org/10.3390/nano13030461 - 23 Jan 2023
Cited by 4 | Viewed by 2472
Abstract
A significant activity is devoted to the investigation of the ultrafast spin dynamic processes, holding a great potential for science and applications. However, a challenge of the understanding of the mechanisms of underlying spin dynamics in nanomaterials at pico- and femtosecond timescales remains [...] Read more.
A significant activity is devoted to the investigation of the ultrafast spin dynamic processes, holding a great potential for science and applications. However, a challenge of the understanding of the mechanisms of underlying spin dynamics in nanomaterials at pico- and femtosecond timescales remains under discussion. In this article, we explore the gyrotropic vortex dynamics in a circular soft magnetic nanodot, highlighting the impacts given by nutations in the high-frequency part of the dot spin excitation spectrum. Using a modified Thiele equation of the vortex core motion with a nutation term, we analyze the dynamic response of the vortex to an oscillating magnetic field applied in the dot plane. It is found that nutations affect the trajectory of the vortex core. Namely, we show that the directions of the vortex core motion in the low-frequency gyrotropic mode and the high-frequency nutation mode are opposite. The resonant frequencies of gyrotropic and nutational vortex core motions reveal themselves on different scales: gigahertz for the gyrotropic motion and terahertz for the nutations. We argue that the nutations induce a dynamic vortex mass, present estimates of the nutational mass, and conduct comparison with the mass appearing due to moving vortex interactions with spin waves and Doering domain wall mass. Full article
Show Figures

Figure 1

8 pages, 1348 KiB  
Article
Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot
by Shaojie Hu, Xiaomin Cui, Kang Wang, Satoshi Yakata and Takashi Kimura
Nanomaterials 2022, 12(13), 2295; https://doi.org/10.3390/nano12132295 - 4 Jul 2022
Cited by 2 | Viewed by 2370
Abstract
The resonance property of a magnetic vortex contained within a micron-sized square Py dot was detected using an amplitude-modulated magnetic field excitation technique. We found a significant modulation of the resonant spectra as the external magnetic field changes. The Lorentzian-like spectrum changes from [...] Read more.
The resonance property of a magnetic vortex contained within a micron-sized square Py dot was detected using an amplitude-modulated magnetic field excitation technique. We found a significant modulation of the resonant spectra as the external magnetic field changes. The Lorentzian-like spectrum changes from a peak to a dip via a transition of anti-Lorentzian-like spectra. By conducting the micromagnetic simulations, we confirmed that the transition behavior results from the unusual resistance change depending on the vortex core center position. Additionally, the power dependence of the anti-Lorentzian-like spectra revealed a fairly persistent coexistence of peak and dip. Thus, the tunable spectra suggest one way to develop an integratable radiofrequency microcircuits. Full article
(This article belongs to the Special Issue Advanced Spintronic and Electronic Nanomaterials)
Show Figures

Figure 1

10 pages, 1863 KiB  
Article
Towards Laterally Resolved Ferromagnetic Resonance with Spin-Polarized Scanning Tunneling Microscopy
by Marie Hervé, Moritz Peter, Timofey Balashov and Wulf Wulfhekel
Nanomaterials 2019, 9(6), 827; https://doi.org/10.3390/nano9060827 - 31 May 2019
Cited by 5 | Viewed by 4035
Abstract
We used a homodyne detection to investigate the gyration of magnetic vortex cores in Fe islands on W(110) with spin-polarized scanning tunneling microscopy at liquid helium temperatures. The technique aims at local detection of the spin precession as a function of frequency using [...] Read more.
We used a homodyne detection to investigate the gyration of magnetic vortex cores in Fe islands on W(110) with spin-polarized scanning tunneling microscopy at liquid helium temperatures. The technique aims at local detection of the spin precession as a function of frequency using a radio-frequency (rf) modulation of the tunneling bias voltage. The gyration was excited by the resulting spin-polarized rf current in the tunneling junction. A theoretical analysis of different contributions to the frequency-dependent signals expected in this technique is given. These include, besides the ferromagnetic resonance signal, also signals caused by the non-linearity of the I ( U ) characteristics. The vortex gyration was modeled with micromagnetic finite element methods using realistic parameters for the tunneling current, its spin polarization, and the island shape, and simulations were compared with the experimental results. The observed signals are presented and critically analyzed. Full article
(This article belongs to the Special Issue Scanning Probe Spectroscopy: From Radio- to Terahertz Frequencies)
Show Figures

Figure 1

10 pages, 12090 KiB  
Article
Hydrodynamic Tweezers: Trapping and Transportation in Microscale Using Vortex Induced by Oscillation of a Single Piezoelectric Actuator
by Xiaoming Liu, Qing Shi, Yuqing Lin, Masaru Kojima, Yasushi Mae, Qiang Huang, Toshio Fukuda and Tatsuo Arai
Sensors 2018, 18(7), 2002; https://doi.org/10.3390/s18072002 - 22 Jun 2018
Cited by 20 | Viewed by 4503
Abstract
The demand for a harmless noncontact trapping and transportation method in manipulation and measurement of biological micro objects waits to be met. In this paper, a novel micromanipulation method named “Hydrodynamic Tweezers” using the vortex induced by oscillating a single piezoelectric actuator is [...] Read more.
The demand for a harmless noncontact trapping and transportation method in manipulation and measurement of biological micro objects waits to be met. In this paper, a novel micromanipulation method named “Hydrodynamic Tweezers” using the vortex induced by oscillating a single piezoelectric actuator is introduced. The piezoelectric actuator is set between a micropipette and a copper beam. Oscillating the actuator at a certain frequency causes the resonance of the copper beam and extend 1D straight oscillation of the piezoelectric actuator to 2D circular oscillation of the micropipette, which induces a micro vortex after putting the micropipette into fluid. The induced vortex featuring low pressure in its core area can trap the object nearby. A robotic micromanipulator is utilized to transport the trapped objects together with the micropipette. Experiments of trapping and transportation microbeads are carried out to characterize the key parameters. The results show that the trapping force can be controlled by adjusting peak-peak voltage of the sinusoidal voltage input into the piezoelectric actuator. Full article
(This article belongs to the Special Issue Piezoelectric Micro- and Nano-Devices)
Show Figures

Figure 1

Back to TopTop